summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/reconinter.c
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/aom/av1/common/reconinter.c')
-rw-r--r--third_party/aom/av1/common/reconinter.c2181
1 files changed, 1498 insertions, 683 deletions
diff --git a/third_party/aom/av1/common/reconinter.c b/third_party/aom/av1/common/reconinter.c
index a1b5c1f671..d7e39b45ca 100644
--- a/third_party/aom/av1/common/reconinter.c
+++ b/third_party/aom/av1/common/reconinter.c
@@ -10,6 +10,8 @@
*/
#include <assert.h>
+#include <stdio.h>
+#include <limits.h>
#include "./aom_scale_rtcd.h"
#include "./aom_dsp_rtcd.h"
@@ -23,9 +25,186 @@
#include "av1/common/reconintra.h"
#if CONFIG_MOTION_VAR
#include "av1/common/onyxc_int.h"
+#include "av1/common/obmc.h"
#endif // CONFIG_MOTION_VAR
-#if CONFIG_EXT_INTER
+#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
+// This function will determine whether or not to create a warped
+// prediction and return the appropriate motion model depending
+// on the configuration. Behavior will change with different
+// combinations of GLOBAL_MOTION, WARPED_MOTION and MOTION_VAR.
+static INLINE int allow_warp(const MODE_INFO *const mi,
+ const WarpTypesAllowed *const warp_types,
+#if CONFIG_GLOBAL_MOTION
+ const WarpedMotionParams *const gm_params,
+#endif // CONFIG_GLOBAL_MOTION
+#if CONFIG_MOTION_VAR
+ int build_for_obmc,
+#endif // CONFIG_MOTION_VAR
+ WarpedMotionParams *final_warp_params) {
+ const MB_MODE_INFO *const mbmi = &mi->mbmi;
+ *final_warp_params = default_warp_params;
+
+// Only global motion configured
+#if CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
+ (void)mbmi;
+ if (warp_types->global_warp_allowed) {
+ memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
+ return 1;
+ }
+#endif // CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
+
+// Only warped motion configured
+#if CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
+ if (warp_types->local_warp_allowed) {
+ memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
+ return 1;
+ }
+#endif // CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR
+
+// Warped and global motion configured
+#if CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
+ // When both are enabled, warped will take priority. The global parameters
+ // will only be used to compute projection samples to find the warped model.
+ // Note that when a block chooses global, it will not be possible to
+ // select WARPED_CAUSAL.
+ if (warp_types->local_warp_allowed) {
+ memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params));
+ return 1;
+ } else if (warp_types->global_warp_allowed) {
+ memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
+ return 1;
+ }
+#endif // CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR
+
+// Motion var and global motion configured
+#if CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
+ // We warp if either case is true:
+ // 1.) We are predicting a block which uses global motion
+ // 2.) We are predicting a neighboring block of a block using OBMC,
+ // the neighboring block uses global motion, and we have enabled
+ // WARP_GM_NEIGHBORS_WITH_OBMC
+ (void)mbmi;
+ if (warp_types->global_warp_allowed &&
+ (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
+ memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
+ return 1;
+ }
+#endif // CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION
+
+// Motion var and warped motion configured
+#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
+ // We warp if either case is true:
+ // 1.) We are predicting a block with motion mode WARPED_CAUSAL
+ // 2.) We are predicting a neighboring block of a block using OBMC,
+ // the neighboring block has mode WARPED_CAUSAL, and we have enabled
+ // WARP_WM_NEIGHBORS_WITH_OBMC
+ if (warp_types->local_warp_allowed) {
+ if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
+ memcpy(final_warp_params, &mbmi->wm_params[0],
+ sizeof(*final_warp_params));
+ return 1;
+ }
+ }
+#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION
+
+// Motion var, warped motion and global motion all configured
+#if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
+ if (warp_types->local_warp_allowed) {
+ if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) {
+ memcpy(final_warp_params, &mbmi->wm_params[0],
+ sizeof(*final_warp_params));
+ return 1;
+ }
+ } else if (warp_types->global_warp_allowed &&
+ (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) {
+ memcpy(final_warp_params, gm_params, sizeof(*final_warp_params));
+ return 1;
+ }
+#endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION
+
+ return 0;
+}
+#endif // CONFIG_GLOBAL_MOTION ||CONFIG_WARPED_MOTION
+
+static INLINE void av1_make_inter_predictor(
+ const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
+ const int subpel_x, const int subpel_y, const struct scale_factors *sf,
+ int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters,
+#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
+ const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane,
+ int ref,
+#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
+#if CONFIG_MOTION_VAR
+ const MODE_INFO *mi, int build_for_obmc,
+#endif
+ int xs, int ys, const MACROBLOCKD *xd) {
+ (void)xd;
+
+#if !CONFIG_MOTION_VAR
+ const MODE_INFO *mi = xd->mi[0];
+ (void)mi;
+#endif // CONFIG_MOTION_VAR
+
+// Make sure the selected motion mode is valid for this configuration
+#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
+ assert_motion_mode_valid(mi->mbmi.motion_mode,
+#if CONFIG_GLOBAL_MOTION
+ 0, xd->global_motion,
+#endif // CONFIG_GLOBAL_MOTION
+#if CONFIG_WARPED_MOTION
+ xd,
+#endif
+ mi);
+#endif // CONFIG MOTION_VAR || CONFIG_WARPED_MOTION
+
+#if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION
+ WarpedMotionParams final_warp_params;
+ const int do_warp = allow_warp(
+ mi, warp_types,
+#if CONFIG_GLOBAL_MOTION
+#if CONFIG_COMPOUND_SINGLEREF
+ // TODO(zoeliu): To further check the single
+ // ref comp mode to work together with
+ // global motion.
+ has_second_ref(&mi->mbmi) ? &xd->global_motion[mi->mbmi.ref_frame[ref]]
+ : &xd->global_motion[mi->mbmi.ref_frame[0]],
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ &xd->global_motion[mi->mbmi.ref_frame[ref]],
+#endif // CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_GLOBAL_MOTION
+#if CONFIG_MOTION_VAR
+ build_for_obmc,
+#endif // CONFIG_MOTION_VAR
+ &final_warp_params);
+ if (do_warp
+#if CONFIG_AMVR
+ && xd->cur_frame_mv_precision_level == 0
+#endif
+ ) {
+ const struct macroblockd_plane *const pd = &xd->plane[plane];
+ const struct buf_2d *const pre_buf = &pd->pre[ref];
+ av1_warp_plane(&final_warp_params,
+#if CONFIG_HIGHBITDEPTH
+ xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
+#endif // CONFIG_HIGHBITDEPTH
+ pre_buf->buf0, pre_buf->width, pre_buf->height,
+ pre_buf->stride, dst, p_col, p_row, w, h, dst_stride,
+ pd->subsampling_x, pd->subsampling_y, xs, ys, conv_params);
+ return;
+ }
+#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+ highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
+ sf, w, h, conv_params, interp_filters, xs, ys,
+ xd->bd);
+ return;
+ }
+#endif // CONFIG_HIGHBITDEPTH
+ inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
+ h, conv_params, interp_filters, xs, ys);
+}
#define NSMOOTHERS 1
@@ -183,12 +362,6 @@ const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = {
wedge_masks[BLOCK_32X16] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0,
wedge_masks[BLOCK_32X32] },
- { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_32X64], 0,
- wedge_masks[BLOCK_32X64] },
- { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_64X32], 0,
- wedge_masks[BLOCK_64X32] },
- { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_64X64], 0,
- wedge_masks[BLOCK_64X64] },
#else
{ 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0,
wedge_masks[BLOCK_8X8] },
@@ -204,26 +377,40 @@ const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = {
wedge_masks[BLOCK_32X16] },
{ 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0,
wedge_masks[BLOCK_32X32] },
- { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_32X64], 0,
- wedge_masks[BLOCK_32X64] },
- { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_64X32], 0,
- wedge_masks[BLOCK_64X32] },
- { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_64X64], 0,
- wedge_masks[BLOCK_64X64] },
#endif // CONFIG_WEDGE
+ { 0, NULL, NULL, 0, NULL },
+ { 0, NULL, NULL, 0, NULL },
+ { 0, NULL, NULL, 0, NULL },
#if CONFIG_EXT_PARTITION
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_EXT_PARTITION
- { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0,
+#if CONFIG_WEDGE
+ { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0,
wedge_masks[BLOCK_4X16] },
- { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0,
+ { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0,
wedge_masks[BLOCK_16X4] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0,
wedge_masks[BLOCK_8X32] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0,
wedge_masks[BLOCK_32X8] },
+#else
+ { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0,
+ wedge_masks[BLOCK_4X16] },
+ { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0,
+ wedge_masks[BLOCK_16X4] },
+ { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0,
+ wedge_masks[BLOCK_8X32] },
+ { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0,
+ wedge_masks[BLOCK_32X8] },
+#endif // CONFIG_WEDGE
+ { 0, NULL, NULL, 0, NULL },
+ { 0, NULL, NULL, 0, NULL },
+#if CONFIG_EXT_PARTITION
+ { 0, NULL, NULL, 0, NULL },
+ { 0, NULL, NULL, 0, NULL },
+#endif // CONFIG_EXT_PARTITION
};
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
@@ -457,12 +644,12 @@ void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
BLOCK_SIZE sb_type, int h, int w, int bd) {
switch (mask_type) {
case DIFFWTD_38:
- diffwtd_mask_highbd(mask, 0, 42, CONVERT_TO_SHORTPTR(src0), src0_stride,
+ diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
case DIFFWTD_38_INV:
- diffwtd_mask_highbd(mask, 1, 42, CONVERT_TO_SHORTPTR(src0), src0_stride,
+ diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
@@ -754,26 +941,19 @@ static void build_masked_compound_highbd(
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_SUPERTX
-void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
- uint8_t *dst, int dst_stride,
- const int subpel_x, const int subpel_y,
- const struct scale_factors *sf, int w,
- int h, ConvolveParams *conv_params,
-#if CONFIG_DUAL_FILTER
- const InterpFilter *interp_filter,
-#else
- const InterpFilter interp_filter,
-#endif
- int xs, int ys,
+void av1_make_masked_inter_predictor(
+ const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride,
+ const int subpel_x, const int subpel_y, const struct scale_factors *sf,
+ int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters,
+ int xs, int ys,
#if CONFIG_SUPERTX
- int wedge_offset_x, int wedge_offset_y,
+ int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
- int plane,
+ int plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
- const WarpTypesAllowed *warp_types,
- int p_col, int p_row, int ref,
+ const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
- MACROBLOCKD *xd) {
+ MACROBLOCKD *xd) {
const MODE_INFO *mi = xd->mi[0];
const INTERINTER_COMPOUND_DATA comp_data = {
@@ -788,52 +968,81 @@ void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
mi->mbmi.interinter_compound_type
};
+// We're going to call av1_make_inter_predictor to generate a prediction into
+// a temporary buffer, then will blend that temporary buffer with that from
+// the other reference.
+//
+// With CONFIG_CONVOLVE_ROUND, if the rounding mode is CONVOLVE_OPT_NO_ROUND
+// then the predictions are at 32-bits, so we'll need 32 bits per
+// pixel. Otherwise, we'll need up to 16 bits per pixel if
+// CONFIG_HIGHBITDEPTH or just 8 otherwise.
+#if CONFIG_CONVOLVE_ROUND
+#define INTER_PRED_BYTES_PER_PIXEL 4
+#elif CONFIG_HIGHBITDEPTH
+#define INTER_PRED_BYTES_PER_PIXEL 2
+#else
+#define INTER_PRED_BYTES_PER_PIXEL 1
+#endif
+ DECLARE_ALIGNED(16, uint8_t,
+ tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]);
+#undef INTER_PRED_BYTES_PER_PIXEL
+
#if CONFIG_HIGHBITDEPTH
+ uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ ? CONVERT_TO_BYTEPTR(tmp_buf)
+ : tmp_buf;
+ const int bd = xd->bd;
+#else
+ uint8_t *tmp_dst = tmp_buf;
+ const int bd = 8;
+#endif
+
#if CONFIG_CONVOLVE_ROUND
- DECLARE_ALIGNED(16, CONV_BUF_TYPE, tmp_dst2[MAX_SB_SQUARE]);
- int tmp_dst2_stride = MAX_SB_SIZE;
+ const int tmp_buf_stride = MAX_SB_SIZE;
+ const int is_conv_no_round = conv_params->round == CONVOLVE_OPT_NO_ROUND;
CONV_BUF_TYPE *org_dst = conv_params->dst;
int org_dst_stride = conv_params->dst_stride;
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
- memset(tmp_dst2, 0, sizeof(tmp_dst2));
- conv_params->dst = tmp_dst2;
- conv_params->dst_stride = tmp_dst2_stride;
- // mask compound has its own average mechanism
- conv_params->do_average = 0;
+ CONV_BUF_TYPE *tmp_buf32 = (CONV_BUF_TYPE *)tmp_buf;
+ if (is_conv_no_round) {
+ conv_params->dst = tmp_buf32;
+ conv_params->dst_stride = tmp_buf_stride;
+ assert(conv_params->do_average == 0);
}
#endif // CONFIG_CONVOLVE_ROUND
- DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]);
- uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
- ? CONVERT_TO_BYTEPTR(tmp_dst_)
- : tmp_dst_;
+
+ // This will generate a prediction in tmp_buf for the second reference
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x,
- subpel_y, sf, w, h, conv_params, interp_filter,
+ subpel_y, sf, w, h, conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- 0, 0,
+ mi, 0,
#endif
xs, ys, xd);
+
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) {
#if CONFIG_CONVOLVE_ROUND
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
- build_compound_seg_mask_d32(comp_data.seg_mask, comp_data.mask_type,
- org_dst, org_dst_stride, tmp_dst2,
- tmp_dst2_stride, mi->mbmi.sb_type, h, w,
- conv_params, xd->bd);
+ if (is_conv_no_round) {
+ build_compound_seg_mask_d32(
+ comp_data.seg_mask, comp_data.mask_type, org_dst, org_dst_stride,
+ tmp_buf32, tmp_buf_stride, mi->mbmi.sb_type, h, w, conv_params, bd);
} else {
#endif // CONFIG_CONVOLVE_ROUND
+#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_compound_seg_mask_highbd(comp_data.seg_mask, comp_data.mask_type,
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
- mi->mbmi.sb_type, h, w, xd->bd);
+ mi->mbmi.sb_type, h, w, bd);
} else {
+#endif
build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst,
dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.sb_type, h, w);
+#if CONFIG_HIGHBITDEPTH
}
+#endif
#if CONFIG_CONVOLVE_ROUND
}
#endif
@@ -841,116 +1050,56 @@ void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
+#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_wedge_extend_highbd(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd);
else
+#endif // CONFIG_HIGHBITDEPTH
build_masked_compound_wedge_extend(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w);
#else
#if CONFIG_CONVOLVE_ROUND
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
+ if (is_conv_no_round) {
build_masked_compound_no_round(org_dst, org_dst_stride, org_dst,
- org_dst_stride, tmp_dst2, tmp_dst2_stride,
+ org_dst_stride, tmp_buf32, tmp_buf_stride,
&comp_data, mi->mbmi.sb_type, h, w);
- if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
- av1_highbd_convolve_rounding(
- org_dst, org_dst_stride, dst, dst_stride, w, h,
- FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1,
- xd->bd);
- } else {
- av1_convolve_rounding(
- org_dst, org_dst_stride, dst, dst_stride, w, h,
- FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1);
- }
+
+ const int convolve_rounding_bits =
+ FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ av1_highbd_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w,
+ h, convolve_rounding_bits, xd->bd);
+ else
+#endif
+ av1_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w, h,
+ convolve_rounding_bits);
+
conv_params->do_post_rounding = 0;
} else {
#endif // CONFIG_CONVOLVE_ROUND
- if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
+
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h,
w, xd->bd);
- } else {
+ else
+#endif // CONFIG_HIGHBITDEPTH
build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w);
- }
#if CONFIG_CONVOLVE_ROUND
}
#endif // CONFIG_CONVOLVE_ROUND
#endif // CONFIG_SUPERTX
-#else // CONFIG_HIGHBITDEPTH
-
-#if CONFIG_CONVOLVE_ROUND
- DECLARE_ALIGNED(16, CONV_BUF_TYPE, tmp_dst2[MAX_SB_SQUARE]);
- int tmp_dst2_stride = MAX_SB_SIZE;
- CONV_BUF_TYPE *org_dst = conv_params->dst;
- int org_dst_stride = conv_params->dst_stride;
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
- memset(tmp_dst2, 0, sizeof(tmp_dst2));
- conv_params->dst = tmp_dst2;
- conv_params->dst_stride = tmp_dst2_stride;
- // mask compound has its own average mechanism
- conv_params->do_average = 0;
- }
-#endif
- DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]);
- av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x,
- subpel_y, sf, w, h, conv_params, interp_filter,
-#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
- warp_types, p_col, p_row, plane, ref,
-#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
-#if CONFIG_MOTION_VAR
- 0, 0,
-#endif
- xs, ys, xd);
-#if CONFIG_COMPOUND_SEGMENT
- if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) {
-#if CONFIG_CONVOLVE_ROUND
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
- build_compound_seg_mask_d32(
- comp_data.seg_mask, comp_data.mask_type, org_dst, org_dst_stride,
- tmp_dst2, tmp_dst2_stride, mi->mbmi.sb_type, h, w, conv_params, 8);
- } else {
-#endif // CONFIG_CONVOLVE_ROUND
- build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst,
- dst_stride, tmp_dst, MAX_SB_SIZE,
- mi->mbmi.sb_type, h, w);
-#if CONFIG_CONVOLVE_ROUND
- }
-#endif
- }
-#endif // CONFIG_COMPOUND_SEGMENT
-#if CONFIG_SUPERTX
- build_masked_compound_wedge_extend(dst, dst_stride, dst, dst_stride, tmp_dst,
- MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type,
- wedge_offset_x, wedge_offset_y, h, w);
-#else
-#if CONFIG_CONVOLVE_ROUND
- if (conv_params->round == CONVOLVE_OPT_NO_ROUND) {
- build_masked_compound_no_round(org_dst, org_dst_stride, org_dst,
- org_dst_stride, tmp_dst2, tmp_dst2_stride,
- &comp_data, mi->mbmi.sb_type, h, w);
- av1_convolve_rounding(
- org_dst, org_dst_stride, dst, dst_stride, w, h,
- FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1);
- conv_params->do_post_rounding = 0;
- } else {
-#endif // CONFIG_CONVOLVE_ROUND
- build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst,
- MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w);
-#if CONFIG_CONVOLVE_ROUND
- }
-#endif // CONFIG_CONVOLVE_ROUND
-#endif // CONFIG_SUPERTX
-#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_COMPOUND_SEGMENT
(void)plane;
#endif // CONFIG_COMPOUND_SEGMENT
}
-#endif // CONFIG_EXT_INTER
// TODO(sarahparker) av1_highbd_build_inter_predictor and
// av1_build_inter_predictor should be combined with
@@ -959,11 +1108,7 @@ void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
void av1_highbd_build_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref,
-#if CONFIG_DUAL_FILTER
- const InterpFilter *interp_filter,
-#else
- const InterpFilter interp_filter,
-#endif
+ InterpFilters interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col, int p_row,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
@@ -983,12 +1128,12 @@ void av1_highbd_build_inter_predictor(
(mv.col >> SCALE_SUBPEL_BITS);
av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
- sf, w, h, &conv_params, interp_filter,
+ sf, w, h, &conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif
sf->x_step_q4, sf->y_step_q4, xd);
}
@@ -998,11 +1143,7 @@ void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const MV *src_mv,
const struct scale_factors *sf, int w, int h,
ConvolveParams *conv_params,
-#if CONFIG_DUAL_FILTER
- const InterpFilter *interp_filter,
-#else
- const InterpFilter interp_filter,
-#endif
+ InterpFilters interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
const WarpTypesAllowed *warp_types, int p_col,
int p_row, int plane, int ref,
@@ -1022,12 +1163,12 @@ void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
(mv.col >> SCALE_SUBPEL_BITS);
av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
- sf, w, h, conv_params, interp_filter,
+ sf, w, h, conv_params, interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
warp_types, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif
sf->x_step_q4, sf->y_step_q4, xd);
}
@@ -1039,27 +1180,25 @@ typedef struct SubpelParams {
int subpel_y;
} SubpelParams;
-void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
+static INLINE void build_inter_predictors(
+ const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#if CONFIG_MOTION_VAR
- int mi_col_offset, int mi_row_offset,
+ const MODE_INFO *mi, int build_for_obmc,
#endif // CONFIG_MOTION_VAR
- int block, int bw, int bh, int x, int y, int w,
- int h,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
- int wedge_offset_x, int wedge_offset_y,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
- int mi_x, int mi_y) {
+ int block, int bw, int bh, int x, int y, int w, int h,
+#if CONFIG_SUPERTX
+ int wedge_offset_x, int wedge_offset_y,
+#endif // CONFIG_SUPERTX
+ int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
-#if CONFIG_MOTION_VAR
- const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset];
-#else
+#if !CONFIG_MOTION_VAR
const MODE_INFO *mi = xd->mi[0];
#endif // CONFIG_MOTION_VAR
int is_compound = has_second_ref(&mi->mbmi);
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#if CONFIG_COMPOUND_SINGLEREF
int is_comp_mode_pred =
is_compound || is_inter_singleref_comp_mode(mi->mbmi.mode);
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_COMPOUND_SINGLEREF
int ref;
#if CONFIG_INTRABC
const int is_intrabc = is_intrabc_block(&mi->mbmi);
@@ -1071,9 +1210,9 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, block, wm->wmtype);
}
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#if CONFIG_COMPOUND_SINGLEREF
if (!is_compound && is_comp_mode_pred) is_global[1] = is_global[0];
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_COMPOUND_SINGLEREF
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_CB4X4
@@ -1081,34 +1220,32 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
(void)cm;
#endif
-#if CONFIG_MOTION_VAR && (CONFIG_CHROMA_SUB8X8 || !CONFIG_CB4X4)
- const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
-#endif // CONFIG_MOTION_VAR && (CONFIG_CHROMA_SUB8X8 || !CONFIG_CB4X4)
-
#if CONFIG_CHROMA_SUB8X8
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
int sub8x8_inter = bsize < BLOCK_8X8 && (ss_x || ss_y);
+
+#if CONFIG_INTRABC
+ if (is_intrabc) {
+ sub8x8_inter = 0;
+ }
+#endif
+
+#if CONFIG_MOTION_VAR
+ sub8x8_inter = sub8x8_inter && !build_for_obmc;
+#endif // CONFIG_MOTION_VAR
const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0;
const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0;
-#if CONFIG_MOTION_VAR
- if (!build_for_obmc && sub8x8_inter) {
-#else
if (sub8x8_inter) {
-#endif // CONFIG_MOTION_VAR
for (int row = row_start; row <= 0 && sub8x8_inter; ++row)
for (int col = col_start; col <= 0; ++col)
if (!is_inter_block(&xd->mi[row * xd->mi_stride + col]->mbmi))
sub8x8_inter = 0;
}
-#if CONFIG_MOTION_VAR
- if (!build_for_obmc && sub8x8_inter) {
-#else
if (sub8x8_inter) {
-#endif // CONFIG_MOTION_VAR
// block size
const int b4_w = block_size_wide[bsize] >> ss_x;
const int b4_h = block_size_high[bsize] >> ss_y;
@@ -1128,11 +1265,25 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
for (idx = 0; idx < b8_w; idx += b4_w) {
MB_MODE_INFO *this_mbmi = &xd->mi[row * xd->mi_stride + col]->mbmi;
is_compound = has_second_ref(this_mbmi);
+#if CONFIG_CONVOLVE_ROUND
+ DECLARE_ALIGNED(16, int32_t, tmp_dst[8 * 8]);
+ int tmp_dst_stride = 8;
+ assert(w <= 8 && h <= 8);
+#endif // CONFIG_CONVOLVE_ROUND
+#if CONFIG_CONVOLVE_ROUND
+ ConvolveParams conv_params =
+ get_conv_params_no_round(0, 0, plane, tmp_dst, tmp_dst_stride);
+#else
+ ConvolveParams conv_params = get_conv_params(0, 0, plane);
+#endif
+ struct buf_2d *const dst_buf = &pd->dst;
+ x = x_base + idx;
+ y = y_base + idy;
+ uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
+
// TODO(zoeliu): If single ref comp modes are considered here, a
// mismatch was caused. Need a further investigation.
for (ref = 0; ref < 1 + is_compound; ++ref) {
- struct buf_2d *const dst_buf = &pd->dst;
-
const RefBuffer *ref_buf =
&cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME];
@@ -1156,7 +1307,6 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
const struct scale_factors *const sf = &ref_buf->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#endif // CONFIG_INTRABC
- uint8_t *dst = dst_buf->buf;
const MV mv = this_mbmi->mv[ref].as_mv;
@@ -1174,11 +1324,6 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#endif // CONFIG_WARPED_MOTION
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
- x = x_base + idx;
- y = y_base + idy;
-
- dst += dst_buf->stride * y + x;
-
if (is_scaled) {
int ssx = pd->subsampling_x;
int ssy = pd->subsampling_y;
@@ -1218,17 +1363,21 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
(x + (mv_q4.col >> SUBPEL_BITS));
}
- ConvolveParams conv_params = get_conv_params(ref, ref, plane);
-#if CONFIG_EXT_INTER
+ conv_params.ref = ref;
+ conv_params.do_average = ref;
if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) {
- // TODO(angiebird): use get_conv_params_no_round() here
// masked compound type has its own average mechanism
+ conv_params.do_average = 0;
+#if CONFIG_CONVOLVE_ROUND && CONFIG_COMPOUND_SEGMENT && CONFIG_SUPERTX
+ // TODO(angiebird): convolve_round does not support compound_segment
+ // when supertx is on
conv_params = get_conv_params(ref, 0, plane);
+#endif
}
if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type))
av1_make_masked_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
- sf, w, h, &conv_params, mi->mbmi.interp_filter, xs, ys,
+ sf, b4_w, b4_h, &conv_params, mi->mbmi.interp_filters, xs, ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
@@ -1239,19 +1388,42 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
xd);
else
-#endif // CONFIG_EXT_INTER
av1_make_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
- sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filter,
+ sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- mi_col_offset, mi_row_offset,
+ mi, build_for_obmc,
#endif // CONFIG_MOTION_VAR
xs, ys, xd);
+ } // for (ref = 0; ref < 1 + is_compound; ++ref)
+#if CONFIG_CONVOLVE_ROUND
+ if (conv_params.do_post_rounding) {
+#if CONFIG_HIGHBITDEPTH
+ if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
+ av1_highbd_convolve_rounding(
+ tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h,
+ FILTER_BITS * 2 + is_compound - conv_params.round_0 -
+ conv_params.round_1,
+ xd->bd);
+ else
+#endif // CONFIG_HIGHBITDEPTH
+#if CONFIG_COMPOUND_SINGLEREF
+ av1_convolve_rounding(
+ tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h,
+ FILTER_BITS * 2 + is_comp_mode_pred - conv_params.round_0 -
+ conv_params.round_1);
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ av1_convolve_rounding(tmp_dst, tmp_dst_stride, dst, dst_buf->stride,
+ b4_w, b4_h,
+ FILTER_BITS * 2 + is_compound -
+ conv_params.round_0 - conv_params.round_1);
+#endif // CONFIG_COMPOUND_SINGLEREF
}
+#endif // CONFIG_CONVOLVE_ROUND
++col;
}
++row;
@@ -1271,14 +1443,14 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
SubpelParams subpel_params[2];
#if CONFIG_CONVOLVE_ROUND
DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]);
- av1_zero(tmp_dst);
#endif // CONFIG_CONVOLVE_ROUND
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref) {
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref)
#else
- for (ref = 0; ref < 1 + is_compound; ++ref) {
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+#endif // CONFIG_COMPOUND_SINGLEREF
+ {
#if CONFIG_INTRABC
const struct scale_factors *const sf =
is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf;
@@ -1360,11 +1532,12 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
ConvolveParams conv_params = get_conv_params(ref, ref, plane);
#endif // CONFIG_CONVOLVE_ROUND
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref) {
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref)
#else
- for (ref = 0; ref < 1 + is_compound; ++ref) {
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + is_compound; ++ref)
+#endif // CONFIG_COMPOUND_SINGLEREF
+ {
#if CONFIG_INTRABC
const struct scale_factors *const sf =
is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf;
@@ -1384,7 +1557,6 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
conv_params.ref = ref;
conv_params.do_average = ref;
-#if CONFIG_EXT_INTER
if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) {
// masked compound type has its own average mechanism
conv_params.do_average = 0;
@@ -1399,7 +1571,7 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
av1_make_masked_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
- &conv_params, mi->mbmi.interp_filter, subpel_params[ref].xs,
+ &conv_params, mi->mbmi.interp_filters, subpel_params[ref].xs,
subpel_params[ref].ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
@@ -1411,17 +1583,16 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
xd);
else
-#endif // CONFIG_EXT_INTER
av1_make_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
- &conv_params, mi->mbmi.interp_filter,
+ &conv_params, mi->mbmi.interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- mi_col_offset, mi_row_offset,
+ mi, build_for_obmc,
#endif // CONFIG_MOTION_VAR
subpel_params[ref].xs, subpel_params[ref].ys, xd);
}
@@ -1431,22 +1602,22 @@ void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane,
if (conv_params.do_post_rounding) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
- av1_highbd_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride,
- w, h, FILTER_BITS * 2 + is_compound -
- conv_params.round_0 -
- conv_params.round_1,
- xd->bd);
+ av1_highbd_convolve_rounding(
+ tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
+ FILTER_BITS * 2 + is_compound - conv_params.round_0 -
+ conv_params.round_1,
+ xd->bd);
else
#endif // CONFIG_HIGHBITDEPTH
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#if CONFIG_COMPOUND_SINGLEREF
av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_comp_mode_pred -
conv_params.round_0 - conv_params.round_1);
-#else // !(CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF)
+#else // !(CONFIG_COMPOUND_SINGLEREF)
av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_compound -
conv_params.round_0 - conv_params.round_1);
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_COMPOUND_SINGLEREF
}
#endif // CONFIG_CONVOLVE_ROUND
}
@@ -1491,22 +1662,22 @@ static void build_inter_predictors_for_planes(const AV1_COMMON *cm,
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
+#if CONFIG_SUPERTX
0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
+#endif // CONFIG_SUPERTX
mi_x, mi_y);
} else {
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
0, bw, bh, 0, 0, bw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
+#if CONFIG_SUPERTX
0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
+#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
@@ -1516,17 +1687,17 @@ void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0);
-#if CONFIG_EXT_INTER && CONFIG_INTERINTRA
+#if CONFIG_INTERINTRA
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL },
{ xd->plane[0].dst.stride, 0, 0 } };
if (!ctx) ctx = &default_ctx;
- av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf,
+ av1_build_interintra_predictors_sby(cm, xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, ctx, bsize);
}
#else
(void)ctx;
-#endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA
+#endif // CONFIG_INTERINTRA
}
void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
@@ -1534,7 +1705,7 @@ void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
-#if CONFIG_EXT_INTER && CONFIG_INTERINTRA
+#if CONFIG_INTERINTRA
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = {
{ NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
@@ -1542,12 +1713,12 @@ void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
};
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors_sbuv(
- xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride,
- xd->plane[2].dst.stride, ctx, bsize);
+ cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf,
+ xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize);
}
#else
(void)ctx;
-#endif // CONFIG_EXT_INTER && CONFIG_INTERINTRA
+#endif // CONFIG_INTERINTRA
}
void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
@@ -1560,8 +1731,6 @@ void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
- uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
- src->v_buffer };
const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height,
@@ -1572,7 +1741,7 @@ void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &planes[i];
- setup_pred_plane(&pd->dst, bsize, buffers[i], widths[i], heights[i],
+ setup_pred_plane(&pd->dst, bsize, src->buffers[i], widths[i], heights[i],
strides[i], mi_row, mi_col, NULL, pd->subsampling_x,
pd->subsampling_y);
}
@@ -1733,13 +1902,10 @@ void av1_build_masked_inter_predictor_complex(
}
void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm,
- MACROBLOCKD *xd,
-#if CONFIG_EXT_INTER
- int mi_row_ori, int mi_col_ori,
-#endif // CONFIG_EXT_INTER
- int mi_row, int mi_col,
- int plane, BLOCK_SIZE bsize,
- int block) {
+ MACROBLOCKD *xd, int mi_row_ori,
+ int mi_col_ori, int mi_row,
+ int mi_col, int plane,
+ BLOCK_SIZE bsize, int block) {
// Prediction function used in supertx:
// Use the mv at current block (which is less than 8x8)
// to get prediction of a block located at (mi_row, mi_col) at size of bsize
@@ -1747,10 +1913,8 @@ void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm,
// block (0-3): the sub8x8 location of current block
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
-#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
-#endif // CONFIG_EXT_INTER
// For sub8x8 uv:
// Skip uv prediction in supertx except the first block (block = 0)
@@ -1765,40 +1929,30 @@ void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm,
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
- block, bw, bh, 0, 0, bw, bh,
-#if CONFIG_EXT_INTER
- wedge_offset_x, wedge_offset_y,
-#endif // CONFIG_EXT_INTER
- mi_x, mi_y);
+ block, bw, bh, 0, 0, bw, bh, wedge_offset_x,
+ wedge_offset_y, mi_x, mi_y);
}
void av1_build_inter_predictor_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd,
-#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
-#endif // CONFIG_EXT_INTER
int mi_row, int mi_col, int plane,
BLOCK_SIZE bsize) {
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
-#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
-#endif // CONFIG_EXT_INTER
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_inter_predictors(cm, xd, plane,
#if CONFIG_MOTION_VAR
- 0, 0,
+ xd->mi[0], 0,
#endif // CONFIG_MOTION_VAR
- 0, bw, bh, 0, 0, bw, bh,
-#if CONFIG_EXT_INTER
- wedge_offset_x, wedge_offset_y,
-#endif // CONFIG_EXT_INTER
- mi_x, mi_y);
+ 0, bw, bh, 0, 0, bw, bh, wedge_offset_x,
+ wedge_offset_y, mi_x, mi_y);
}
#endif // CONFIG_SUPERTX
@@ -1887,62 +2041,29 @@ const uint8_t *av1_get_obmc_mask_flipped(int length) {
}
#endif // CONFIG_NCOBMC
+static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc,
+ uint8_t mi_hw, MODE_INFO *mi,
+ void *fun_ctxt) {
+ (void)xd;
+ (void)rel_mi_rc;
+ (void)mi_hw;
+ (void)mi;
+ ++*(int *)fun_ctxt;
+}
+
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
- int i, mi_step;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
- xd->mi[0]->mbmi.overlappable_neighbors[0] = 0;
- xd->mi[0]->mbmi.overlappable_neighbors[1] = 0;
+ mbmi->overlappable_neighbors[0] = 0;
+ mbmi->overlappable_neighbors[1] = 0;
if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return;
- if (xd->up_available) {
- const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
- for (i = 0; i < ilimit; i += mi_step) {
- int mi_row_offset = -1;
- int mi_col_offset = i;
- MODE_INFO *above_mi =
- xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
- MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
-#if CONFIG_CHROMA_SUB8X8
- if (above_mbmi->sb_type < BLOCK_8X8) {
- ++mi_col_offset;
- above_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
-#endif
- BLOCK_SIZE above_bsize = AOMMAX(above_mbmi->sb_type, BLOCK_8X8);
- mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_bsize]);
-
- if (is_neighbor_overlappable(above_mbmi))
- xd->mi[0]->mbmi.overlappable_neighbors[0]++;
- }
- }
-
- if (xd->left_available) {
- const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
- for (i = 0; i < ilimit; i += mi_step) {
- int mi_row_offset = i;
- int mi_col_offset = -1;
- MODE_INFO *left_mi =
- xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
- MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
-
-#if CONFIG_CHROMA_SUB8X8
- if (left_mbmi->sb_type < BLOCK_8X8) {
- ++mi_row_offset;
- left_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
-#endif
- BLOCK_SIZE left_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8);
- mi_step = AOMMIN(xd->n8_h, mi_size_high[left_bsize]);
-
- if (is_neighbor_overlappable(left_mbmi))
- xd->mi[0]->mbmi.overlappable_neighbors[1]++;
- }
- }
+ foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr,
+ &mbmi->overlappable_neighbors[0]);
+ foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr,
+ &mbmi->overlappable_neighbors[1]);
}
// HW does not support < 4x4 prediction. To limit the bandwidth requirement, for
@@ -1974,146 +2095,113 @@ int skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd,
}
}
-// This function combines motion compensated predictions that is generated by
-// top/left neighboring blocks' inter predictors with the regular inter
-// prediction. We assume the original prediction (bmc) is stored in
-// xd->plane[].dst.buf
-void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
- int mi_row, int mi_col,
- uint8_t *above[MAX_MB_PLANE],
- int above_stride[MAX_MB_PLANE],
- uint8_t *left[MAX_MB_PLANE],
- int left_stride[MAX_MB_PLANE]) {
+struct obmc_inter_pred_ctxt {
+ uint8_t **adjacent;
+ int *adjacent_stride;
+};
+
+static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col,
+ uint8_t above_mi_width,
+ MODE_INFO *above_mi,
+ void *fun_ctxt) {
+ (void)above_mi;
+ struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
- int plane, i;
#if CONFIG_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_HIGHBITDEPTH
+ const int overlap =
+ AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
- // handle above row
- if (xd->up_available) {
- const int overlap =
- AOMMIN(block_size_high[bsize] >> 1, block_size_high[BLOCK_64X64] >> 1);
- const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
- const int mi_row_offset = -1;
- const int neighbor_limit = max_neighbor_obmc[b_width_log2_lookup[bsize]];
- int neighbor_count = 0;
-
- assert(miw > 0);
-
- i = 0;
- do { // for each mi in the above row
- int mi_col_offset = i;
- MB_MODE_INFO *above_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
-#if CONFIG_CHROMA_SUB8X8
- if (above_mbmi->sb_type < BLOCK_8X8) {
- ++mi_col_offset;
- above_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
-#endif
-
- const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
- const int above_step =
- AOMMIN(mi_size_wide[a_bsize], mi_size_wide[BLOCK_64X64]);
- const int mi_step = AOMMIN(xd->n8_w, above_step);
-
- if (is_neighbor_overlappable(above_mbmi)) {
- neighbor_count++;
- if (neighbor_count > neighbor_limit) break;
- for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
- const struct macroblockd_plane *pd = &xd->plane[plane];
- const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
- const int bh = overlap >> pd->subsampling_y;
+ for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
+ const int bh = overlap >> pd->subsampling_y;
+ const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x;
- if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
+ if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
- const int dst_stride = pd->dst.stride;
- uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x];
- const int tmp_stride = above_stride[plane];
- const uint8_t *const tmp =
- &above[plane][(i * MI_SIZE) >> pd->subsampling_x];
- const uint8_t *const mask = av1_get_obmc_mask(bh);
+ const int dst_stride = pd->dst.stride;
+ uint8_t *const dst = &pd->dst.buf[plane_col];
+ const int tmp_stride = ctxt->adjacent_stride[plane];
+ const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col];
+ const uint8_t *const mask = av1_get_obmc_mask(bh);
#if CONFIG_HIGHBITDEPTH
- if (is_hbd)
- aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
- tmp_stride, mask, bh, bw, xd->bd);
- else
+ if (is_hbd)
+ aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
+ tmp_stride, mask, bh, bw, xd->bd);
+ else
#endif // CONFIG_HIGHBITDEPTH
- aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
- tmp_stride, mask, bh, bw);
- }
- }
- i += mi_step;
- } while (i < miw);
+ aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
+ mask, bh, bw);
}
+}
- // handle left column
- if (xd->left_available) {
- const int overlap =
- AOMMIN(block_size_wide[bsize] >> 1, block_size_wide[BLOCK_64X64] >> 1);
- const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
- const int mi_col_offset = -1;
- const int neighbor_limit = max_neighbor_obmc[b_height_log2_lookup[bsize]];
- int neighbor_count = 0;
-
- assert(mih > 0);
-
- i = 0;
- do { // for each mi in the left column
- int mi_row_offset = i;
- MB_MODE_INFO *left_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
-#if CONFIG_CHROMA_SUB8X8
- if (left_mbmi->sb_type < BLOCK_8X8) {
- ++mi_row_offset;
- left_mbmi =
- &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
-#endif
+static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row,
+ uint8_t left_mi_height,
+ MODE_INFO *left_mi,
+ void *fun_ctxt) {
+ (void)left_mi;
+ struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt;
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+ const int overlap =
+ AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
+#if CONFIG_HIGHBITDEPTH
+ const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
+#endif // CONFIG_HIGHBITDEPTH
+
+ for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
+ const struct macroblockd_plane *pd = &xd->plane[plane];
+ const int bw = overlap >> pd->subsampling_x;
+ const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y;
+ const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y;
+
+ if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
- const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
- const int left_step =
- AOMMIN(mi_size_high[l_bsize], mi_size_high[BLOCK_64X64]);
- const int mi_step = AOMMIN(xd->n8_h, left_step);
-
- if (is_neighbor_overlappable(left_mbmi)) {
- neighbor_count++;
- if (neighbor_count > neighbor_limit) break;
- for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
- const struct macroblockd_plane *pd = &xd->plane[plane];
- const int bw = overlap >> pd->subsampling_x;
- const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y;
-
- if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
-
- const int dst_stride = pd->dst.stride;
- uint8_t *const dst =
- &pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y];
- const int tmp_stride = left_stride[plane];
- const uint8_t *const tmp =
- &left[plane][(i * MI_SIZE * tmp_stride) >> pd->subsampling_y];
- const uint8_t *const mask = av1_get_obmc_mask(bw);
+ const int dst_stride = pd->dst.stride;
+ uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride];
+ const int tmp_stride = ctxt->adjacent_stride[plane];
+ const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride];
+ const uint8_t *const mask = av1_get_obmc_mask(bw);
#if CONFIG_HIGHBITDEPTH
- if (is_hbd)
- aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
- tmp_stride, mask, bh, bw, xd->bd);
- else
+ if (is_hbd)
+ aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
+ tmp_stride, mask, bh, bw, xd->bd);
+ else
#endif // CONFIG_HIGHBITDEPTH
- aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
- tmp_stride, mask, bh, bw);
- }
- }
- i += mi_step;
- } while (i < mih);
+ aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
+ mask, bh, bw);
}
}
+// This function combines motion compensated predictions that are generated by
+// top/left neighboring blocks' inter predictors with the regular inter
+// prediction. We assume the original prediction (bmc) is stored in
+// xd->plane[].dst.buf
+void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ int mi_row, int mi_col,
+ uint8_t *above[MAX_MB_PLANE],
+ int above_stride[MAX_MB_PLANE],
+ uint8_t *left[MAX_MB_PLANE],
+ int left_stride[MAX_MB_PLANE]) {
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+
+ // handle above row
+ struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride };
+ foreach_overlappable_nb_above(cm, xd, mi_col,
+ max_neighbor_obmc[b_width_log2_lookup[bsize]],
+ build_obmc_inter_pred_above, &ctxt_above);
+
+ // handle left column
+ struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride };
+ foreach_overlappable_nb_left(cm, xd, mi_row,
+ max_neighbor_obmc[b_height_log2_lookup[bsize]],
+ build_obmc_inter_pred_left, &ctxt_left);
+}
+
void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
-#if CONFIG_EXT_INTER
if (is_interintra_pred(mbmi)) {
mbmi->ref_frame[1] = NONE_FRAME;
} else if (has_second_ref(mbmi) &&
@@ -2129,109 +2217,190 @@ void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
mbmi->mv[0].as_int = mbmi->mv[1].as_int;
#endif // CONFIG_COMPOUND_SINGLEREF
}
-#endif // CONFIG_EXT_INTER
if (has_second_ref(mbmi)) mbmi->ref_frame[1] = NONE_FRAME;
return;
}
+struct build_prediction_ctxt {
+ const AV1_COMMON *cm;
+ int mi_row;
+ int mi_col;
+ uint8_t **tmp_buf;
+ int *tmp_width;
+ int *tmp_height;
+ int *tmp_stride;
+ int mb_to_far_edge;
+};
+
+static INLINE void build_prediction_by_above_pred(MACROBLOCKD *xd,
+ int rel_mi_col,
+ uint8_t above_mi_width,
+ MODE_INFO *above_mi,
+ void *fun_ctxt) {
+ MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
+ const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
+ struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
+ const int above_mi_col = ctxt->mi_col + rel_mi_col;
+
+ MB_MODE_INFO backup_mbmi = *above_mbmi;
+ modify_neighbor_predictor_for_obmc(above_mbmi);
+
+ for (int j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
+ ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col,
+ NULL, pd->subsampling_x, pd->subsampling_y);
+ }
+
+#if CONFIG_COMPOUND_SINGLEREF
+ const int num_refs = 1 + is_inter_anyref_comp_mode(above_mbmi->mode);
+#else
+ const int num_refs = 1 + has_second_ref(above_mbmi);
+#endif
+
+ for (int ref = 0; ref < num_refs; ++ref) {
+#if CONFIG_COMPOUND_SINGLEREF
+ const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi)
+ ? above_mbmi->ref_frame[ref]
+ : above_mbmi->ref_frame[0];
+#else
+ const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
+
+ const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
+
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col,
+ &ref_buf->sf);
+ }
+
+ xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col);
+ xd->mb_to_right_edge = ctxt->mb_to_far_edge +
+ (xd->n8_w - rel_mi_col - above_mi_width) * MI_SIZE * 8;
+
+ int mi_x = above_mi_col << MI_SIZE_LOG2;
+ int mi_y = ctxt->mi_row << MI_SIZE_LOG2;
+
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+
+ for (int j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+ int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
+ int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
+ block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
+
+ if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
+ build_inter_predictors(ctxt->cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw,
+ bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+ *above_mbmi = backup_mbmi;
+}
+
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
- const TileInfo *const tile = &xd->tile;
+ if (!xd->up_available) return;
+
+ // Adjust mb_to_bottom_edge to have the correct value for the OBMC
+ // prediction block. This is half the height of the original block,
+ // except for 128-wide blocks, where we only use a height of 32.
+ int this_height = xd->n8_h * MI_SIZE;
+ int pred_height = AOMMIN(this_height / 2, 32);
+ xd->mb_to_bottom_edge += (this_height - pred_height) * 8;
+
+ struct build_prediction_ctxt ctxt = { cm, mi_row,
+ mi_col, tmp_buf,
+ tmp_width, tmp_height,
+ tmp_stride, xd->mb_to_right_edge };
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
- int i, j, mi_step, ref;
- const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
- int mb_to_right_edge_base = xd->mb_to_right_edge;
- const int neighbor_limit = max_neighbor_obmc[b_width_log2_lookup[bsize]];
- int neighbor_count = 0;
+ foreach_overlappable_nb_above(cm, xd, mi_col,
+ max_neighbor_obmc[b_width_log2_lookup[bsize]],
+ build_prediction_by_above_pred, &ctxt);
- if (mi_row <= tile->mi_row_start) return;
+ xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
+ xd->mb_to_right_edge = ctxt.mb_to_far_edge;
+ xd->mb_to_bottom_edge -= (this_height - pred_height) * 8;
+}
- xd->mb_to_bottom_edge += xd->n8_h * 32;
- for (i = 0; i < ilimit; i += mi_step) {
- int mi_row_offset = -1;
- int mi_col_offset = i;
- int mi_x, mi_y, bw, bh;
- MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
- MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
+static INLINE void build_prediction_by_left_pred(MACROBLOCKD *xd,
+ int rel_mi_row,
+ uint8_t left_mi_height,
+ MODE_INFO *left_mi,
+ void *fun_ctxt) {
+ MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
+ const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type);
+ struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
+ const int left_mi_row = ctxt->mi_row + rel_mi_row;
+
+ MB_MODE_INFO backup_mbmi = *left_mbmi;
+ modify_neighbor_predictor_for_obmc(left_mbmi);
+
+ for (int j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j],
+ ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0,
+ NULL, pd->subsampling_x, pd->subsampling_y);
+ }
-#if CONFIG_CHROMA_SUB8X8
- if (above_mbmi->sb_type < BLOCK_8X8) {
- ++mi_col_offset;
- above_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
+#if CONFIG_COMPOUND_SINGLEREF
+ const int num_refs = 1 + is_inter_anyref_comp_mode(left_mbmi->mode);
+#else
+ const int num_refs = 1 + has_second_ref(left_mbmi);
#endif
- const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type);
- MB_MODE_INFO backup_mbmi;
-
- const int above_step =
- AOMMIN(mi_size_wide[a_bsize], mi_size_wide[BLOCK_64X64]);
- mi_step = AOMMIN(xd->n8_w, above_step);
+ for (int ref = 0; ref < num_refs; ++ref) {
+#if CONFIG_COMPOUND_SINGLEREF
+ const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi)
+ ? left_mbmi->ref_frame[ref]
+ : left_mbmi->ref_frame[0];
+#else
+ const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
- if (!is_neighbor_overlappable(above_mbmi)) continue;
+ const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME];
- neighbor_count++;
- if (neighbor_count > neighbor_limit) break;
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col,
+ &ref_buf->sf);
+ }
- backup_mbmi = *above_mbmi;
- modify_neighbor_predictor_for_obmc(above_mbmi);
+ xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row);
+ xd->mb_to_bottom_edge =
+ ctxt->mb_to_far_edge +
+ (xd->n8_h - rel_mi_row - left_mi_height) * MI_SIZE * 8;
- for (j = 0; j < MAX_MB_PLANE; ++j) {
- struct macroblockd_plane *const pd = &xd->plane[j];
- setup_pred_plane(&pd->dst, a_bsize, tmp_buf[j], tmp_width[j],
- tmp_height[j], tmp_stride[j], 0, i, NULL,
- pd->subsampling_x, pd->subsampling_y);
- }
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(above_mbmi->mode));
- ++ref) {
- const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi)
- ? above_mbmi->ref_frame[ref]
- : above_mbmi->ref_frame[0];
-#else // !(CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF)
- for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) {
- const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+ int mi_x = ctxt->mi_col << MI_SIZE_LOG2;
+ int mi_y = left_mi_row << MI_SIZE_LOG2;
- xd->block_refs[ref] = ref_buf;
- if ((!av1_is_valid_scale(&ref_buf->sf)))
- aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
- "Reference frame has invalid dimensions");
- av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i,
- &ref_buf->sf);
- }
+ const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
- xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
- xd->mb_to_right_edge =
- mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64;
- mi_x = (mi_col + i) << MI_SIZE_LOG2;
- mi_y = mi_row << MI_SIZE_LOG2;
+ for (int j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+ int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
+ block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
+ int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y;
- for (j = 0; j < MAX_MB_PLANE; ++j) {
- const struct macroblockd_plane *pd = &xd->plane[j];
- bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
- bh = AOMMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y,
- 4);
- bh = AOMMIN(bh, block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
-
- if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
- build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh,
- 0, 0, bw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
- 0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
- mi_x, mi_y);
- }
- *above_mbmi = backup_mbmi;
+ if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
+ build_inter_predictors(ctxt->cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
}
- xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
- xd->mb_to_right_edge = mb_to_right_edge_base;
- xd->mb_to_bottom_edge -= xd->n8_h * 32;
+ *left_mbmi = backup_mbmi;
}
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
@@ -2240,97 +2409,27 @@ void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
- const TileInfo *const tile = &xd->tile;
+ if (!xd->left_available) return;
+
+ // Adjust mb_to_right_edge to have the correct value for the OBMC
+ // prediction block. This is half the width of the original block,
+ // except for 128-wide blocks, where we only use a width of 32.
+ int this_width = xd->n8_w * MI_SIZE;
+ int pred_width = AOMMIN(this_width / 2, 32);
+ xd->mb_to_right_edge += (this_width - pred_width) * 8;
+
+ struct build_prediction_ctxt ctxt = { cm, mi_row,
+ mi_col, tmp_buf,
+ tmp_width, tmp_height,
+ tmp_stride, xd->mb_to_bottom_edge };
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
- int i, j, mi_step, ref;
- const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
- int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
- const int neighbor_limit = max_neighbor_obmc[b_height_log2_lookup[bsize]];
- int neighbor_count = 0;
-
- if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return;
-
- xd->mb_to_right_edge += xd->n8_w * 32;
- for (i = 0; i < ilimit; i += mi_step) {
- int mi_row_offset = i;
- int mi_col_offset = -1;
- int mi_x, mi_y, bw, bh;
- MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
- MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
-
-#if CONFIG_CHROMA_SUB8X8
- if (left_mbmi->sb_type < BLOCK_8X8) {
- ++mi_row_offset;
- left_mbmi = &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
- }
-#endif
-
- const BLOCK_SIZE l_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8);
- MB_MODE_INFO backup_mbmi;
- const int left_step =
- AOMMIN(mi_size_high[l_bsize], mi_size_high[BLOCK_64X64]);
- mi_step = AOMMIN(xd->n8_h, left_step);
+ foreach_overlappable_nb_left(cm, xd, mi_row,
+ max_neighbor_obmc[b_height_log2_lookup[bsize]],
+ build_prediction_by_left_pred, &ctxt);
- if (!is_neighbor_overlappable(left_mbmi)) continue;
-
- neighbor_count++;
- if (neighbor_count > neighbor_limit) break;
-
- backup_mbmi = *left_mbmi;
- modify_neighbor_predictor_for_obmc(left_mbmi);
-
- for (j = 0; j < MAX_MB_PLANE; ++j) {
- struct macroblockd_plane *const pd = &xd->plane[j];
- setup_pred_plane(&pd->dst, l_bsize, tmp_buf[j], tmp_width[j],
- tmp_height[j], tmp_stride[j], i, 0, NULL,
- pd->subsampling_x, pd->subsampling_y);
- }
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(left_mbmi->mode));
- ++ref) {
- const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi)
- ? left_mbmi->ref_frame[ref]
- : left_mbmi->ref_frame[0];
-#else // !(CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF)
- for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) {
- const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
- const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
-
- xd->block_refs[ref] = ref_buf;
- if ((!av1_is_valid_scale(&ref_buf->sf)))
- aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
- "Reference frame has invalid dimensions");
- av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col,
- &ref_buf->sf);
- }
-
- xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
- xd->mb_to_bottom_edge =
- mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64;
- mi_x = mi_col << MI_SIZE_LOG2;
- mi_y = (mi_row + i) << MI_SIZE_LOG2;
-
- for (j = 0; j < MAX_MB_PLANE; ++j) {
- const struct macroblockd_plane *pd = &xd->plane[j];
- bw = AOMMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x,
- 4);
- bw = AOMMIN(bw, block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
- bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
-
- if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
- build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh,
- 0, 0, bw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
- 0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
- mi_x, mi_y);
- }
- *left_mbmi = backup_mbmi;
- }
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
- xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
- xd->mb_to_right_edge -= xd->n8_w * 32;
+ xd->mb_to_right_edge -= (this_width - pred_width) * 8;
+ xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
@@ -2388,7 +2487,9 @@ void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
+#if CONFIG_DEBUG
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+#endif
int i, j, mi_step, ref;
const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
int mb_to_right_edge_base = xd->mb_to_right_edge;
@@ -2405,18 +2506,14 @@ void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
-#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
-#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
-#if CONFIG_EXT_INTER
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
-#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
@@ -2441,12 +2538,12 @@ void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
xd->mb_to_right_edge =
mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
- mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * 4;
+ mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * (MI_SIZE >> 1);
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x;
- bh = (num_4x4_blocks_high_lookup[bsize] << 1) >> pd->subsampling_y;
+ bh = (xd->n8_h << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type;
@@ -2462,28 +2559,26 @@ void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0)
continue;
- build_inter_predictors(
- cm, xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh,
- (4 * x) >> pd->subsampling_x,
- xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, pw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
- 0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
- mi_x, mi_y);
+ build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh,
+ (4 * x) >> pd->subsampling_x,
+ xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0,
+ pw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
}
} else {
- build_inter_predictors(
- cm, xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0,
- xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
- 0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
- mi_x, mi_y);
+ build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh, 0,
+ xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw,
+ bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
}
}
-#if CONFIG_EXT_INTER
*mbmi = backup_mbmi;
-#endif // CONFIG_EXT_INTER
}
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = mb_to_right_edge_base;
@@ -2497,7 +2592,9 @@ void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int tmp_height[MAX_MB_PLANE],
const int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
+#if CONFIG_DEBUG
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
+#endif
int i, j, mi_step, ref;
const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
@@ -2506,25 +2603,23 @@ void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
(mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols)
return;
- xd->mb_to_left_edge -= xd->n8_w * 32;
+ assert(bsize >= BLOCK_8X8);
+
+ xd->mb_to_left_edge -= xd->n8_w / 2 * MI_SIZE * 8;
for (i = 0; i < ilimit; i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = xd->n8_w;
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
-#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
-#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
-#if CONFIG_EXT_INTER
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
-#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
@@ -2547,13 +2642,13 @@ void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
xd->mb_to_bottom_edge =
- mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64;
- mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * 4;
+ mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * MI_SIZE * 8;
+ mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * (MI_SIZE >> 1);
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
- bw = (num_4x4_blocks_wide_lookup[bsize] << 1) >> pd->subsampling_x;
+ bw = (xd->n8_w << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_x;
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
@@ -2570,32 +2665,29 @@ void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0)
continue;
- build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset,
- y * 2 + x, bw, bh,
+ build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh,
xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0,
(4 * y) >> pd->subsampling_y, bw, ph,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
+#if CONFIG_SUPERTX
0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
+#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
} else {
- build_inter_predictors(cm, xd, j, mi_col_offset, mi_row_offset, 0, bw,
- bh, xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0,
- 0, bw, bh,
-#if CONFIG_SUPERTX && CONFIG_EXT_INTER
+ build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh,
+ xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0,
+ bw, bh,
+#if CONFIG_SUPERTX
0, 0,
-#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
+#endif // CONFIG_SUPERTX
mi_x, mi_y);
}
}
-#if CONFIG_EXT_INTER
*mbmi = backup_mbmi;
-#endif // CONFIG_EXT_INTER
}
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
- xd->mb_to_left_edge += xd->n8_w * 32;
+ xd->mb_to_left_edge += xd->n8_w / 2 * MI_SIZE * 8;
}
// This function combines motion compensated predictions that is generated by
@@ -2764,9 +2856,33 @@ void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
mi_col);
}
#endif // CONFIG_NCOBMC
+
+#if CONFIG_NCOBMC_ADAPT_WEIGHT
+void reset_xd_boundary(MACROBLOCKD *xd, int mi_row, int bh, int mi_col, int bw,
+ int mi_rows, int mi_cols) {
+ xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
+ xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
+ xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
+ xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
+}
+void set_sb_mi_boundaries(const AV1_COMMON *const cm, MACROBLOCKD *const xd,
+ const int mi_row, const int mi_col) {
+ const BLOCK_SIZE sb = cm->sb_size;
+ const int num_mi_w = mi_size_wide[sb];
+ const int num_mi_h = mi_size_high[sb];
+
+ xd->sb_mi_bd.mi_col_begin = mi_col;
+ xd->sb_mi_bd.mi_row_begin = mi_row;
+ // points to the last mi
+ xd->sb_mi_bd.mi_col_end =
+ mi_col + num_mi_w > cm->mi_cols ? cm->mi_cols - 1 : mi_col + num_mi_w - 1;
+ xd->sb_mi_bd.mi_row_end =
+ mi_row + num_mi_h > cm->mi_rows ? cm->mi_rows - 1 : mi_row + num_mi_h - 1;
+}
+#endif
+
#endif // CONFIG_MOTION_VAR
-#if CONFIG_EXT_INTER
/* clang-format off */
#if CONFIG_INTERINTRA
#if CONFIG_EXT_PARTITION
@@ -2785,7 +2901,7 @@ static int ii_size_scales[BLOCK_SIZES_ALL] = {
#endif
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
- 16, 16, 8, 8,
+ 16, 16, 8, 8, 4, 4, 2, 2
};
#else
static const int ii_weights1d[MAX_SB_SIZE] = {
@@ -2800,7 +2916,7 @@ static int ii_size_scales[BLOCK_SIZES_ALL] = {
#endif
16, 8, 8, 8, 4, 4, 4,
2, 2, 2, 1, 1, 1,
- 8, 8, 4, 4,
+ 8, 8, 4, 4, 2, 2,
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
@@ -2852,7 +2968,6 @@ static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra,
}
break;
-#if CONFIG_ALT_INTRA
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
@@ -2863,11 +2978,7 @@ static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra,
}
}
break;
-#endif
-#if !CONFIG_ALT_INTRA
- case II_TM_PRED:
-#endif
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
@@ -2902,8 +3013,8 @@ static void combine_interintra_highbd(
const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh;
const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
- interpred8, interstride, mask, bw, bh, bw, subh,
- subw, bd);
+ interpred8, interstride, mask,
+ block_size_wide[bsize], bh, bw, subh, subw, bd);
}
return;
}
@@ -2931,7 +3042,6 @@ static void combine_interintra_highbd(
}
break;
-#if CONFIG_ALT_INTRA
case II_SMOOTH_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
@@ -2942,11 +3052,7 @@ static void combine_interintra_highbd(
}
}
break;
-#endif
-#if !CONFIG_ALT_INTRA
- case II_TM_PRED:
-#endif
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
@@ -2960,7 +3066,8 @@ static void combine_interintra_highbd(
}
#endif // CONFIG_HIGHBITDEPTH
-void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
+void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
+ MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
BUFFER_SET *ctx, uint8_t *dst,
int dst_stride) {
@@ -2969,7 +3076,7 @@ void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
PREDICTION_MODE mode =
interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode];
- av1_predict_intra_block(xd, pd->width, pd->height, plane_bsize, mode,
+ av1_predict_intra_block(cm, xd, pd->width, pd->height, plane_bsize, mode,
ctx->plane[plane], ctx->stride[plane], dst,
dst_stride, 0, 0, plane);
}
@@ -2997,14 +3104,14 @@ void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
inter_pred, inter_stride, intra_pred, intra_stride);
}
-void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
- int ystride, BUFFER_SET *ctx,
- BLOCK_SIZE bsize) {
+void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *ypred, int ystride,
+ BUFFER_SET *ctx, BLOCK_SIZE bsize) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
- xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
+ cm, xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
return;
@@ -3012,21 +3119,22 @@ void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
#endif // CONFIG_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
- av1_build_intra_predictors_for_interintra(xd, bsize, 0, ctx, intrapredictor,
- MAX_SB_SIZE);
+ av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, ctx,
+ intrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor,
MAX_SB_SIZE);
}
}
-void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
- int ustride, BUFFER_SET *ctx,
- int plane, BLOCK_SIZE bsize) {
+void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *upred, int ustride,
+ BUFFER_SET *ctx, int plane,
+ BLOCK_SIZE bsize) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
- xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor),
+ cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor),
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride,
CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE);
@@ -3035,28 +3143,29 @@ void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
#endif // CONFIG_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]);
- av1_build_intra_predictors_for_interintra(xd, bsize, plane, ctx,
+ av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx,
uintrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor,
MAX_SB_SIZE);
}
}
-void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
- uint8_t *vpred, int ustride,
- int vstride, BUFFER_SET *ctx,
- BLOCK_SIZE bsize) {
- av1_build_interintra_predictors_sbc(xd, upred, ustride, ctx, 1, bsize);
- av1_build_interintra_predictors_sbc(xd, vpred, vstride, ctx, 2, bsize);
+void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *upred, uint8_t *vpred,
+ int ustride, int vstride,
+ BUFFER_SET *ctx, BLOCK_SIZE bsize) {
+ av1_build_interintra_predictors_sbc(cm, xd, upred, ustride, ctx, 1, bsize);
+ av1_build_interintra_predictors_sbc(cm, xd, vpred, vstride, ctx, 2, bsize);
}
-void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
- uint8_t *upred, uint8_t *vpred,
- int ystride, int ustride, int vstride,
- BUFFER_SET *ctx, BLOCK_SIZE bsize) {
- av1_build_interintra_predictors_sby(xd, ypred, ystride, ctx, bsize);
- av1_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, ctx,
- bsize);
+void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ uint8_t *ypred, uint8_t *upred,
+ uint8_t *vpred, int ystride, int ustride,
+ int vstride, BUFFER_SET *ctx,
+ BLOCK_SIZE bsize) {
+ av1_build_interintra_predictors_sby(cm, xd, ypred, ystride, ctx, bsize);
+ av1_build_interintra_predictors_sbuv(cm, xd, upred, vpred, ustride, vstride,
+ ctx, bsize);
}
#endif // CONFIG_INTERINTRA
@@ -3092,13 +3201,13 @@ static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
WarpTypesAllowed warp_types;
#if CONFIG_GLOBAL_MOTION
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#if CONFIG_COMPOUND_SINGLEREF
WarpedMotionParams *const wm =
mi->mbmi.ref_frame[ref] > 0 ? &xd->global_motion[mi->mbmi.ref_frame[ref]]
: &xd->global_motion[mi->mbmi.ref_frame[0]];
-#else // !(CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF)
+#else // !(CONFIG_COMPOUND_SINGLEREF)
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_COMPOUND_SINGLEREF
warp_types.global_warp_allowed = is_global_mv_block(mi, block, wm->wmtype);
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_WARPED_MOTION
@@ -3144,13 +3253,13 @@ static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x,
subpel_y, sf, w, h, &conv_params,
- mi->mbmi.interp_filter,
+ mi->mbmi.interp_filters,
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
&warp_types, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
- 0, 0,
+ mi, 0,
#endif
xs, ys, xd);
}
@@ -3172,10 +3281,10 @@ void av1_build_inter_predictors_for_planes_single_buf(
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
assert(bsize == BLOCK_8X8);
-#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#if CONFIG_COMPOUND_SINGLEREF
assert(has_second_ref(&xd->mi[0]->mbmi) ||
!is_inter_singleref_comp_mode(xd->mi[0]->mbmi.mode));
-#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
+#endif // CONFIG_COMPOUND_SINGLEREF
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors_single_buf(
@@ -3215,10 +3324,11 @@ static void build_wedge_inter_predictor_from_buf(
#if CONFIG_COMPOUND_SINGLEREF
if ((is_compound || is_inter_singleref_comp_mode(mbmi->mode)) &&
- is_masked_compound_type(mbmi->interinter_compound_type)) {
+ is_masked_compound_type(mbmi->interinter_compound_type))
#else // !CONFIG_COMPOUND_SINGLEREF
- if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type)) {
+ if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type))
#endif // CONFIG_COMPOUND_SINGLEREF
+ {
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) {
#if CONFIG_HIGHBITDEPTH
@@ -3314,4 +3424,709 @@ void av1_build_wedge_inter_predictor_from_buf(
}
}
}
-#endif // CONFIG_EXT_INTER
+#if CONFIG_NCOBMC_ADAPT_WEIGHT
+
+void alloc_ncobmc_pred_buffer(MACROBLOCKD *const xd) {
+ int i;
+ // allocate interpolated prediction buffer
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ xd->ncobmc_pred_buf[i] = (uint8_t *)malloc(sizeof(uint8_t) * MAX_SB_SQUARE);
+ av1_zero_array(xd->ncobmc_pred_buf[i], MAX_SB_SQUARE);
+ xd->ncobmc_pred_buf_stride[i] = MAX_SB_SIZE;
+ }
+}
+
+void free_ncobmc_pred_buffer(MACROBLOCKD *const xd) {
+ for (int i = 0; i < MAX_MB_PLANE; ++i) free(xd->ncobmc_pred_buf[i]);
+}
+
+void get_pred_from_intrpl_buf(MACROBLOCKD *xd, int mi_row, int mi_col,
+ BLOCK_SIZE bsize, int plane) {
+ uint8_t *dst = xd->plane[plane].dst.buf;
+ int ds = xd->plane[plane].dst.stride;
+ int ss_x = xd->plane[plane].subsampling_x;
+ int ss_y = xd->plane[plane].subsampling_y;
+
+ const int ip_wide = mi_size_wide[bsize] * MI_SIZE >> ss_x;
+ const int ip_high = mi_size_high[bsize] * MI_SIZE >> ss_y;
+ // relative coordinates of this MI in the superblock
+ int row_rlt = (mi_row - xd->sb_mi_bd.mi_row_begin) * MI_SIZE >> ss_y;
+ int col_rlt = (mi_col - xd->sb_mi_bd.mi_col_begin) * MI_SIZE >> ss_x;
+ int s = xd->ncobmc_pred_buf_stride[plane];
+ int r, c;
+
+ for (r = 0; r < ip_high; ++r) {
+ for (c = 0; c < ip_wide; ++c) {
+ dst[r * ds + c] =
+ xd->ncobmc_pred_buf[plane][(r + row_rlt) * s + c + col_rlt];
+ }
+ }
+}
+// scaling factors for ncobmc kernels
+#define KERNEL_SCALE_LOG 14
+
+void build_ncobmc_intrpl_pred(const AV1_COMMON *const cm, MACROBLOCKD *xd,
+ int plane, int pxl_row, int pxl_col,
+ BLOCK_SIZE bsize, uint8_t *preds[][MAX_MB_PLANE],
+ int stride[MAX_MB_PLANE], // pred buffer strides
+ int mode) {
+ const ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[bsize];
+ const NCOBMC_KERNELS *const knls = &cm->ncobmc_kernels[ao_block][mode];
+ const int wide = mi_size_wide[bsize] * MI_SIZE;
+ const int high = mi_size_high[bsize] * MI_SIZE;
+ const int s = stride[plane];
+ const int ss_x = xd->plane[plane].subsampling_x;
+ const int ss_y = xd->plane[plane].subsampling_y;
+ int row_offset = (pxl_row - xd->sb_mi_bd.mi_row_begin * MI_SIZE) >> ss_y;
+ int col_offset = (pxl_col - xd->sb_mi_bd.mi_col_begin * MI_SIZE) >> ss_x;
+ int dst_stride = xd->ncobmc_pred_buf_stride[plane];
+ int dst_offset = row_offset * dst_stride + col_offset;
+
+#if CONFIG_HIGHBITDEPTH
+ const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
+#else
+ const int is_hbd = 0;
+#endif // CONFIG_HIGHBITDEPTH
+
+ int r, c, k_r, k_c;
+ int64_t tmp;
+
+ for (r = 0; r < (high >> ss_x); ++r) {
+ for (c = 0; c < (wide >> ss_y); ++c) {
+ int pos = r * s + c;
+ int q_tmp;
+ uint8_t val;
+
+ // TODO(weitinglin): find out the optimal sub-sampling patterns for
+ // chroma
+ k_r = (r << ss_y) + ss_y;
+ k_c = (c << ss_x) + ss_x;
+ if (ss_y && k_r >= high) k_r -= 1;
+ if (ss_x && k_c >= wide) k_c -= 1;
+
+ if (!is_hbd) {
+ uint8_t *tmp_p[4];
+ int i;
+ for (i = 0; i < 4; ++i) tmp_p[i] = preds[i][plane];
+
+ tmp = 0;
+ for (i = 0; i < 4; ++i)
+ tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos];
+
+ } else {
+ uint16_t *tmp_p[4];
+ int i;
+ for (i = 0; i < 4; ++i) tmp_p[i] = CONVERT_TO_SHORTPTR(preds[i][plane]);
+
+ tmp = 0;
+ for (i = 0; i < 4; ++i)
+ tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos];
+ }
+
+ q_tmp = (tmp <= 0) ? 0 : ROUND_POWER_OF_TWO(tmp, KERNEL_SCALE_LOG);
+ val = clip_pixel(q_tmp);
+
+ xd->ncobmc_pred_buf[plane][r * dst_stride + c + dst_offset] = val;
+
+ assert(r * dst_stride + c + dst_offset < MAX_SB_SQUARE);
+ }
+ }
+}
+
+void get_pred_by_horz_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
+ int mi_row, int mi_col,
+ uint8_t *dst_buf[MAX_MB_PLANE],
+ int dst_stride[MAX_MB_PLANE]) {
+ const TileInfo *const tile = &xd->tile;
+ const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
+ const int mb_to_top_edge_base = xd->mb_to_top_edge;
+ const int mb_to_left_edge_base = xd->mb_to_left_edge;
+ const int mb_to_right_edge_base = xd->mb_to_right_edge;
+ int overlappable_offset = -1;
+ const int mi_nums = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row);
+
+ int i, j, mi_step, ref;
+
+ xd->mb_to_right_edge += mi_size_wide[bsize] * MI_SIZE * 4;
+
+ // build from left neighbors
+ for (i = 0; i < mi_nums; i += mi_step) {
+ int mi_row_offset = i;
+ int mi_col_offset = -1;
+ int mi_x, mi_y, bw, bh;
+ MODE_INFO *left_mi;
+ MB_MODE_INFO *left_mbmi, backup_mbmi;
+ BLOCK_SIZE l_bsize;
+
+ // create the original prediction if offset exceeds the boundary
+ if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) mi_col_offset = 0;
+
+ left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ left_mbmi = &left_mi->mbmi;
+ l_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8);
+
+ mi_step = AOMMIN(xd->n8_h, mi_size_high[l_bsize]);
+
+ // reset the mi if it is not overlappble
+ if (!is_neighbor_overlappable(left_mbmi)) {
+ // use left_mbmi->sb_type instead of l_bsize to handle
+ // sub8x8 cases
+ int search_mi_step = mi_size_high[left_mbmi->sb_type];
+ while (!is_neighbor_overlappable(left_mbmi)) {
+ mi_row_offset += search_mi_step;
+ if (mi_row_offset < mi_nums) {
+ left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ left_mbmi = &left_mi->mbmi;
+ search_mi_step = mi_size_high[left_mbmi->sb_type];
+ } else {
+ if (overlappable_offset >= 0) {
+ mi_row_offset = overlappable_offset;
+ } else {
+ mi_row_offset = 0;
+ mi_col_offset = 0;
+ }
+ left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ left_mbmi = &left_mi->mbmi;
+ break;
+ }
+ }
+ } else {
+ // update the available overlappable mi
+ overlappable_offset = mi_row_offset;
+ }
+
+ backup_mbmi = *left_mbmi;
+ modify_neighbor_predictor_for_obmc(left_mbmi);
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, l_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
+ dst_stride[j], i, 0, NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(left_mbmi->mode));
+ ++ref) {
+ const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi)
+ ? left_mbmi->ref_frame[ref]
+ : left_mbmi->ref_frame[0];
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col,
+ &ref_buf->sf);
+ }
+ xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8);
+ xd->mb_to_bottom_edge =
+ mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
+ mi_x = mi_col << MI_SIZE_LOG2;
+ mi_y = (mi_row + i) << MI_SIZE_LOG2;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+ bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
+ bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
+
+ build_inter_predictors(cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+ *left_mbmi = backup_mbmi;
+ }
+
+ // build from right neighbors
+ xd->mb_to_right_edge = mb_to_right_edge_base;
+ xd->mb_to_left_edge -= mi_size_wide[bsize] * MI_SIZE * 4;
+
+ overlappable_offset = -1;
+
+ for (i = 0; i < mi_nums; i += mi_step) {
+ int mi_row_offset = i;
+ int mi_col_offset = mi_size_wide[bsize];
+ int mi_x, mi_y, bw, bh;
+ int mi_col_shift = mi_size_wide[bsize] >> 1;
+ MODE_INFO *right_mi;
+ MB_MODE_INFO *right_mbmi, backup_mbmi;
+ BLOCK_SIZE r_bsize;
+
+ // create the original prediction if offset exceeds the boundary
+ if (mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end) mi_col_offset = 0;
+
+ right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ right_mbmi = &right_mi->mbmi;
+ r_bsize = AOMMAX(right_mbmi->sb_type, BLOCK_8X8);
+
+ mi_step = AOMMIN(mi_nums, mi_size_high[r_bsize]);
+
+ if (!is_neighbor_overlappable(right_mbmi)) {
+ int search_mi_step = mi_size_high[right_mbmi->sb_type];
+ while (!is_neighbor_overlappable(right_mbmi)) {
+ mi_row_offset += search_mi_step;
+ if (mi_row_offset < mi_nums) {
+ right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ right_mbmi = &right_mi->mbmi;
+ search_mi_step = mi_size_high[right_mbmi->sb_type];
+ } else {
+ if (overlappable_offset >= 0) {
+ mi_row_offset = overlappable_offset;
+ } else {
+ mi_row_offset = 0;
+ mi_col_offset = 0;
+ }
+ right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ right_mbmi = &right_mi->mbmi;
+ break;
+ }
+ }
+ } else {
+ overlappable_offset = mi_row_offset;
+ }
+
+ backup_mbmi = *right_mbmi;
+ modify_neighbor_predictor_for_obmc(right_mbmi);
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, r_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
+ dst_stride[j], i, mi_col_shift, NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(right_mbmi->mode));
+ ++ref) {
+ const MV_REFERENCE_FRAME frame = has_second_ref(right_mbmi)
+ ? right_mbmi->ref_frame[ref]
+ : right_mbmi->ref_frame[0];
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ for (ref = 0; ref < 1 + has_second_ref(right_mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = right_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i,
+ mi_col + mi_col_shift, &ref_buf->sf);
+ }
+ xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8);
+ xd->mb_to_bottom_edge =
+ mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
+ mi_x = (mi_col + mi_col_shift) << MI_SIZE_LOG2;
+ mi_y = (mi_row + i) << MI_SIZE_LOG2;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+ bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
+ bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
+
+ build_inter_predictors(cm, xd, j, right_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+
+ *right_mbmi = backup_mbmi;
+ }
+
+ // restore the boundaries
+ xd->mb_to_top_edge = mb_to_top_edge_base;
+ xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
+ xd->mb_to_left_edge = mb_to_left_edge_base;
+ xd->mb_to_right_edge = mb_to_right_edge_base;
+}
+
+void get_pred_by_vert_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
+ int mi_row, int mi_col,
+ uint8_t *dst_buf[MAX_MB_PLANE],
+ int dst_stride[MAX_MB_PLANE]) {
+ const TileInfo *const tile = &xd->tile;
+ const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
+ const int mb_to_top_edge_base = xd->mb_to_top_edge;
+ const int mb_to_left_edge_base = xd->mb_to_left_edge;
+ const int mb_to_right_edge_base = xd->mb_to_right_edge;
+ int overlappable_offset = -1;
+ const int mi_nums = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col);
+
+ int i, j, mi_step, ref;
+
+ xd->mb_to_bottom_edge += mi_nums * MI_SIZE * 4;
+
+ // build from above neighbors
+ for (i = 0; i < mi_nums; i += mi_step) {
+ int mi_row_offset = -1;
+ int mi_col_offset = i;
+ int mi_x, mi_y, bw, bh;
+ MODE_INFO *above_mi;
+ MB_MODE_INFO *above_mbmi, backup_mbmi;
+ BLOCK_SIZE a_bsize;
+
+ // create the original prediction if offset exceeds the boundary
+ if (mi_row <= tile->mi_row_start) mi_row_offset = 0;
+
+ above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ above_mbmi = &above_mi->mbmi;
+ a_bsize = AOMMAX(above_mbmi->sb_type, BLOCK_8X8);
+
+ mi_step = AOMMIN(mi_nums, mi_size_high[a_bsize]);
+
+ // reset the mi if it is not overlappble
+ if (!is_neighbor_overlappable(above_mbmi)) {
+ int search_mi_step = mi_size_high[above_mbmi->sb_type];
+ // backward search
+ while (!is_neighbor_overlappable(above_mbmi)) {
+ mi_col_offset += search_mi_step;
+ if (mi_col_offset < mi_nums) {
+ above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ above_mbmi = &above_mi->mbmi;
+ search_mi_step = mi_size_high[above_mbmi->sb_type];
+ } else {
+ if (overlappable_offset >= 0) {
+ mi_col_offset = overlappable_offset;
+ } else {
+ mi_row_offset = 0;
+ mi_col_offset = 0;
+ }
+ above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ above_mbmi = &above_mi->mbmi;
+ break;
+ }
+ }
+ } else {
+ // update the available overlappable mi
+ overlappable_offset = mi_col_offset;
+ }
+
+ backup_mbmi = *above_mbmi;
+ modify_neighbor_predictor_for_obmc(above_mbmi);
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, a_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
+ dst_stride[j], 0, i, NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(above_mbmi->mode));
+ ++ref) {
+ const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi)
+ ? above_mbmi->ref_frame[ref]
+ : above_mbmi->ref_frame[0];
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i,
+ &ref_buf->sf);
+ }
+
+ xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
+ xd->mb_to_right_edge =
+ mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
+ mi_x = (mi_col + i) << MI_SIZE_LOG2;
+ mi_y = mi_row << MI_SIZE_LOG2;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+
+ bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
+ bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
+
+ build_inter_predictors(cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+
+ *above_mbmi = backup_mbmi;
+ }
+
+ // build from bottom neighbors
+ xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
+ xd->mb_to_top_edge -= mi_size_high[bsize] * MI_SIZE * 4;
+
+ overlappable_offset = -1;
+
+ for (i = 0; i < mi_nums; i += mi_step) {
+ int mi_row_offset = mi_size_high[bsize];
+ int mi_col_offset = i;
+ int mi_x, mi_y, bw, bh;
+ int mi_row_shift = mi_size_high[bsize] >> 1;
+ MODE_INFO *bottom_mi;
+ MB_MODE_INFO *bottom_mbmi, backup_mbmi;
+ BLOCK_SIZE b_bsize;
+
+ // create the original prediction if offset exceeds the boundary
+ if (mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end) mi_row_offset = 0;
+
+ bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ bottom_mbmi = &bottom_mi->mbmi;
+ b_bsize = AOMMAX(bottom_mbmi->sb_type, BLOCK_8X8);
+
+ mi_step = AOMMIN(mi_nums, mi_size_high[b_bsize]);
+
+ // reset the mi if it is not overlappble
+ if (!is_neighbor_overlappable(bottom_mbmi)) {
+ int search_mi_step = mi_size_high[bottom_mbmi->sb_type];
+ while (!is_neighbor_overlappable(bottom_mbmi)) {
+ mi_col_offset += search_mi_step;
+ if (mi_col_offset < mi_nums) {
+ bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ bottom_mbmi = &bottom_mi->mbmi;
+ search_mi_step = mi_size_high[bottom_mbmi->sb_type];
+ } else {
+ if (overlappable_offset >= 0) {
+ mi_col_offset = overlappable_offset;
+ } else {
+ mi_col_offset = 0;
+ mi_row_offset = 0;
+ }
+ bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ bottom_mbmi = &bottom_mi->mbmi;
+ break;
+ }
+ }
+ } else {
+ // update the available overlappable mi
+ overlappable_offset = mi_col_offset;
+ }
+
+ backup_mbmi = *bottom_mbmi;
+ modify_neighbor_predictor_for_obmc(bottom_mbmi);
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, b_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE,
+ dst_stride[j], mi_row_shift, i, NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(bottom_mbmi->mode));
+ ++ref) {
+ const MV_REFERENCE_FRAME frame = has_second_ref(bottom_mbmi)
+ ? bottom_mbmi->ref_frame[ref]
+ : bottom_mbmi->ref_frame[0];
+#else // !(CONFIG_COMPOUND_SINGLEREF)
+ for (ref = 0; ref < 1 + has_second_ref(bottom_mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = bottom_mbmi->ref_frame[ref];
+#endif // CONFIG_COMPOUND_SINGLEREF
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+ xd->block_refs[ref] = ref_buf;
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + mi_row_shift,
+ mi_col + i, &ref_buf->sf);
+ }
+
+ xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
+ xd->mb_to_right_edge =
+ mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8;
+ mi_x = (mi_col + i) << MI_SIZE_LOG2;
+ mi_y = (mi_row + mi_row_shift) << MI_SIZE_LOG2;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+
+ bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x;
+ bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
+
+ build_inter_predictors(cm, xd, j, bottom_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+
+ *bottom_mbmi = backup_mbmi;
+ }
+ // restore the boundaries
+ xd->mb_to_top_edge = mb_to_top_edge_base;
+ xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
+ xd->mb_to_left_edge = mb_to_left_edge_base;
+ xd->mb_to_right_edge = mb_to_right_edge_base;
+}
+
+void get_pred_by_corner_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd,
+ int bsize, int mi_row, int mi_col,
+ uint8_t *dst_buf[MAX_MB_PLANE],
+ int dst_stride[MAX_MB_PLANE]) {
+ const TileInfo *const tile = &xd->tile;
+ const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
+ const int mb_to_top_edge_base = xd->mb_to_top_edge;
+ const int mb_to_left_edge_base = xd->mb_to_left_edge;
+ const int mb_to_right_edge_base = xd->mb_to_right_edge;
+ const int mi_wide = mi_size_wide[bsize];
+ const int mi_high = mi_size_high[bsize];
+
+ // location of four mi sources
+ const int mi_row_offsets[4] = { -1, -1, mi_high, mi_high };
+ const int mi_col_offsets[4] = { -1, mi_wide, -1, mi_wide };
+
+ MB_MODE_INFO backup_mbmi;
+ int mi_x, mi_y, bh, bw;
+ int i, j, ref;
+
+ assert(bsize >= BLOCK_8X8);
+
+ for (i = 0; i < 4; ++i) {
+ int mi_row_offset = mi_row_offsets[i];
+ int mi_col_offset = mi_col_offsets[i];
+ MODE_INFO *corner_mi;
+ MB_MODE_INFO *corner_mbmi;
+
+ if (mi_col + mi_col_offset < tile->mi_col_start ||
+ mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end)
+ mi_col_offset = 0;
+
+ if (mi_row + mi_row_offset < tile->mi_row_start ||
+ mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end)
+ mi_row_offset = 0;
+
+ corner_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
+ corner_mbmi = &corner_mi->mbmi;
+
+ // reset the mi if it is not overlappble
+ if (!is_neighbor_overlappable(corner_mbmi)) {
+ mi_row_offset = 0;
+ mi_col_offset = 0;
+ corner_mi = xd->mi[0];
+ corner_mbmi = &corner_mi->mbmi;
+ }
+
+ backup_mbmi = *corner_mbmi;
+ modify_neighbor_predictor_for_obmc(corner_mbmi);
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ struct macroblockd_plane *const pd = &xd->plane[j];
+ setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[j], MAX_SB_SIZE,
+ MAX_SB_SIZE, dst_stride[j], (i / 2) * (mi_high >> 1),
+ (i % 2) * (mi_wide >> 1), NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+
+#if CONFIG_COMPOUND_SINGLEREF
+ for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(corner_mbmi->mode));
+ ++ref) {
+ const MV_REFERENCE_FRAME frame = has_second_ref(corner_mbmi)
+ ? corner_mbmi->ref_frame[ref]
+ : corner_mbmi->ref_frame[0];
+#else
+ for (ref = 0; ref < 1 + has_second_ref(corner_mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = corner_mbmi->ref_frame[ref];
+#endif
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+ xd->block_refs[ref] = ref_buf;
+
+ if ((!av1_is_valid_scale(&ref_buf->sf)))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+ av1_setup_pre_planes(xd, ref, ref_buf->buf,
+ mi_row + (i / 2) * (mi_high >> 1),
+ mi_col + (i % 2) * (mi_wide >> 1), &ref_buf->sf);
+ }
+ // adjust mi boundaries of this block
+ xd->mb_to_bottom_edge =
+ mb_to_bottom_edge_base + (1 - (i / 2)) * mi_high * MI_SIZE * 4;
+ xd->mb_to_top_edge = mb_to_top_edge_base - (i / 2) * mi_high * MI_SIZE * 4;
+ xd->mb_to_right_edge =
+ mb_to_right_edge_base + (1 - (i % 2)) * mi_wide * MI_SIZE * 4;
+ xd->mb_to_left_edge =
+ mb_to_left_edge_base - (i % 2) * mi_wide * MI_SIZE * 4;
+
+ mi_x = (mi_col + (i % 2) * mi_wide / 2) << MI_SIZE_LOG2;
+ mi_y = (mi_row + (i / 2) * mi_high / 2) << MI_SIZE_LOG2;
+
+ for (j = 0; j < MAX_MB_PLANE; ++j) {
+ const struct macroblockd_plane *pd = &xd->plane[j];
+ bh = mi_high << MI_SIZE_LOG2 >> (pd->subsampling_x + 1);
+ bw = mi_wide << MI_SIZE_LOG2 >> (pd->subsampling_y + 1);
+ build_inter_predictors(cm, xd, j, corner_mi, 1, 0, bw, bh, 0, 0, bw, bh,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+ *corner_mbmi = backup_mbmi;
+ }
+ // restore the boundaries
+ xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
+ xd->mb_to_top_edge = mb_to_top_edge_base;
+ xd->mb_to_right_edge = mb_to_right_edge_base;
+ xd->mb_to_left_edge = mb_to_left_edge_base;
+}
+
+// get the stitched extra prediction for this block
+void av1_get_ext_blk_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
+ int mi_row, int mi_col,
+ uint8_t *dst_buf[][MAX_MB_PLANE],
+ int dst_stride[MAX_MB_PLANE]) {
+ get_pred_by_corner_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[0],
+ dst_stride);
+ get_pred_by_vert_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[1],
+ dst_stride);
+ get_pred_by_horz_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[2],
+ dst_stride);
+}
+
+void av1_get_ori_blk_pred(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize,
+ int mi_row, int mi_col,
+ uint8_t *dst_buf[MAX_MB_PLANE],
+ int dst_stride[MAX_MB_PLANE]) {
+ MODE_INFO *const mi = xd->mi[0];
+ MB_MODE_INFO *const mbmi = &mi->mbmi;
+ int mi_x = mi_col << MI_SIZE_LOG2;
+ int mi_y = mi_row << MI_SIZE_LOG2;
+ int bw = block_size_wide[bsize];
+ int bh = block_size_high[bsize];
+ int i, ref;
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ struct macroblockd_plane *const pd = &xd->plane[i];
+ setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[i], MAX_SB_SIZE, MAX_SB_SIZE,
+ dst_stride[i], 0, 0, NULL, pd->subsampling_x,
+ pd->subsampling_y);
+ }
+
+ for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
+ const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
+ const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
+ xd->block_refs[ref] = ref_buf;
+
+ if (!av1_is_valid_scale(&ref_buf->sf))
+ aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
+ "Reference frame has invalid dimensions");
+
+ av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf);
+ }
+
+ for (i = 0; i < MAX_MB_PLANE; ++i) {
+ const struct macroblockd_plane *pd = &xd->plane[i];
+ build_inter_predictors(cm, xd, i, mi, 1, 0, bw >> pd->subsampling_x,
+ bh >> pd->subsampling_y, 0, 0,
+ bw >> pd->subsampling_x, bh >> pd->subsampling_y,
+#if CONFIG_SUPERTX
+ 0, 0,
+#endif // CONFIG_SUPERTX
+ mi_x, mi_y);
+ }
+}
+
+#endif