summaryrefslogtreecommitdiff
path: root/security/sandbox/chromium/base/bind_helpers.h
diff options
context:
space:
mode:
Diffstat (limited to 'security/sandbox/chromium/base/bind_helpers.h')
-rw-r--r--security/sandbox/chromium/base/bind_helpers.h658
1 files changed, 658 insertions, 0 deletions
diff --git a/security/sandbox/chromium/base/bind_helpers.h b/security/sandbox/chromium/base/bind_helpers.h
new file mode 100644
index 0000000000..2add755b42
--- /dev/null
+++ b/security/sandbox/chromium/base/bind_helpers.h
@@ -0,0 +1,658 @@
+// Copyright (c) 2011 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This defines a set of argument wrappers and related factory methods that
+// can be used specify the refcounting and reference semantics of arguments
+// that are bound by the Bind() function in base/bind.h.
+//
+// It also defines a set of simple functions and utilities that people want
+// when using Callback<> and Bind().
+//
+//
+// ARGUMENT BINDING WRAPPERS
+//
+// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
+// base::ConstRef(), and base::IgnoreResult().
+//
+// Unretained() allows Bind() to bind a non-refcounted class, and to disable
+// refcounting on arguments that are refcounted objects.
+//
+// Owned() transfers ownership of an object to the Callback resulting from
+// bind; the object will be deleted when the Callback is deleted.
+//
+// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
+// through a Callback. Logically, this signifies a destructive transfer of
+// the state of the argument into the target function. Invoking
+// Callback::Run() twice on a Callback that was created with a Passed()
+// argument will CHECK() because the first invocation would have already
+// transferred ownership to the target function.
+//
+// ConstRef() allows binding a constant reference to an argument rather
+// than a copy.
+//
+// IgnoreResult() is used to adapt a function or Callback with a return type to
+// one with a void return. This is most useful if you have a function with,
+// say, a pesky ignorable bool return that you want to use with PostTask or
+// something else that expect a Callback with a void return.
+//
+// EXAMPLE OF Unretained():
+//
+// class Foo {
+// public:
+// void func() { cout << "Foo:f" << endl; }
+// };
+//
+// // In some function somewhere.
+// Foo foo;
+// Closure foo_callback =
+// Bind(&Foo::func, Unretained(&foo));
+// foo_callback.Run(); // Prints "Foo:f".
+//
+// Without the Unretained() wrapper on |&foo|, the above call would fail
+// to compile because Foo does not support the AddRef() and Release() methods.
+//
+//
+// EXAMPLE OF Owned():
+//
+// void foo(int* arg) { cout << *arg << endl }
+//
+// int* pn = new int(1);
+// Closure foo_callback = Bind(&foo, Owned(pn));
+//
+// foo_callback.Run(); // Prints "1"
+// foo_callback.Run(); // Prints "1"
+// *n = 2;
+// foo_callback.Run(); // Prints "2"
+//
+// foo_callback.Reset(); // |pn| is deleted. Also will happen when
+// // |foo_callback| goes out of scope.
+//
+// Without Owned(), someone would have to know to delete |pn| when the last
+// reference to the Callback is deleted.
+//
+//
+// EXAMPLE OF ConstRef():
+//
+// void foo(int arg) { cout << arg << endl }
+//
+// int n = 1;
+// Closure no_ref = Bind(&foo, n);
+// Closure has_ref = Bind(&foo, ConstRef(n));
+//
+// no_ref.Run(); // Prints "1"
+// has_ref.Run(); // Prints "1"
+//
+// n = 2;
+// no_ref.Run(); // Prints "1"
+// has_ref.Run(); // Prints "2"
+//
+// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
+// its bound callbacks.
+//
+//
+// EXAMPLE OF IgnoreResult():
+//
+// int DoSomething(int arg) { cout << arg << endl; }
+//
+// // Assign to a Callback with a void return type.
+// Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
+// cb->Run(1); // Prints "1".
+//
+// // Prints "1" on |ml|.
+// ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
+//
+//
+// EXAMPLE OF Passed():
+//
+// void TakesOwnership(scoped_ptr<Foo> arg) { }
+// scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
+//
+// scoped_ptr<Foo> f(new Foo());
+//
+// // |cb| is given ownership of Foo(). |f| is now NULL.
+// // You can use std::move(f) in place of &f, but it's more verbose.
+// Closure cb = Bind(&TakesOwnership, Passed(&f));
+//
+// // Run was never called so |cb| still owns Foo() and deletes
+// // it on Reset().
+// cb.Reset();
+//
+// // |cb| is given a new Foo created by CreateFoo().
+// cb = Bind(&TakesOwnership, Passed(CreateFoo()));
+//
+// // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
+// // no longer owns Foo() and, if reset, would not delete Foo().
+// cb.Run(); // Foo() is now transferred to |arg| and deleted.
+// cb.Run(); // This CHECK()s since Foo() already been used once.
+//
+// Passed() is particularly useful with PostTask() when you are transferring
+// ownership of an argument into a task, but don't necessarily know if the
+// task will always be executed. This can happen if the task is cancellable
+// or if it is posted to a TaskRunner.
+//
+//
+// SIMPLE FUNCTIONS AND UTILITIES.
+//
+// DoNothing() - Useful for creating a Closure that does nothing when called.
+// DeletePointer<T>() - Useful for creating a Closure that will delete a
+// pointer when invoked. Only use this when necessary.
+// In most cases MessageLoop::DeleteSoon() is a better
+// fit.
+
+#ifndef BASE_BIND_HELPERS_H_
+#define BASE_BIND_HELPERS_H_
+
+#include <stddef.h>
+
+#include <type_traits>
+#include <utility>
+
+#include "base/callback.h"
+#include "base/memory/weak_ptr.h"
+#include "base/template_util.h"
+#include "build/build_config.h"
+
+namespace base {
+namespace internal {
+
+// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
+// for the existence of AddRef() and Release() functions of the correct
+// signature.
+//
+// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
+// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
+// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
+// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
+//
+// The last link in particular show the method used below.
+//
+// For SFINAE to work with inherited methods, we need to pull some extra tricks
+// with multiple inheritance. In the more standard formulation, the overloads
+// of Check would be:
+//
+// template <typename C>
+// Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
+//
+// template <typename C>
+// No NotTheCheckWeWant(...);
+//
+// static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
+//
+// The problem here is that template resolution will not match
+// C::TargetFunc if TargetFunc does not exist directly in C. That is, if
+// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
+// |value| will be false. This formulation only checks for whether or
+// not TargetFunc exist directly in the class being introspected.
+//
+// To get around this, we play a dirty trick with multiple inheritance.
+// First, We create a class BaseMixin that declares each function that we
+// want to probe for. Then we create a class Base that inherits from both T
+// (the class we wish to probe) and BaseMixin. Note that the function
+// signature in BaseMixin does not need to match the signature of the function
+// we are probing for; thus it's easiest to just use void().
+//
+// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
+// ambiguous resolution between BaseMixin and T. This lets us write the
+// following:
+//
+// template <typename C>
+// No GoodCheck(Helper<&C::TargetFunc>*);
+//
+// template <typename C>
+// Yes GoodCheck(...);
+//
+// static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
+//
+// Notice here that the variadic version of GoodCheck() returns Yes here
+// instead of No like the previous one. Also notice that we calculate |value|
+// by specializing GoodCheck() on Base instead of T.
+//
+// We've reversed the roles of the variadic, and Helper overloads.
+// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
+// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
+// to the variadic version if T has TargetFunc. If T::TargetFunc does not
+// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
+// will prefer GoodCheck(Helper<&C::TargetFunc>*).
+//
+// This method of SFINAE will correctly probe for inherited names, but it cannot
+// typecheck those names. It's still a good enough sanity check though.
+//
+// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
+//
+// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
+// this works well.
+//
+// TODO(ajwong): Make this check for Release() as well.
+// See http://crbug.com/82038.
+template <typename T>
+class SupportsAddRefAndRelease {
+ using Yes = char[1];
+ using No = char[2];
+
+ struct BaseMixin {
+ void AddRef();
+ };
+
+// MSVC warns when you try to use Base if T has a private destructor, the
+// common pattern for refcounted types. It does this even though no attempt to
+// instantiate Base is made. We disable the warning for this definition.
+#if defined(OS_WIN)
+#pragma warning(push)
+#pragma warning(disable:4624)
+#endif
+ struct Base : public T, public BaseMixin {
+ };
+#if defined(OS_WIN)
+#pragma warning(pop)
+#endif
+
+ template <void(BaseMixin::*)()> struct Helper {};
+
+ template <typename C>
+ static No& Check(Helper<&C::AddRef>*);
+
+ template <typename >
+ static Yes& Check(...);
+
+ public:
+ enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
+};
+
+// Helpers to assert that arguments of a recounted type are bound with a
+// scoped_refptr.
+template <bool IsClasstype, typename T>
+struct UnsafeBindtoRefCountedArgHelper : false_type {
+};
+
+template <typename T>
+struct UnsafeBindtoRefCountedArgHelper<true, T>
+ : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
+};
+
+template <typename T>
+struct UnsafeBindtoRefCountedArg : false_type {
+};
+
+template <typename T>
+struct UnsafeBindtoRefCountedArg<T*>
+ : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
+};
+
+template <typename T>
+class HasIsMethodTag {
+ using Yes = char[1];
+ using No = char[2];
+
+ template <typename U>
+ static Yes& Check(typename U::IsMethod*);
+
+ template <typename U>
+ static No& Check(...);
+
+ public:
+ enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
+};
+
+template <typename T>
+class UnretainedWrapper {
+ public:
+ explicit UnretainedWrapper(T* o) : ptr_(o) {}
+ T* get() const { return ptr_; }
+ private:
+ T* ptr_;
+};
+
+template <typename T>
+class ConstRefWrapper {
+ public:
+ explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
+ const T& get() const { return *ptr_; }
+ private:
+ const T* ptr_;
+};
+
+template <typename T>
+struct IgnoreResultHelper {
+ explicit IgnoreResultHelper(T functor) : functor_(functor) {}
+
+ T functor_;
+};
+
+template <typename T>
+struct IgnoreResultHelper<Callback<T> > {
+ explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
+
+ const Callback<T>& functor_;
+};
+
+// An alternate implementation is to avoid the destructive copy, and instead
+// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
+// a class that is essentially a scoped_ptr<>.
+//
+// The current implementation has the benefit though of leaving ParamTraits<>
+// fully in callback_internal.h as well as avoiding type conversions during
+// storage.
+template <typename T>
+class OwnedWrapper {
+ public:
+ explicit OwnedWrapper(T* o) : ptr_(o) {}
+ ~OwnedWrapper() { delete ptr_; }
+ T* get() const { return ptr_; }
+ OwnedWrapper(const OwnedWrapper& other) {
+ ptr_ = other.ptr_;
+ other.ptr_ = NULL;
+ }
+
+ private:
+ mutable T* ptr_;
+};
+
+// PassedWrapper is a copyable adapter for a scoper that ignores const.
+//
+// It is needed to get around the fact that Bind() takes a const reference to
+// all its arguments. Because Bind() takes a const reference to avoid
+// unnecessary copies, it is incompatible with movable-but-not-copyable
+// types; doing a destructive "move" of the type into Bind() would violate
+// the const correctness.
+//
+// This conundrum cannot be solved without either C++11 rvalue references or
+// a O(2^n) blowup of Bind() templates to handle each combination of regular
+// types and movable-but-not-copyable types. Thus we introduce a wrapper type
+// that is copyable to transmit the correct type information down into
+// BindState<>. Ignoring const in this type makes sense because it is only
+// created when we are explicitly trying to do a destructive move.
+//
+// Two notes:
+// 1) PassedWrapper supports any type that has a move constructor, however
+// the type will need to be specifically whitelisted in order for it to be
+// bound to a Callback. We guard this explicitly at the call of Passed()
+// to make for clear errors. Things not given to Passed() will be forwarded
+// and stored by value which will not work for general move-only types.
+// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
+// scoper to a Callback and allow the Callback to execute once.
+template <typename T>
+class PassedWrapper {
+ public:
+ explicit PassedWrapper(T&& scoper)
+ : is_valid_(true), scoper_(std::move(scoper)) {}
+ PassedWrapper(const PassedWrapper& other)
+ : is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
+ T Pass() const {
+ CHECK(is_valid_);
+ is_valid_ = false;
+ return std::move(scoper_);
+ }
+
+ private:
+ mutable bool is_valid_;
+ mutable T scoper_;
+};
+
+// Unwrap the stored parameters for the wrappers above.
+template <typename T>
+struct UnwrapTraits {
+ using ForwardType = const T&;
+ static ForwardType Unwrap(const T& o) { return o; }
+};
+
+template <typename T>
+struct UnwrapTraits<UnretainedWrapper<T> > {
+ using ForwardType = T*;
+ static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
+ return unretained.get();
+ }
+};
+
+template <typename T>
+struct UnwrapTraits<ConstRefWrapper<T> > {
+ using ForwardType = const T&;
+ static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
+ return const_ref.get();
+ }
+};
+
+template <typename T>
+struct UnwrapTraits<scoped_refptr<T> > {
+ using ForwardType = T*;
+ static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
+};
+
+template <typename T>
+struct UnwrapTraits<WeakPtr<T> > {
+ using ForwardType = const WeakPtr<T>&;
+ static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
+};
+
+template <typename T>
+struct UnwrapTraits<OwnedWrapper<T> > {
+ using ForwardType = T*;
+ static ForwardType Unwrap(const OwnedWrapper<T>& o) {
+ return o.get();
+ }
+};
+
+template <typename T>
+struct UnwrapTraits<PassedWrapper<T> > {
+ using ForwardType = T;
+ static T Unwrap(PassedWrapper<T>& o) {
+ return o.Pass();
+ }
+};
+
+// Utility for handling different refcounting semantics in the Bind()
+// function.
+template <bool is_method, typename... T>
+struct MaybeScopedRefPtr;
+
+template <bool is_method>
+struct MaybeScopedRefPtr<is_method> {
+ MaybeScopedRefPtr() {}
+};
+
+template <typename T, typename... Rest>
+struct MaybeScopedRefPtr<false, T, Rest...> {
+ MaybeScopedRefPtr(const T&, const Rest&...) {}
+};
+
+template <typename T, size_t n, typename... Rest>
+struct MaybeScopedRefPtr<false, T[n], Rest...> {
+ MaybeScopedRefPtr(const T*, const Rest&...) {}
+};
+
+template <typename T, typename... Rest>
+struct MaybeScopedRefPtr<true, T, Rest...> {
+ MaybeScopedRefPtr(const T& o, const Rest&...) {}
+};
+
+template <typename T, typename... Rest>
+struct MaybeScopedRefPtr<true, T*, Rest...> {
+ MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
+ scoped_refptr<T> ref_;
+};
+
+// No need to additionally AddRef() and Release() since we are storing a
+// scoped_refptr<> inside the storage object already.
+template <typename T, typename... Rest>
+struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
+ MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
+};
+
+template <typename T, typename... Rest>
+struct MaybeScopedRefPtr<true, const T*, Rest...> {
+ MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
+ scoped_refptr<const T> ref_;
+};
+
+// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
+// method. It is used internally by Bind() to select the correct
+// InvokeHelper that will no-op itself in the event the WeakPtr<> for
+// the target object is invalidated.
+//
+// The first argument should be the type of the object that will be received by
+// the method.
+template <bool IsMethod, typename... Args>
+struct IsWeakMethod : public false_type {};
+
+template <typename T, typename... Args>
+struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};
+
+template <typename T, typename... Args>
+struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
+ : public true_type {};
+
+
+// Packs a list of types to hold them in a single type.
+template <typename... Types>
+struct TypeList {};
+
+// Used for DropTypeListItem implementation.
+template <size_t n, typename List>
+struct DropTypeListItemImpl;
+
+// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
+template <size_t n, typename T, typename... List>
+struct DropTypeListItemImpl<n, TypeList<T, List...>>
+ : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
+
+template <typename T, typename... List>
+struct DropTypeListItemImpl<0, TypeList<T, List...>> {
+ using Type = TypeList<T, List...>;
+};
+
+template <>
+struct DropTypeListItemImpl<0, TypeList<>> {
+ using Type = TypeList<>;
+};
+
+// A type-level function that drops |n| list item from given TypeList.
+template <size_t n, typename List>
+using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
+
+// Used for TakeTypeListItem implementation.
+template <size_t n, typename List, typename... Accum>
+struct TakeTypeListItemImpl;
+
+// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
+template <size_t n, typename T, typename... List, typename... Accum>
+struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
+ : TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
+
+template <typename T, typename... List, typename... Accum>
+struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
+ using Type = TypeList<Accum...>;
+};
+
+template <typename... Accum>
+struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
+ using Type = TypeList<Accum...>;
+};
+
+// A type-level function that takes first |n| list item from given TypeList.
+// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
+// TypeList<A, B, C>.
+template <size_t n, typename List>
+using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
+
+// Used for ConcatTypeLists implementation.
+template <typename List1, typename List2>
+struct ConcatTypeListsImpl;
+
+template <typename... Types1, typename... Types2>
+struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
+ using Type = TypeList<Types1..., Types2...>;
+};
+
+// A type-level function that concats two TypeLists.
+template <typename List1, typename List2>
+using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
+
+// Used for MakeFunctionType implementation.
+template <typename R, typename ArgList>
+struct MakeFunctionTypeImpl;
+
+template <typename R, typename... Args>
+struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
+ // MSVC 2013 doesn't support Type Alias of function types.
+ // Revisit this after we update it to newer version.
+ typedef R Type(Args...);
+};
+
+// A type-level function that constructs a function type that has |R| as its
+// return type and has TypeLists items as its arguments.
+template <typename R, typename ArgList>
+using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
+
+// Used for ExtractArgs.
+template <typename Signature>
+struct ExtractArgsImpl;
+
+template <typename R, typename... Args>
+struct ExtractArgsImpl<R(Args...)> {
+ using Type = TypeList<Args...>;
+};
+
+// A type-level function that extracts function arguments into a TypeList.
+// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
+template <typename Signature>
+using ExtractArgs = typename ExtractArgsImpl<Signature>::Type;
+
+} // namespace internal
+
+template <typename T>
+static inline internal::UnretainedWrapper<T> Unretained(T* o) {
+ return internal::UnretainedWrapper<T>(o);
+}
+
+template <typename T>
+static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
+ return internal::ConstRefWrapper<T>(o);
+}
+
+template <typename T>
+static inline internal::OwnedWrapper<T> Owned(T* o) {
+ return internal::OwnedWrapper<T>(o);
+}
+
+// We offer 2 syntaxes for calling Passed(). The first takes an rvalue and
+// is best suited for use with the return value of a function or other temporary
+// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
+// to avoid having to write Passed(std::move(scoper)).
+//
+// Both versions of Passed() prevent T from being an lvalue reference. The first
+// via use of enable_if, and the second takes a T* which will not bind to T&.
+template <typename T,
+ typename std::enable_if<internal::IsMoveOnlyType<T>::value &&
+ !std::is_lvalue_reference<T>::value>::type* =
+ nullptr>
+static inline internal::PassedWrapper<T> Passed(T&& scoper) {
+ return internal::PassedWrapper<T>(std::move(scoper));
+}
+template <typename T,
+ typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* =
+ nullptr>
+static inline internal::PassedWrapper<T> Passed(T* scoper) {
+ return internal::PassedWrapper<T>(std::move(*scoper));
+}
+
+template <typename T>
+static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
+ return internal::IgnoreResultHelper<T>(data);
+}
+
+template <typename T>
+static inline internal::IgnoreResultHelper<Callback<T> >
+IgnoreResult(const Callback<T>& data) {
+ return internal::IgnoreResultHelper<Callback<T> >(data);
+}
+
+BASE_EXPORT void DoNothing();
+
+template<typename T>
+void DeletePointer(T* obj) {
+ delete obj;
+}
+
+} // namespace base
+
+#endif // BASE_BIND_HELPERS_H_