summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/encoder/rdopt.c
blob: fef6d28755cdda21a0b1f07e4ac46639605be6a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <assert.h>
#include <math.h>

#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/system_state.h"

#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/common/txb_common.h"
#include "av1/common/warped_motion.h"

#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pustats.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tx_prune_model_weights.h"

#define DNN_BASED_RD_INTERP_FILTER 0

// Set this macro as 1 to collect data about tx size selection.
#define COLLECT_TX_SIZE_DATA 0

#if COLLECT_TX_SIZE_DATA
static const char av1_tx_size_data_output_file[] = "tx_size_data.txt";
#endif

#define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS)
static const InterpFilters filter_sets[DUAL_FILTER_SET_SIZE] = {
  0x00000000, 0x00010000, 0x00020000,  // y = 0
  0x00000001, 0x00010001, 0x00020001,  // y = 1
  0x00000002, 0x00010002, 0x00020002,  // y = 2
};

#define SECOND_REF_FRAME_MASK                                         \
  ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \
   (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01)

#define ANGLE_SKIP_THRESH 10

static const double ADST_FLIP_SVM[8] = {
  /* vertical */
  -6.6623, -2.8062, -3.2531, 3.1671,
  /* horizontal */
  -7.7051, -3.2234, -3.6193, 3.4533
};

typedef struct {
  PREDICTION_MODE mode;
  MV_REFERENCE_FRAME ref_frame[2];
} MODE_DEFINITION;

typedef struct {
  MV_REFERENCE_FRAME ref_frame[2];
} REF_DEFINITION;

typedef enum {
  FTXS_NONE = 0,
  FTXS_DCT_AND_1D_DCT_ONLY = 1 << 0,
  FTXS_DISABLE_TRELLIS_OPT = 1 << 1,
  FTXS_USE_TRANSFORM_DOMAIN = 1 << 2
} FAST_TX_SEARCH_MODE;

struct rdcost_block_args {
  const AV1_COMP *cpi;
  MACROBLOCK *x;
  ENTROPY_CONTEXT t_above[MAX_MIB_SIZE];
  ENTROPY_CONTEXT t_left[MAX_MIB_SIZE];
  RD_STATS rd_stats;
  int64_t this_rd;
  int64_t best_rd;
  int exit_early;
  int use_fast_coef_costing;
  FAST_TX_SEARCH_MODE ftxs_mode;
};

#define LAST_NEW_MV_INDEX 6
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
  { NEARESTMV, { LAST_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARESTMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } },
  { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } },
  { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } },

  { DC_PRED, { INTRA_FRAME, NONE_FRAME } },

  { NEWMV, { LAST_FRAME, NONE_FRAME } },
  { NEWMV, { LAST2_FRAME, NONE_FRAME } },
  { NEWMV, { LAST3_FRAME, NONE_FRAME } },
  { NEWMV, { BWDREF_FRAME, NONE_FRAME } },
  { NEWMV, { ALTREF2_FRAME, NONE_FRAME } },
  { NEWMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEWMV, { GOLDEN_FRAME, NONE_FRAME } },

  { NEARMV, { LAST_FRAME, NONE_FRAME } },
  { NEARMV, { LAST2_FRAME, NONE_FRAME } },
  { NEARMV, { LAST3_FRAME, NONE_FRAME } },
  { NEARMV, { BWDREF_FRAME, NONE_FRAME } },
  { NEARMV, { ALTREF2_FRAME, NONE_FRAME } },
  { NEARMV, { ALTREF_FRAME, NONE_FRAME } },
  { NEARMV, { GOLDEN_FRAME, NONE_FRAME } },

  { GLOBALMV, { LAST_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST2_FRAME, NONE_FRAME } },
  { GLOBALMV, { LAST3_FRAME, NONE_FRAME } },
  { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } },
  { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } },
  { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } },

  // TODO(zoeliu): May need to reconsider the order on the modes to check

  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },

  { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },

  { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } },

  { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } },
  { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } },

  { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } },

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } },

  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } },

  { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } },

  { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
  { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } },

  { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } },

  { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } },

  { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } },

  { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } },
  { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } },

  { H_PRED, { INTRA_FRAME, NONE_FRAME } },
  { V_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D135_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D203_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D157_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D67_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D113_PRED, { INTRA_FRAME, NONE_FRAME } },
  { D45_PRED, { INTRA_FRAME, NONE_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } },

  { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } },
  { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } },

  { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } },
  { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } },
};

static const int16_t intra_to_mode_idx[INTRA_MODE_NUM] = {
  7,    // DC_PRED,
  134,  // V_PRED,
  133,  // H_PRED,
  140,  // D45_PRED,
  135,  // D135_PRED,
  139,  // D113_PRED,
  137,  // D157_PRED,
  136,  // D203_PRED,
  138,  // D67_PRED,
  46,   // SMOOTH_PRED,
  47,   // SMOOTH_V_PRED,
  48,   // SMOOTH_H_PRED,
  45,   // PAETH_PRED,
};

/* clang-format off */
static const int16_t single_inter_to_mode_idx[SINGLE_INTER_MODE_NUM]
                                             [REF_FRAMES] = {
  // NEARESTMV,
  { -1, 0, 1, 2, 6, 3, 4, 5, },
  // NEARMV,
  { -1, 15, 16, 17, 21, 18, 19, 20, },
  // GLOBALMV,
  { -1, 22, 23, 24, 27, 25, 26, 28, },
  // NEWMV,
  { -1, 8, 9, 10, 14, 11, 12, 13, },
};
/* clang-format on */

/* clang-format off */
static const int16_t comp_inter_to_mode_idx[COMP_INTER_MODE_NUM][REF_FRAMES]
                                     [REF_FRAMES] = {
  // NEAREST_NEARESTMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 41, 42, 43, 33, 37, 29, },
      { -1, -1, -1, -1, -1, 34, 38, 30, },
      { -1, -1, -1, -1, -1, 35, 39, 31, },
      { -1, -1, -1, -1, -1, 36, 40, 32, },
      { -1, -1, -1, -1, -1, -1, -1, 44, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEAR_NEARMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 141, 148, 155, 77, 105, 49, },
      { -1, -1, -1, -1, -1, 84, 112, 56, },
      { -1, -1, -1, -1, -1, 91, 119, 63, },
      { -1, -1, -1, -1, -1, 98, 126, 70, },
      { -1, -1, -1, -1, -1, -1, -1, 162, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEAREST_NEWMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 143, 150, 157, 79, 107, 51, },
      { -1, -1, -1, -1, -1, 86, 114, 58, },
      { -1, -1, -1, -1, -1, 93, 121, 65, },
      { -1, -1, -1, -1, -1, 100, 128, 72, },
      { -1, -1, -1, -1, -1, -1, -1, 164, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEW_NEARESTMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 142, 149, 156, 78, 106, 50, },
      { -1, -1, -1, -1, -1, 85, 113, 57, },
      { -1, -1, -1, -1, -1, 92, 120, 64, },
      { -1, -1, -1, -1, -1, 99, 127, 71, },
      { -1, -1, -1, -1, -1, -1, -1, 163, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEAR_NEWMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 145, 152, 159, 81, 109, 53, },
      { -1, -1, -1, -1, -1, 88, 116, 60, },
      { -1, -1, -1, -1, -1, 95, 123, 67, },
      { -1, -1, -1, -1, -1, 102, 130, 74, },
      { -1, -1, -1, -1, -1, -1, -1, 166, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEW_NEARMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 144, 151, 158, 80, 108, 52, },
      { -1, -1, -1, -1, -1, 87, 115, 59, },
      { -1, -1, -1, -1, -1, 94, 122, 66, },
      { -1, -1, -1, -1, -1, 101, 129, 73, },
      { -1, -1, -1, -1, -1, -1, -1, 165, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // GLOBAL_GLOBALMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 147, 154, 161, 83, 111, 55, },
      { -1, -1, -1, -1, -1, 90, 118, 62, },
      { -1, -1, -1, -1, -1, 97, 125, 69, },
      { -1, -1, -1, -1, -1, 104, 132, 76, },
      { -1, -1, -1, -1, -1, -1, -1, 168, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
  // NEW_NEWMV,
  {
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, 146, 153, 160, 82, 110, 54, },
      { -1, -1, -1, -1, -1, 89, 117, 61, },
      { -1, -1, -1, -1, -1, 96, 124, 68, },
      { -1, -1, -1, -1, -1, 103, 131, 75, },
      { -1, -1, -1, -1, -1, -1, -1, 167, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
      { -1, -1, -1, -1, -1, -1, -1, -1, },
  },
};
/* clang-format on */

static int get_prediction_mode_idx(PREDICTION_MODE this_mode,
                                   MV_REFERENCE_FRAME ref_frame,
                                   MV_REFERENCE_FRAME second_ref_frame) {
  if (this_mode < INTRA_MODE_END) {
    assert(ref_frame == INTRA_FRAME);
    assert(second_ref_frame == NONE_FRAME);
    return intra_to_mode_idx[this_mode - INTRA_MODE_START];
  }
  if (this_mode >= SINGLE_INTER_MODE_START &&
      this_mode < SINGLE_INTER_MODE_END) {
    assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME));
    assert(second_ref_frame == NONE_FRAME);
    return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START]
                                   [ref_frame];
  }
  if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END) {
    assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME));
    assert((second_ref_frame > INTRA_FRAME) &&
           (second_ref_frame <= ALTREF_FRAME));
    return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame]
                                 [second_ref_frame];
  }
  assert(0);
  return -1;
}

static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
  DC_PRED,       H_PRED,        V_PRED,    SMOOTH_PRED, PAETH_PRED,
  SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED,   D157_PRED,
  D67_PRED,      D113_PRED,     D45_PRED,
};

static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
  UV_DC_PRED,     UV_CFL_PRED,   UV_H_PRED,        UV_V_PRED,
  UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
  UV_D135_PRED,   UV_D203_PRED,  UV_D157_PRED,     UV_D67_PRED,
  UV_D113_PRED,   UV_D45_PRED,
};

typedef struct InterModeSearchState {
  int64_t best_rd;
  MB_MODE_INFO best_mbmode;
  int best_rate_y;
  int best_rate_uv;
  int best_mode_skippable;
  int best_skip2;
  int best_mode_index;
  int skip_intra_modes;
  int num_available_refs;
  int64_t dist_refs[REF_FRAMES];
  int dist_order_refs[REF_FRAMES];
  int64_t mode_threshold[MAX_MODES];
  PREDICTION_MODE best_intra_mode;
  int64_t best_intra_rd;
  int angle_stats_ready;
  uint8_t directional_mode_skip_mask[INTRA_MODES];
  unsigned int best_pred_sse;
  int rate_uv_intra[TX_SIZES_ALL];
  int rate_uv_tokenonly[TX_SIZES_ALL];
  int64_t dist_uvs[TX_SIZES_ALL];
  int skip_uvs[TX_SIZES_ALL];
  UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL];
  PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL];
  int8_t uv_angle_delta[TX_SIZES_ALL];
  int64_t best_pred_rd[REFERENCE_MODES];
  int64_t best_pred_diff[REFERENCE_MODES];
  // Save a set of single_newmv for each checked ref_mv.
  int_mv single_newmv[MAX_REF_MV_SERCH][REF_FRAMES];
  int single_newmv_rate[MAX_REF_MV_SERCH][REF_FRAMES];
  int single_newmv_valid[MAX_REF_MV_SERCH][REF_FRAMES];
  int64_t modelled_rd[MB_MODE_COUNT][REF_FRAMES];
} InterModeSearchState;

#if CONFIG_COLLECT_INTER_MODE_RD_STATS

typedef struct InterModeRdModel {
  int ready;
  double a;
  double b;
  double dist_mean;
  int skip_count;
  int non_skip_count;
  int fp_skip_count;
  int bracket_idx;
} InterModeRdModel;

InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL];

#define INTER_MODE_RD_DATA_OVERALL_SIZE 6400
static int inter_mode_data_idx[4];
static int64_t inter_mode_data_sse[4][INTER_MODE_RD_DATA_OVERALL_SIZE];
static int64_t inter_mode_data_dist[4][INTER_MODE_RD_DATA_OVERALL_SIZE];
static int inter_mode_data_residue_cost[4][INTER_MODE_RD_DATA_OVERALL_SIZE];
static int inter_mode_data_all_cost[4][INTER_MODE_RD_DATA_OVERALL_SIZE];
static int64_t inter_mode_data_ref_best_rd[4][INTER_MODE_RD_DATA_OVERALL_SIZE];

int inter_mode_data_block_idx(BLOCK_SIZE bsize) {
  if (bsize == BLOCK_8X8) return 1;
  if (bsize == BLOCK_16X16) return 2;
  if (bsize == BLOCK_32X32) return 3;
  return -1;
}

void av1_inter_mode_data_init() {
  for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
    const int block_idx = inter_mode_data_block_idx(i);
    if (block_idx != -1) inter_mode_data_idx[block_idx] = 0;
    InterModeRdModel *md = &inter_mode_rd_models[i];
    md->ready = 0;
    md->skip_count = 0;
    md->non_skip_count = 0;
    md->fp_skip_count = 0;
    md->bracket_idx = 0;
  }
}

void av1_inter_mode_data_show(const AV1_COMMON *cm) {
  printf("frame_offset %d\n", cm->frame_offset);
  for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
    const int block_idx = inter_mode_data_block_idx(i);
    if (block_idx != -1) inter_mode_data_idx[block_idx] = 0;
    InterModeRdModel *md = &inter_mode_rd_models[i];
    if (md->ready) {
      printf("bsize %d non_skip_count %d skip_count %d fp_skip_count %d\n", i,
             md->non_skip_count, md->skip_count, md->fp_skip_count);
    }
  }
}

static int64_t get_est_rd(BLOCK_SIZE bsize, int rdmult, int64_t sse,
                          int curr_cost) {
  aom_clear_system_state();
  InterModeRdModel *md = &inter_mode_rd_models[bsize];
  if (md->ready) {
    const double est_ld = md->a * sse + md->b;
    const double est_residue_cost = (sse - md->dist_mean) / est_ld;
    const int64_t est_cost = (int64_t)round(est_residue_cost) + curr_cost;
    const int64_t int64_dist_mean = (int64_t)round(md->dist_mean);
    const int64_t est_rd = RDCOST(rdmult, est_cost, int64_dist_mean);
    return est_rd;
  }
  return 0;
}

#define DATA_BRACKETS 7
static const int data_num_threshold[DATA_BRACKETS] = {
  200, 400, 800, 1600, 3200, 6400, INT32_MAX
};

void av1_inter_mode_data_fit(int rdmult) {
  aom_clear_system_state();
  for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
    const int block_idx = inter_mode_data_block_idx(bsize);
    InterModeRdModel *md = &inter_mode_rd_models[bsize];
    if (block_idx == -1) continue;
    int data_num = inter_mode_data_idx[block_idx];
    if (data_num < data_num_threshold[md->bracket_idx]) {
      continue;
    }
    double my = 0;
    double mx = 0;
    double dx = 0;
    double dxy = 0;
    double dist_mean = 0;
    const int train_num = data_num;
    for (int i = 0; i < train_num; ++i) {
      const double sse = (double)inter_mode_data_sse[block_idx][i];
      const double dist = (double)inter_mode_data_dist[block_idx][i];
      const double residue_cost = inter_mode_data_residue_cost[block_idx][i];
      const double ld = (sse - dist) / residue_cost;
      dist_mean += dist;
      my += ld;
      mx += sse;
      dx += sse * sse;
      dxy += sse * ld;
    }
    dist_mean = dist_mean / data_num;
    my = my / train_num;
    mx = mx / train_num;
    dx = sqrt(dx / train_num);
    dxy = dxy / train_num;

    md->dist_mean = dist_mean;
    md->a = (dxy - mx * my) / (dx * dx - mx * mx);
    md->b = my - md->a * mx;
    ++md->bracket_idx;
    md->ready = 1;
    assert(md->bracket_idx < DATA_BRACKETS);

    (void)rdmult;
#if 0
    int skip_count = 0;
    int fp_skip_count = 0;
    double avg_error = 0;
    const int test_num = data_num;
    for (int i = 0; i < data_num; ++i) {
      const int64_t sse = inter_mode_data_sse[block_idx][i];
      const int64_t dist = inter_mode_data_dist[block_idx][i];
      const int64_t residue_cost = inter_mode_data_residue_cost[block_idx][i];
      const int64_t all_cost = inter_mode_data_all_cost[block_idx][i];
      const int64_t est_rd =
          get_est_rd(bsize, rdmult, sse, all_cost - residue_cost);
      const int64_t real_rd = RDCOST(rdmult, all_cost, dist);
      const int64_t ref_best_rd = inter_mode_data_ref_best_rd[block_idx][i];
      if (est_rd > ref_best_rd) {
        ++skip_count;
        if (real_rd < ref_best_rd) {
          ++fp_skip_count;
        }
      }
      avg_error += abs(est_rd - real_rd) * 100. / real_rd;
    }
    avg_error /= test_num;
    printf("test_num %d bsize %d avg_error %f skip_count %d fp_skip_count %d\n",
           test_num, bsize, avg_error, skip_count, fp_skip_count);
#endif
  }
}

static void inter_mode_data_push(BLOCK_SIZE bsize, int64_t sse, int64_t dist,
                                 int residue_cost, int all_cost,
                                 int64_t ref_best_rd) {
  if (residue_cost == 0 || sse == dist) return;
  const int block_idx = inter_mode_data_block_idx(bsize);
  if (block_idx == -1) return;
  if (inter_mode_data_idx[block_idx] < INTER_MODE_RD_DATA_OVERALL_SIZE) {
    const int data_idx = inter_mode_data_idx[block_idx];
    inter_mode_data_sse[block_idx][data_idx] = sse;
    inter_mode_data_dist[block_idx][data_idx] = dist;
    inter_mode_data_residue_cost[block_idx][data_idx] = residue_cost;
    inter_mode_data_all_cost[block_idx][data_idx] = all_cost;
    inter_mode_data_ref_best_rd[block_idx][data_idx] = ref_best_rd;
    ++inter_mode_data_idx[block_idx];
  }
}
#endif  // CONFIG_COLLECT_INTER_MODE_RD_STATS

static INLINE int write_uniform_cost(int n, int v) {
  const int l = get_unsigned_bits(n);
  const int m = (1 << l) - n;
  if (l == 0) return 0;
  if (v < m)
    return av1_cost_literal(l - 1);
  else
    return av1_cost_literal(l);
}

// Similar to store_cfl_required(), but for use during the RDO process,
// where we haven't yet determined whether this block uses CfL.
static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm,
                                                      const MACROBLOCK *x) {
  const MACROBLOCKD *xd = &x->e_mbd;

  if (cm->seq_params.monochrome || x->skip_chroma_rd) return CFL_DISALLOWED;

  if (!xd->cfl.is_chroma_reference) {
    // For non-chroma-reference blocks, we should always store the luma pixels,
    // in case the corresponding chroma-reference block uses CfL.
    // Note that this can only happen for block sizes which are <8 on
    // their shortest side, as otherwise they would be chroma reference
    // blocks.
    return CFL_ALLOWED;
  }

  // For chroma reference blocks, we should store data in the encoder iff we're
  // allowed to try out CfL.
  return is_cfl_allowed(xd);
}

// constants for prune 1 and prune 2 decision boundaries
#define FAST_EXT_TX_CORR_MID 0.0
#define FAST_EXT_TX_EDST_MID 0.1
#define FAST_EXT_TX_CORR_MARGIN 0.5
#define FAST_EXT_TX_EDST_MARGIN 0.3

static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
                           RD_STATS *rd_stats, BLOCK_SIZE bsize,
                           int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode);

static unsigned pixel_dist_visible_only(
    const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src,
    const int src_stride, const uint8_t *dst, const int dst_stride,
    const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows,
    int visible_cols) {
  unsigned sse;

  if (txb_rows == visible_rows && txb_cols == visible_cols) {
    cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
    return sse;
  }
  const MACROBLOCKD *xd = &x->e_mbd;

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride,
                                             visible_cols, visible_rows);
    return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2);
  }
  sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols,
                         visible_rows);
  return sse;
}

#if CONFIG_DIST_8X8
static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src,
                                    int sstride, int coeff_shift) {
  uint64_t svar = 0;
  uint64_t dvar = 0;
  uint64_t sum_s = 0;
  uint64_t sum_d = 0;
  uint64_t sum_s2 = 0;
  uint64_t sum_d2 = 0;
  uint64_t sum_sd = 0;
  uint64_t dist = 0;

  int i, j;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++) {
      sum_s += src[i * sstride + j];
      sum_d += dst[i * dstride + j];
      sum_s2 += src[i * sstride + j] * src[i * sstride + j];
      sum_d2 += dst[i * dstride + j] * dst[i * dstride + j];
      sum_sd += src[i * sstride + j] * dst[i * dstride + j];
    }
  }
  /* Compute the variance -- the calculation cannot go negative. */
  svar = sum_s2 - ((sum_s * sum_s + 32) >> 6);
  dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6);

  // Tuning of jm's original dering distortion metric used in CDEF tool,
  // suggested by jm
  const uint64_t a = 4;
  const uint64_t b = 2;
  const uint64_t c1 = (400 * a << 2 * coeff_shift);
  const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift);

  dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 *
                                  (svar + dvar + c1) /
                                  (sqrt(svar * (double)dvar + c2)));

  // Calibrate dist to have similar rate for the same QP with MSE only
  // distortion (as in master branch)
  dist = (uint64_t)((float)dist * 0.75);

  return dist;
}

static int od_compute_var_4x4(uint16_t *x, int stride) {
  int sum;
  int s2;
  int i;
  sum = 0;
  s2 = 0;
  for (i = 0; i < 4; i++) {
    int j;
    for (j = 0; j < 4; j++) {
      int t;

      t = x[i * stride + j];
      sum += t;
      s2 += t * t;
    }
  }

  return (s2 - (sum * sum >> 4)) >> 4;
}

/* OD_DIST_LP_MID controls the frequency weighting filter used for computing
   the distortion. For a value X, the filter is [1 X 1]/(X + 2) and
   is applied both horizontally and vertically. For X=5, the filter is
   a good approximation for the OD_QM8_Q4_HVS quantization matrix. */
#define OD_DIST_LP_MID (5)
#define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2)

static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x,
                                  uint16_t *y, od_coeff *e_lp, int stride) {
  double sum;
  int min_var;
  double mean_var;
  double var_stat;
  double activity;
  double calibration;
  int i;
  int j;
  double vardist;

  vardist = 0;

#if 1
  min_var = INT_MAX;
  mean_var = 0;
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      int varx;
      int vary;
      varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride);
      vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride);
      min_var = OD_MINI(min_var, varx);
      mean_var += 1. / (1 + varx);
      /* The cast to (double) is to avoid an overflow before the sqrt.*/
      vardist += varx - 2 * sqrt(varx * (double)vary) + vary;
    }
  }
  /* We use a different variance statistic depending on whether activity
     masking is used, since the harmonic mean appeared slightly worse with
     masking off. The calibration constant just ensures that we preserve the
     rate compared to activity=1. */
  if (use_activity_masking) {
    calibration = 1.95;
    var_stat = 9. / mean_var;
  } else {
    calibration = 1.62;
    var_stat = min_var;
  }
  /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the
     activity masking constant. */
  activity = calibration * pow(.25 + var_stat, -1. / 6);
#else
  activity = 1;
#endif  // 1
  sum = 0;
  for (i = 0; i < 8; i++) {
    for (j = 0; j < 8; j++)
      sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j];
  }
  /* Normalize the filter to unit DC response. */
  sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM *
               OD_DIST_LP_NORM);
  return activity * activity * (sum + vardist);
}

// Note : Inputs x and y are in a pixel domain
static double od_compute_dist_common(int activity_masking, uint16_t *x,
                                     uint16_t *y, int bsize_w, int bsize_h,
                                     int qindex, od_coeff *tmp,
                                     od_coeff *e_lp) {
  int i, j;
  double sum = 0;
  const int mid = OD_DIST_LP_MID;

  for (j = 0; j < bsize_w; j++) {
    e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j];
    e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] +
                                        2 * tmp[(bsize_h - 2) * bsize_w + j];
  }
  for (i = 1; i < bsize_h - 1; i++) {
    for (j = 0; j < bsize_w; j++) {
      e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] +
                              tmp[(i - 1) * bsize_w + j] +
                              tmp[(i + 1) * bsize_w + j];
    }
  }
  for (i = 0; i < bsize_h; i += 8) {
    for (j = 0; j < bsize_w; j += 8) {
      sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j],
                                 &y[i * bsize_w + j], &e_lp[i * bsize_w + j],
                                 bsize_w);
    }
  }
  /* Scale according to linear regression against SSE, for 8x8 blocks. */
  if (activity_masking) {
    sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) +
           (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0);
  } else {
    sum *= qindex >= 128
               ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128)
               : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43)
                              : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43);
  }

  return sum;
}

static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w,
                              int bsize_h, int qindex) {
  assert(bsize_w >= 8 && bsize_h >= 8);

  int activity_masking = 0;

  int i, j;
  DECLARE_ALIGNED(16, od_coeff, e[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]);
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j];
    }
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
    }
  }
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
}

static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w,
                                   int bsize_h, int qindex) {
  assert(bsize_w >= 8 && bsize_h >= 8);

  int activity_masking = 0;

  DECLARE_ALIGNED(16, uint16_t, y[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]);
  int i, j;
  for (i = 0; i < bsize_h; i++) {
    for (j = 0; j < bsize_w; j++) {
      y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j];
    }
  }
  int mid = OD_DIST_LP_MID;
  for (i = 0; i < bsize_h; i++) {
    tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1];
    tmp[i * bsize_w + bsize_w - 1] =
        mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2];
    for (j = 1; j < bsize_w - 1; j++) {
      tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] +
                             e[i * bsize_w + j + 1];
    }
  }
  return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h,
                                qindex, tmp, e_lp);
}

int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x,
                     const uint8_t *src, int src_stride, const uint8_t *dst,
                     int dst_stride, const BLOCK_SIZE tx_bsize, int bsw,
                     int bsh, int visible_w, int visible_h, int qindex) {
  int64_t d = 0;
  int i, j;
  const MACROBLOCKD *xd = &x->e_mbd;

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, uint16_t, rec[MAX_SB_SQUARE]);

  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];

      if ((bsw == visible_w) && (bsh == visible_h)) {
        for (j = 0; j < bsh; j++)
          for (i = 0; i < bsw; i++)
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }

        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
        }
      }
    } else {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];

      if ((bsw == visible_w) && (bsh == visible_h)) {
        for (j = 0; j < bsh; j++)
          for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i];
      } else {
        for (j = 0; j < visible_h; j++)
          for (i = 0; i < visible_w; i++)
            rec[j * bsw + i] = dst[j * dst_stride + i];

        if (visible_w < bsw) {
          for (j = 0; j < bsh; j++)
            for (i = visible_w; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }

        if (visible_h < bsh) {
          for (j = visible_h; j < bsh; j++)
            for (i = 0; i < bsw; i++)
              rec[j * bsw + i] = src[j * src_stride + i];
        }
      }
    }
  }

  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
    int coeff_shift = AOMMAX(xd->bd - 8, 0);

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      d = ((uint64_t)d) >> 2 * coeff_shift;
  } else {
    // Otherwise, MSE by default
    d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride,
                                tx_bsize, bsh, bsw, visible_h, visible_w);
  }

  return d;
}

static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src,
                             int src_stride, const int16_t *diff,
                             int diff_stride, int bsw, int bsh, int visible_w,
                             int visible_h, int qindex) {
  int64_t d = 0;
  int i, j;
  const MACROBLOCKD *xd = &x->e_mbd;

  DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, int16_t, diff16[MAX_SB_SQUARE]);

  assert(bsw >= 8);
  assert(bsh >= 8);
  assert((bsw & 0x07) == 0);
  assert((bsh & 0x07) == 0);

  if (x->tune_metric == AOM_TUNE_CDEF_DIST ||
      x->tune_metric == AOM_TUNE_DAALA_DIST) {
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i];
    } else {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i];
    }

    if ((bsw == visible_w) && (bsh == visible_h)) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];
    } else {
      for (j = 0; j < visible_h; j++)
        for (i = 0; i < visible_w; i++)
          diff16[j * bsw + i] = diff[j * diff_stride + i];

      if (visible_w < bsw) {
        for (j = 0; j < bsh; j++)
          for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0;
      }

      if (visible_h < bsh) {
        for (j = visible_h; j < bsh; j++)
          for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0;
      }
    }
  }

  if (x->tune_metric == AOM_TUNE_DAALA_DIST) {
    d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex);
  } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) {
    int coeff_shift = AOMMAX(xd->bd - 8, 0);
    DECLARE_ALIGNED(16, uint16_t, dst16[MAX_SB_SQUARE]);

    for (i = 0; i < bsh; i++) {
      for (j = 0; j < bsw; j++) {
        dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j];
      }
    }

    for (i = 0; i < bsh; i += 8) {
      for (j = 0; j < bsw; j += 8) {
        d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j],
                                 bsw, coeff_shift);
      }
    }
    // Don't scale 'd' for HBD since it will be done by caller side for diff
    // input
  } else {
    // Otherwise, MSE by default
    d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h);
  }

  return d;
}
#endif  // CONFIG_DIST_8X8

static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                                         const uint8_t *src, int src_stride,
                                         const uint8_t *dst, int dst_stride,
                                         int need_4th, double *hordist,
                                         double *verdist) {
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

  if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) {
    // Special cases: calculate 'esq' values manually, as we don't have 'vf'
    // functions for the 16 (very small) sub-blocks of this block.
    const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3;
    const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3;
    assert(bw <= 32);
    assert(bh <= 32);
    assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15);
    if (cpi->common.seq_params.use_highbitdepth) {
      const uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
      const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
          esq[index] +=
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
              (src16[j + i * src_stride] - dst16[j + i * dst_stride]);
        }
    } else {
      for (int i = 0; i < bh; ++i)
        for (int j = 0; j < bw; ++j) {
          const int index = (j >> w_shift) + ((i >> h_shift) << 2);
          esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
                        (src[j + i * src_stride] - dst[j + i * dst_stride]);
        }
    }
  } else {  // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks.
    const int f_index =
        (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16;
    assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL);
    const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index;
    assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]);
    assert(block_size_high[bsize] == 4 * block_size_high[subsize]);
    cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]);
    cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[1]);
    cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[2]);
    cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[3]);
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

    cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]);
    cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[5]);
    cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[6]);
    cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[7]);
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

    cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]);
    cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[9]);
    cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[10]);
    cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[11]);
    src += bh / 4 * src_stride;
    dst += bh / 4 * dst_stride;

    cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]);
    cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride,
                            &esq[13]);
    cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride,
                            &esq[14]);
    cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4,
                            dst_stride, &esq[15]);
  }

  double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] +
                 esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] +
                 esq[12] + esq[13] + esq[14] + esq[15];
  if (total > 0) {
    const double e_recip = 1.0 / total;
    hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip;
    hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip;
    hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip;
    if (need_4th) {
      hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip;
    }
    verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip;
    verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip;
    verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip;
    if (need_4th) {
      verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip;
    }
  } else {
    hordist[0] = verdist[0] = 0.25;
    hordist[1] = verdist[1] = 0.25;
    hordist[2] = verdist[2] = 0.25;
    if (need_4th) {
      hordist[3] = verdist[3] = 0.25;
    }
  }
}

static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                            const uint8_t *src, int src_stride,
                            const uint8_t *dst, int dst_stride) {
  int prune_bitmask = 0;
  double svm_proj_h = 0, svm_proj_v = 0;
  double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
  get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, 0,
                               hdist, vdist);

  svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
               vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
  svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
               hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
  if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << FLIPADST_1D;
  else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << ADST_1D;

  if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (FLIPADST_1D + 8);
  else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
    prune_bitmask |= 1 << (ADST_1D + 8);

  return prune_bitmask;
}

static void get_horver_correlation(const int16_t *diff, int stride, int w,
                                   int h, double *hcorr, double *vcorr) {
  // Returns hor/ver correlation coefficient
  const int num = (h - 1) * (w - 1);
  double num_r;
  int i, j;
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t x_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
  double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
  *hcorr = *vcorr = 1;

  assert(num > 0);
  num_r = 1.0 / num;
  for (i = 1; i < h; ++i) {
    for (j = 1; j < w; ++j) {
      const int16_t x = diff[i * stride + j];
      const int16_t y = diff[i * stride + j - 1];
      const int16_t z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      x_sum += x;
      y_sum += y;
      z_sum += z;
      x2_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
  x_var_n = x2_sum - (x_sum * x_sum) * num_r;
  y_var_n = y2_sum - (y_sum * y_sum) * num_r;
  z_var_n = z2_sum - (z_sum * z_sum) * num_r;
  xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
  xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
  if (x_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (x_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) {
  double hcorr, vcorr;
  int prune_bitmask = 0;
  get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr);

  if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
    prune_bitmask |= 1 << IDTX_1D;
  else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
    prune_bitmask |= 1 << DCT_1D;

  if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
    prune_bitmask |= 1 << (IDTX_1D + 8);
  else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
    prune_bitmask |= 1 << (DCT_1D + 8);
  return prune_bitmask;
}

// Performance drop: 0.5%, Speed improvement: 24%
static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                             MACROBLOCK *x, const MACROBLOCKD *xd,
                             int adst_flipadst, int dct_idtx) {
  int prune = 0;

  if (adst_flipadst) {
    const struct macroblock_plane *const p = &x->plane[0];
    const struct macroblockd_plane *const pd = &xd->plane[0];
    prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
                              pd->dst.buf, pd->dst.stride);
  }
  if (dct_idtx) {
    av1_subtract_plane(x, bsize, 0);
    const struct macroblock_plane *const p = &x->plane[0];
    const int bw = block_size_wide[bsize];
    const int bh = block_size_high[bsize];
    prune |= dct_vs_idtx(p->src_diff, bw, bw, bh);
  }

  return prune;
}

// Performance drop: 0.3%, Speed improvement: 5%
static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
                             const MACROBLOCK *x, const MACROBLOCKD *xd) {
  const struct macroblock_plane *const p = &x->plane[0];
  const struct macroblockd_plane *const pd = &xd->plane[0];
  return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
                          pd->dst.stride);
}

// 1D Transforms used in inter set, this needs to be changed if
// ext_tx_used_inter is changed
static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = {
  { 1, 0, 0, 0 },
  { 1, 1, 1, 1 },
  { 1, 1, 1, 1 },
  { 1, 0, 0, 1 },
};

static void get_energy_distribution_finer(const int16_t *diff, int stride,
                                          int bw, int bh, float *hordist,
                                          float *verdist) {
  // First compute downscaled block energy values (esq); downscale factors
  // are defined by w_shift and h_shift.
  unsigned int esq[256];
  const int w_shift = bw <= 8 ? 0 : 1;
  const int h_shift = bh <= 8 ? 0 : 1;
  const int esq_w = bw >> w_shift;
  const int esq_h = bh >> h_shift;
  const int esq_sz = esq_w * esq_h;
  int i, j;
  memset(esq, 0, esq_sz * sizeof(esq[0]));
  if (w_shift) {
    for (i = 0; i < bh; i++) {
      unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
      const int16_t *cur_diff_row = diff + i * stride;
      for (j = 0; j < bw; j += 2) {
        cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] +
                                cur_diff_row[j + 1] * cur_diff_row[j + 1]);
      }
    }
  } else {
    for (i = 0; i < bh; i++) {
      unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w;
      const int16_t *cur_diff_row = diff + i * stride;
      for (j = 0; j < bw; j++) {
        cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j];
      }
    }
  }

  uint64_t total = 0;
  for (i = 0; i < esq_sz; i++) total += esq[i];

  // Output hordist and verdist arrays are normalized 1D projections of esq
  if (total == 0) {
    float hor_val = 1.0f / esq_w;
    for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val;
    float ver_val = 1.0f / esq_h;
    for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val;
    return;
  }

  const float e_recip = 1.0f / (float)total;
  memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0]));
  memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0]));
  const unsigned int *cur_esq_row;
  for (i = 0; i < esq_h - 1; i++) {
    cur_esq_row = esq + i * esq_w;
    for (j = 0; j < esq_w - 1; j++) {
      hordist[j] += (float)cur_esq_row[j];
      verdist[i] += (float)cur_esq_row[j];
    }
    verdist[i] += (float)cur_esq_row[j];
  }
  cur_esq_row = esq + i * esq_w;
  for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j];

  for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip;
  for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip;
}

// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
static void get_horver_correlation_full(const int16_t *diff, int stride, int w,
                                        int h, float *hcorr, float *vcorr) {
  const float num_hor = (float)(h * (w - 1));
  const float num_ver = (float)((h - 1) * w);
  int i, j;

  // The following notation is used:
  // x - current pixel
  // y - left neighbor pixel
  // z - top neighbor pixel
  int64_t xy_sum = 0, xz_sum = 0;
  int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0;
  int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0;

  int16_t x, y, z;
  for (j = 1; j < w; ++j) {
    x = diff[j];
    y = diff[j - 1];
    xy_sum += x * y;
    xhor_sum += x;
    y_sum += y;
    x2hor_sum += x * x;
    y2_sum += y * y;
  }
  for (i = 1; i < h; ++i) {
    x = diff[i * stride];
    z = diff[(i - 1) * stride];
    xz_sum += x * z;
    xver_sum += x;
    z_sum += z;
    x2ver_sum += x * x;
    z2_sum += z * z;
    for (j = 1; j < w; ++j) {
      x = diff[i * stride + j];
      y = diff[i * stride + j - 1];
      z = diff[(i - 1) * stride + j];
      xy_sum += x * y;
      xz_sum += x * z;
      xhor_sum += x;
      xver_sum += x;
      y_sum += y;
      z_sum += z;
      x2hor_sum += x * x;
      x2ver_sum += x * x;
      y2_sum += y * y;
      z2_sum += z * z;
    }
  }
  const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
  const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
  const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
  const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
  const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
  const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;

  *hcorr = *vcorr = 1;
  if (xhor_var_n > 0 && y_var_n > 0) {
    *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
    *hcorr = *hcorr < 0 ? 0 : *hcorr;
  }
  if (xver_var_n > 0 && z_var_n > 0) {
    *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
    *vcorr = *vcorr < 0 ? 0 : *vcorr;
  }
}

// Transforms raw scores into a probability distribution across 16 TX types
static void score_2D_transform_pow8(float *scores_2D, float shift) {
  float sum = 0.0f;
  int i;

  for (i = 0; i < 16; i++) {
    float v, v2, v4;
    v = AOMMAX(scores_2D[i] + shift, 0.0f);
    v2 = v * v;
    v4 = v2 * v2;
    scores_2D[i] = v4 * v4;
    sum += scores_2D[i];
  }
  for (i = 0; i < 16; i++) scores_2D[i] /= sum;
}

// These thresholds were calibrated to provide a certain number of TX types
// pruned by the model on average, i.e. selecting a threshold with index i
// will lead to pruning i+1 TX types on average
static const float *prune_2D_adaptive_thresholds[] = {
  // TX_4X4
  (float[]){ 0.02014f, 0.02722f, 0.03430f, 0.04114f, 0.04724f, 0.05212f,
             0.05627f, 0.06018f, 0.06409f, 0.06824f, 0.07312f, 0.07849f,
             0.08606f, 0.09827f },
  // TX_8X8
  (float[]){ 0.00745f, 0.01355f, 0.02039f, 0.02795f, 0.03625f, 0.04407f,
             0.05042f, 0.05579f, 0.06067f, 0.06604f, 0.07239f, 0.08093f,
             0.09363f, 0.11682f },
  // TX_16X16
  (float[]){ 0.01404f, 0.02820f, 0.04211f, 0.05164f, 0.05798f, 0.06335f,
             0.06897f, 0.07629f, 0.08875f, 0.11169f },
  // TX_32X32
  NULL,
  // TX_64X64
  NULL,
  // TX_4X8
  (float[]){ 0.01282f, 0.02087f, 0.02844f, 0.03601f, 0.04285f, 0.04871f,
             0.05359f, 0.05823f, 0.06287f, 0.06799f, 0.07361f, 0.08093f,
             0.09119f, 0.10828f },
  // TX_8X4
  (float[]){ 0.01184f, 0.01941f, 0.02722f, 0.03503f, 0.04187f, 0.04822f,
             0.05359f, 0.05823f, 0.06287f, 0.06799f, 0.07361f, 0.08093f,
             0.09167f, 0.10974f },
  // TX_8X16
  (float[]){ 0.00525f, 0.01135f, 0.01819f, 0.02576f, 0.03357f, 0.04114f,
             0.04773f, 0.05383f, 0.05920f, 0.06506f, 0.07190f, 0.08118f,
             0.09509f, 0.12097f },
  // TX_16X8
  (float[]){ 0.00525f, 0.01160f, 0.01819f, 0.02527f, 0.03308f, 0.04065f,
             0.04773f, 0.05383f, 0.05969f, 0.06531f, 0.07214f, 0.08118f,
             0.09485f, 0.12048f },
  // TX_16X32
  (float[]){ 0.01257f, 0.02576f, 0.03723f, 0.04578f, 0.05212f, 0.05798f,
             0.06506f, 0.07385f, 0.08606f, 0.10925f },
  // TX_32X16
  (float[]){ 0.01233f, 0.02527f, 0.03699f, 0.04602f, 0.05286f, 0.05896f,
             0.06531f, 0.07336f, 0.08582f, 0.11072f },
  // TX_32X64
  NULL,
  // TX_64X32
  NULL,
  // TX_4X16
  NULL,
  // TX_16X4
  NULL,
  // TX_8X32
  NULL,
  // TX_32X8
  NULL,
  // TX_16X64
  NULL,
  // TX_64X16
  NULL,
};

static uint16_t prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size,
                            int blk_row, int blk_col, TxSetType tx_set_type,
                            TX_TYPE_PRUNE_MODE prune_mode) {
  static const int tx_type_table_2D[16] = {
    DCT_DCT,      DCT_ADST,      DCT_FLIPADST,      V_DCT,
    ADST_DCT,     ADST_ADST,     ADST_FLIPADST,     V_ADST,
    FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST,
    H_DCT,        H_ADST,        H_FLIPADST,        IDTX
  };
  if (tx_set_type != EXT_TX_SET_ALL16 &&
      tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT)
    return 0;
  const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size];
  const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size];
  if (!nn_config_hor || !nn_config_ver) return 0;  // Model not established yet.

  aom_clear_system_state();
  float hfeatures[16], vfeatures[16];
  float hscores[4], vscores[4];
  float scores_2D[16];
  const int bw = tx_size_wide[tx_size];
  const int bh = tx_size_high[tx_size];
  const int hfeatures_num = bw <= 8 ? bw : bw / 2;
  const int vfeatures_num = bh <= 8 ? bh : bh / 2;
  assert(hfeatures_num <= 16);
  assert(vfeatures_num <= 16);

  const struct macroblock_plane *const p = &x->plane[0];
  const int diff_stride = block_size_wide[bsize];
  const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
  get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures,
                                vfeatures);
  get_horver_correlation_full(diff, diff_stride, bw, bh,
                              &hfeatures[hfeatures_num - 1],
                              &vfeatures[vfeatures_num - 1]);
  av1_nn_predict(hfeatures, nn_config_hor, hscores);
  av1_nn_predict(vfeatures, nn_config_ver, vscores);

  float score_2D_average = 0.0f;
  for (int i = 0; i < 4; i++) {
    float *cur_scores_2D = scores_2D + i * 4;
    cur_scores_2D[0] = vscores[i] * hscores[0];
    cur_scores_2D[1] = vscores[i] * hscores[1];
    cur_scores_2D[2] = vscores[i] * hscores[2];
    cur_scores_2D[3] = vscores[i] * hscores[3];
    score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] +
                        cur_scores_2D[3];
  }
  score_2D_average /= 16;
  score_2D_transform_pow8(scores_2D, (20 - score_2D_average));

  // Always keep the TX type with the highest score, prune all others with
  // score below score_thresh.
  int max_score_i = 0;
  float max_score = 0.0f;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] > max_score &&
        av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) {
      max_score = scores_2D[i];
      max_score_i = i;
    }
  }

  int pruning_aggressiveness = 0;
  if (prune_mode == PRUNE_2D_ACCURATE) {
    if (tx_set_type == EXT_TX_SET_ALL16)
      pruning_aggressiveness = 6;
    else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
      pruning_aggressiveness = 4;
  } else if (prune_mode == PRUNE_2D_FAST) {
    if (tx_set_type == EXT_TX_SET_ALL16)
      pruning_aggressiveness = 10;
    else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT)
      pruning_aggressiveness = 7;
  }
  const float score_thresh =
      prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness - 1];

  uint16_t prune_bitmask = 0;
  for (int i = 0; i < 16; i++) {
    if (scores_2D[i] < score_thresh && i != max_score_i)
      prune_bitmask |= (1 << tx_type_table_2D[i]);
  }
  return prune_bitmask;
}

// ((prune >> vtx_tab[tx_type]) & 1)
static const uint16_t prune_v_mask[] = {
  0x0000, 0x0425, 0x108a, 0x14af, 0x4150, 0x4575, 0x51da, 0x55ff,
  0xaa00, 0xae25, 0xba8a, 0xbeaf, 0xeb50, 0xef75, 0xfbda, 0xffff,
};

// ((prune >> (htx_tab[tx_type] + 8)) & 1)
static const uint16_t prune_h_mask[] = {
  0x0000, 0x0813, 0x210c, 0x291f, 0x80e0, 0x88f3, 0xa1ec, 0xa9ff,
  0x5600, 0x5e13, 0x770c, 0x7f1f, 0xd6e0, 0xdef3, 0xf7ec, 0xffff,
};

static INLINE uint16_t gen_tx_search_prune_mask(int tx_search_prune) {
  uint8_t prune_v = tx_search_prune & 0x0F;
  uint8_t prune_h = (tx_search_prune >> 8) & 0x0F;
  return (prune_v_mask[prune_v] & prune_h_mask[prune_h]);
}

static void prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
                     const MACROBLOCKD *const xd, int tx_set_type) {
  x->tx_search_prune[tx_set_type] = 0;
  x->tx_split_prune_flag = 0;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  if (!is_inter_block(mbmi) || cpi->sf.tx_type_search.prune_mode == NO_PRUNE ||
      x->use_default_inter_tx_type || xd->lossless[mbmi->segment_id] ||
      x->cb_partition_scan)
    return;
  int tx_set = ext_tx_set_index[1][tx_set_type];
  assert(tx_set >= 0);
  const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
  int prune = 0;
  switch (cpi->sf.tx_type_search.prune_mode) {
    case NO_PRUNE: return;
    case PRUNE_ONE:
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return;
      prune = prune_one_for_sby(cpi, bsize, x, xd);
      x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune);
      break;
    case PRUNE_TWO:
      if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
        if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return;
        prune = prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
      } else if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) {
        prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
      } else {
        prune = prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
      }
      x->tx_search_prune[tx_set_type] = gen_tx_search_prune_mask(prune);
      break;
    case PRUNE_2D_ACCURATE:
    case PRUNE_2D_FAST: break;
    default: assert(0);
  }
}

static void model_rd_from_sse(const AV1_COMP *const cpi,
                              const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
                              int plane, int64_t sse, int *rate,
                              int64_t *dist) {
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int dequant_shift =
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;

  // Fast approximate the modelling function.
  if (cpi->sf.simple_model_rd_from_var) {
    const int64_t square_error = sse;
    int quantizer = (pd->dequant_Q3[1] >> dequant_shift);
    if (quantizer < 120)
      *rate = (int)((square_error * (280 - quantizer)) >>
                    (16 - AV1_PROB_COST_SHIFT));
    else
      *rate = 0;
    *dist = (square_error * quantizer) >> 8;
  } else {
    av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
                                 pd->dequant_Q3[1] >> dequant_shift, rate,
                                 dist);
  }
  *dist <<= 4;
}

#if CONFIG_COLLECT_INTER_MODE_RD_STATS
static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  int64_t total_sse = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const struct macroblock_plane *const p = &x->plane[plane];
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE bs = get_plane_block_size(mbmi->sb_type, pd->subsampling_x,
                                               pd->subsampling_y);
    unsigned int sse;

    if (x->skip_chroma_rd && plane) continue;

    cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                       &sse);
    total_sse += sse;
  }
  total_sse <<= 4;
  return total_sse;
}
#endif

static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
                            MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
                            int plane_to, int *out_rate_sum,
                            int64_t *out_dist_sum, int *skip_txfm_sb,
                            int64_t *skip_sse_sb, int *plane_rate,
                            int64_t *plane_sse, int64_t *plane_dist) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  int plane;
  const int ref = xd->mi[0]->ref_frame[0];

  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  x->pred_sse[ref] = 0;

  for (plane = plane_from; plane <= plane_to; ++plane) {
    struct macroblock_plane *const p = &x->plane[plane];
    struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    const int bw = block_size_wide[plane_bsize];
    const int bh = block_size_high[plane_bsize];
    int64_t sse;
    int rate;
    int64_t dist;

    if (x->skip_chroma_rd && plane) continue;

    // TODO(geza): Write direct sse functions that do not compute
    // variance as well.
    sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh);
    sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);

    if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);

    total_sse += sse;

    model_rd_from_sse(cpi, xd, plane_bsize, plane, sse, &rate, &dist);

    rate_sum += rate;
    dist_sum += dist;
    if (plane_rate) plane_rate[plane] = rate;
    if (plane_sse) plane_sse[plane] = sse;
    if (plane_dist) plane_dist[plane] = dist;
  }

  if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
  if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
  *out_rate_sum = (int)rate_sum;
  *out_dist_sum = dist_sum;
}

static void check_block_skip(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
                             MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
                             int plane_to, int *skip_txfm_sb) {
  *skip_txfm_sb = 1;
  for (int plane = plane_from; plane <= plane_to; ++plane) {
    struct macroblock_plane *const p = &x->plane[plane];
    struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE bs =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    unsigned int sse;

    if (x->skip_chroma_rd && plane) continue;

    // Since fast HBD variance functions scale down sse by 4 bit, we first use
    // fast vf implementation to rule out blocks with non-zero scaled sse. Then,
    // only if the source is HBD and the scaled sse is 0, accurate sse
    // computation is applied to determine if the sse is really 0. This step is
    // necessary for HBD lossless coding.
    cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
                       &sse);
    if (sse) {
      *skip_txfm_sb = 0;
      return;
    } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      uint64_t sse64 = aom_highbd_sse_odd_size(
          p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
          block_size_wide[bs], block_size_high[bs]);

      if (sse64) {
        *skip_txfm_sb = 0;
        return;
      }
    }
  }
  return;
}

int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
                          intptr_t block_size, int64_t *ssz) {
  int i;
  int64_t error = 0, sqcoeff = 0;

  for (i = 0; i < block_size; i++) {
    const int diff = coeff[i] - dqcoeff[i];
    error += diff * diff;
    sqcoeff += coeff[i] * coeff[i];
  }

  *ssz = sqcoeff;
  return error;
}

int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
                                 const tran_low_t *dqcoeff, intptr_t block_size,
                                 int64_t *ssz, int bd) {
  int i;
  int64_t error = 0, sqcoeff = 0;
  int shift = 2 * (bd - 8);
  int rounding = shift > 0 ? 1 << (shift - 1) : 0;

  for (i = 0; i < block_size; i++) {
    const int64_t diff = coeff[i] - dqcoeff[i];
    error += diff * diff;
    sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
  }
  assert(error >= 0 && sqcoeff >= 0);
  error = (error + rounding) >> shift;
  sqcoeff = (sqcoeff + rounding) >> shift;

  *ssz = sqcoeff;
  return error;
}

// Get transform block visible dimensions cropped to the MI units.
static void get_txb_dimensions(const MACROBLOCKD *xd, int plane,
                               BLOCK_SIZE plane_bsize, int blk_row, int blk_col,
                               BLOCK_SIZE tx_bsize, int *width, int *height,
                               int *visible_width, int *visible_height) {
  assert(tx_bsize <= plane_bsize);
  int txb_height = block_size_high[tx_bsize];
  int txb_width = block_size_wide[tx_bsize];
  const int block_height = block_size_high[plane_bsize];
  const int block_width = block_size_wide[plane_bsize];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  // TODO(aconverse@google.com): Investigate using crop_width/height here rather
  // than the MI size
  const int block_rows =
      (xd->mb_to_bottom_edge >= 0)
          ? block_height
          : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height;
  const int block_cols =
      (xd->mb_to_right_edge >= 0)
          ? block_width
          : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width;
  const int tx_unit_size = tx_size_wide_log2[0];
  if (width) *width = txb_width;
  if (height) *height = txb_height;
  *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width);
  *visible_height =
      clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height);
}

// Compute the pixel domain distortion from src and dst on all visible 4x4s in
// the
// transform block.
static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x,
                           int plane, const uint8_t *src, const int src_stride,
                           const uint8_t *dst, const int dst_stride,
                           int blk_row, int blk_col,
                           const BLOCK_SIZE plane_bsize,
                           const BLOCK_SIZE tx_bsize) {
  int txb_rows, txb_cols, visible_rows, visible_cols;
  const MACROBLOCKD *xd = &x->e_mbd;

  get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize,
                     &txb_cols, &txb_rows, &visible_cols, &visible_rows);
  assert(visible_rows > 0);
  assert(visible_cols > 0);

#if CONFIG_DIST_8X8
  if (x->using_dist_8x8 && plane == 0 && txb_cols >= 8 && txb_rows >= 8)
    return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride,
                                  tx_bsize, txb_cols, txb_rows, visible_cols,
                                  visible_rows, x->qindex);
#endif  // CONFIG_DIST_8X8

  unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst,
                                         dst_stride, tx_bsize, txb_rows,
                                         txb_cols, visible_rows, visible_cols);

  return sse;
}

// Compute the pixel domain distortion from diff on all visible 4x4s in the
// transform block.
static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane,
                                      int blk_row, int blk_col,
                                      const BLOCK_SIZE plane_bsize,
                                      const BLOCK_SIZE tx_bsize,
                                      int force_sse) {
  int visible_rows, visible_cols;
  const MACROBLOCKD *xd = &x->e_mbd;
  get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL,
                     NULL, &visible_cols, &visible_rows);
  const int diff_stride = block_size_wide[plane_bsize];
  const int16_t *diff = x->plane[plane].src_diff;
#if CONFIG_DIST_8X8
  int txb_height = block_size_high[tx_bsize];
  int txb_width = block_size_wide[tx_bsize];
  if (!force_sse && x->using_dist_8x8 && plane == 0 && txb_width >= 8 &&
      txb_height >= 8) {
    const int src_stride = x->plane[plane].src.stride;
    const int src_idx = (blk_row * src_stride + blk_col)
                        << tx_size_wide_log2[0];
    const int diff_idx = (blk_row * diff_stride + blk_col)
                         << tx_size_wide_log2[0];
    const uint8_t *src = &x->plane[plane].src.buf[src_idx];
    return dist_8x8_diff(x, src, src_stride, diff + diff_idx, diff_stride,
                         txb_width, txb_height, visible_cols, visible_rows,
                         x->qindex);
  }
#endif
  diff += ((blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]);
  return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows);
}

int av1_count_colors(const uint8_t *src, int stride, int rows, int cols,
                     int *val_count) {
  const int max_pix_val = 1 << 8;
  memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
  for (int r = 0; r < rows; ++r) {
    for (int c = 0; c < cols; ++c) {
      const int this_val = src[r * stride + c];
      assert(this_val < max_pix_val);
      ++val_count[this_val];
    }
  }
  int n = 0;
  for (int i = 0; i < max_pix_val; ++i) {
    if (val_count[i]) ++n;
  }
  return n;
}

int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols,
                            int bit_depth, int *val_count) {
  assert(bit_depth <= 12);
  const int max_pix_val = 1 << bit_depth;
  const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
  for (int r = 0; r < rows; ++r) {
    for (int c = 0; c < cols; ++c) {
      const int this_val = src[r * stride + c];
      assert(this_val < max_pix_val);
      if (this_val >= max_pix_val) return 0;
      ++val_count[this_val];
    }
  }
  int n = 0;
  for (int i = 0; i < max_pix_val; ++i) {
    if (val_count[i]) ++n;
  }
  return n;
}

static void inverse_transform_block_facade(MACROBLOCKD *xd, int plane,
                                           int block, int blk_row, int blk_col,
                                           int eob, int reduced_tx_set) {
  struct macroblockd_plane *const pd = &xd->plane[plane];
  tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
  const PLANE_TYPE plane_type = get_plane_type(plane);
  const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
  const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
                                          tx_size, reduced_tx_set);
  const int dst_stride = pd->dst.stride;
  uint8_t *dst =
      &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
  av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
                              dst_stride, eob, reduced_tx_set);
}

static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, const uint32_t hash);

static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row,
                                   int blk_col, BLOCK_SIZE plane_bsize,
                                   TX_SIZE tx_size) {
  int16_t tmp_data[64 * 64];
  const int diff_stride = block_size_wide[plane_bsize];
  const int16_t *diff = x->plane[plane].src_diff;
  const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col;
  const int txb_w = tx_size_wide[tx_size];
  const int txb_h = tx_size_high[tx_size];
  uint8_t *hash_data = (uint8_t *)cur_diff_row;
  if (txb_w != diff_stride) {
    int16_t *cur_hash_row = tmp_data;
    for (int i = 0; i < txb_h; i++) {
      memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w);
      cur_hash_row += txb_w;
      cur_diff_row += diff_stride;
    }
    hash_data = (uint8_t *)tmp_data;
  }
  CRC32C *crc = &x->mb_rd_record.crc_calculator;
  const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h);
  return (hash << 5) + tx_size;
}

static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block,
                                        TX_SIZE tx_size, int64_t *out_dist,
                                        int64_t *out_sse) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  // Transform domain distortion computation is more efficient as it does
  // not involve an inverse transform, but it is less accurate.
  const int buffer_length = av1_get_max_eob(tx_size);
  int64_t this_sse;
  // TX-domain results need to shift down to Q2/D10 to match pixel
  // domain distortion values which are in Q2^2
  int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2;
  tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
  tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse,
                                       xd->bd);
  else
    *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse);

  *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift);
  *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift);
}

static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x,
                                           int plane, BLOCK_SIZE plane_bsize,
                                           int block, int blk_row, int blk_col,
                                           TX_SIZE tx_size) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const uint16_t eob = p->eobs[block];
  const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
  const int bsw = block_size_wide[tx_bsize];
  const int bsh = block_size_high[tx_bsize];
  const int src_stride = x->plane[plane].src.stride;
  const int dst_stride = xd->plane[plane].dst.stride;
  // Scale the transform block index to pixel unit.
  const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0];
  const int dst_idx = (blk_row * dst_stride + blk_col) << tx_size_wide_log2[0];
  const uint8_t *src = &x->plane[plane].src.buf[src_idx];
  const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
  const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);

  assert(cpi != NULL);
  assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);

  uint8_t *recon;
  DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    recon = CONVERT_TO_BYTEPTR(recon16);
    av1_highbd_convolve_2d_copy_sr(CONVERT_TO_SHORTPTR(dst), dst_stride,
                                   CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw,
                                   bsh, NULL, NULL, 0, 0, NULL, xd->bd);
  } else {
    recon = (uint8_t *)recon16;
    av1_convolve_2d_copy_sr(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh, NULL,
                            NULL, 0, 0, NULL);
  }

  const PLANE_TYPE plane_type = get_plane_type(plane);
  TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size,
                                    cpi->common.reduced_tx_set_used);
  av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon,
                              MAX_TX_SIZE, eob,
                              cpi->common.reduced_tx_set_used);
#if CONFIG_DIST_8X8
  if (x->using_dist_8x8 && plane == 0 && (bsw < 8 || bsh < 8)) {
    // Save decoded pixels for inter block in pd->pred to avoid
    // block_8x8_rd_txfm_daala_dist() need to produce them
    // by calling av1_inverse_transform_block() again.
    const int pred_stride = block_size_wide[plane_bsize];
    const int pred_idx = (blk_row * pred_stride + blk_col)
                         << tx_size_wide_log2[0];
    int16_t *pred = &x->pred_luma[pred_idx];
    int i, j;

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          pred[j * pred_stride + i] =
              CONVERT_TO_SHORTPTR(recon)[j * MAX_TX_SIZE + i];
    } else {
      for (j = 0; j < bsh; j++)
        for (i = 0; i < bsw; i++)
          pred[j * pred_stride + i] = recon[j * MAX_TX_SIZE + i];
    }
  }
#endif  // CONFIG_DIST_8X8
  return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE,
                         blk_row, blk_col, plane_bsize, tx_bsize);
}

static double get_mean(const int16_t *diff, int stride, int w, int h) {
  double sum = 0.0;
  for (int j = 0; j < h; ++j) {
    for (int i = 0; i < w; ++i) {
      sum += diff[j * stride + i];
    }
  }
  assert(w > 0 && h > 0);
  return sum / (w * h);
}

static double get_sse_norm(const int16_t *diff, int stride, int w, int h) {
  double sum = 0.0;
  for (int j = 0; j < h; ++j) {
    for (int i = 0; i < w; ++i) {
      const int err = diff[j * stride + i];
      sum += err * err;
    }
  }
  assert(w > 0 && h > 0);
  return sum / (w * h);
}

static double get_sad_norm(const int16_t *diff, int stride, int w, int h) {
  double sum = 0.0;
  for (int j = 0; j < h; ++j) {
    for (int i = 0; i < w; ++i) {
      sum += abs(diff[j * stride + i]);
    }
  }
  assert(w > 0 && h > 0);
  return sum / (w * h);
}

static void get_2x2_normalized_sses_and_sads(
    const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src,
    int src_stride, const uint8_t *const dst, int dst_stride,
    const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr,
    double *const sad_norm_arr) {
  const BLOCK_SIZE tx_bsize_half =
      get_partition_subsize(tx_bsize, PARTITION_SPLIT);
  if (tx_bsize_half == BLOCK_INVALID) {  // manually calculate stats
    const int half_width = block_size_wide[tx_bsize] / 2;
    const int half_height = block_size_high[tx_bsize] / 2;
    for (int row = 0; row < 2; ++row) {
      for (int col = 0; col < 2; ++col) {
        const int16_t *const this_src_diff =
            src_diff + row * half_height * diff_stride + col * half_width;
        if (sse_norm_arr) {
          sse_norm_arr[row * 2 + col] =
              get_sse_norm(this_src_diff, diff_stride, half_width, half_height);
        }
        if (sad_norm_arr) {
          sad_norm_arr[row * 2 + col] =
              get_sad_norm(this_src_diff, diff_stride, half_width, half_height);
        }
      }
    }
  } else {  // use function pointers to calculate stats
    const int half_width = block_size_wide[tx_bsize_half];
    const int half_height = block_size_high[tx_bsize_half];
    const int num_samples_half = half_width * half_height;
    for (int row = 0; row < 2; ++row) {
      for (int col = 0; col < 2; ++col) {
        const uint8_t *const this_src =
            src + row * half_height * src_stride + col * half_width;
        const uint8_t *const this_dst =
            dst + row * half_height * dst_stride + col * half_width;

        if (sse_norm_arr) {
          unsigned int this_sse;
          cpi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst,
                                        dst_stride, &this_sse);
          sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half;
        }

        if (sad_norm_arr) {
          const unsigned int this_sad = cpi->fn_ptr[tx_bsize_half].sdf(
              this_src, src_stride, this_dst, dst_stride);
          sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half;
        }
      }
    }
  }
}

#if CONFIG_COLLECT_RD_STATS
  // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values
  // 0: Do not collect any RD stats
  // 1: Collect RD stats for transform units
  // 2: Collect RD stats for partition units

#if CONFIG_COLLECT_RD_STATS == 1
static void PrintTransformUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    const RD_STATS *const rd_stats, int blk_row,
                                    int blk_col, BLOCK_SIZE plane_bsize,
                                    TX_SIZE tx_size, TX_TYPE tx_type,
                                    int64_t rd) {
  if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;

  // Generate small sample to restrict output size.
  static unsigned int seed = 21743;
  if (lcg_rand16(&seed) % 100 > 0) return;

  const char output_file[] = "tu_stats.txt";
  FILE *fout = fopen(output_file, "a");
  if (!fout) return;

  const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
  const MACROBLOCKD *const xd = &x->e_mbd;
  const int plane = 0;
  struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int txw = tx_size_wide[tx_size];
  const int txh = tx_size_high[tx_size];
  const int dequant_shift =
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
  const int q_step = pd->dequant_Q3[1] >> dequant_shift;
  const double num_samples = txw * txh;

  const double rate_norm = (double)rd_stats->rate / num_samples;
  const double dist_norm = (double)rd_stats->dist / num_samples;

  fprintf(fout, "%g %g", rate_norm, dist_norm);

  const int src_stride = p->src.stride;
  const uint8_t *const src =
      &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
  const int dst_stride = pd->dst.stride;
  const uint8_t *const dst =
      &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
  unsigned int sse;
  cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse);
  const double sse_norm = (double)sse / num_samples;

  const unsigned int sad =
      cpi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride);
  const double sad_norm = (double)sad / num_samples;

  fprintf(fout, " %g %g", sse_norm, sad_norm);

  const int diff_stride = block_size_wide[plane_bsize];
  const int16_t *const src_diff =
      &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];

  double sse_norm_arr[4], sad_norm_arr[4];
  get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst,
                                   dst_stride, src_diff, diff_stride,
                                   sse_norm_arr, sad_norm_arr);
  for (int i = 0; i < 4; ++i) {
    fprintf(fout, " %g", sse_norm_arr[i]);
  }
  for (int i = 0; i < 4; ++i) {
    fprintf(fout, " %g", sad_norm_arr[i]);
  }

  const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
  const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];

  fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size],
          tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col);

  int model_rate;
  int64_t model_dist;
  model_rd_from_sse(cpi, xd, tx_bsize, plane, sse, &model_rate, &model_dist);
  const double model_rate_norm = (double)model_rate / num_samples;
  const double model_dist_norm = (double)model_dist / num_samples;
  fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);

  const double mean = get_mean(src_diff, diff_stride, txw, txh);
  double hor_corr, vert_corr;
  get_horver_correlation(src_diff, diff_stride, txw, txh, &hor_corr,
                         &vert_corr);
  fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);

  double hdist[4] = { 0 }, vdist[4] = { 0 };
  get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride,
                               1, hdist, vdist);
  fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
          hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);

  fprintf(fout, " %d %" PRId64, x->rdmult, rd);

  fprintf(fout, "\n");
  fclose(fout);
}
#endif  // CONFIG_COLLECT_RD_STATS == 1

#if CONFIG_COLLECT_RD_STATS == 2
static void PrintPredictionUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x,
                                     const RD_STATS *const rd_stats,
                                     BLOCK_SIZE plane_bsize) {
  if (rd_stats->invalid_rate) return;
  if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return;

  // Generate small sample to restrict output size.
  static unsigned int seed = 95014;
  if (lcg_rand16(&seed) % 100 > 0) return;

  const char output_file[] = "pu_stats.txt";
  FILE *fout = fopen(output_file, "a");
  if (!fout) return;

  const MACROBLOCKD *const xd = &x->e_mbd;
  const int plane = 0;
  struct macroblock_plane *const p = &x->plane[plane];
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int diff_stride = block_size_wide[plane_bsize];
  int bw, bh;
  get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
                     &bh);
  const int num_samples = bw * bh;
  const int dequant_shift =
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
  const int q_step = pd->dequant_Q3[1] >> dequant_shift;

  const double rate_norm = (double)rd_stats->rate / num_samples;
  const double dist_norm = (double)rd_stats->dist / num_samples;

  fprintf(fout, "%g %g", rate_norm, dist_norm);

  const int src_stride = p->src.stride;
  const uint8_t *const src = p->src.buf;
  const int dst_stride = pd->dst.stride;
  const uint8_t *const dst = pd->dst.buf;
  const int16_t *const src_diff = p->src_diff;
  const int shift = (xd->bd - 8);

  int64_t sse = aom_sum_squares_2d_i16(src_diff, diff_stride, bw, bh);
  sse = ROUND_POWER_OF_TWO(sse, shift * 2);
  const double sse_norm = (double)sse / num_samples;

  const unsigned int sad =
      cpi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride);
  const double sad_norm =
      (double)sad / (1 << num_pels_log2_lookup[plane_bsize]);

  fprintf(fout, " %g %g", sse_norm, sad_norm);

  double sse_norm_arr[4], sad_norm_arr[4];
  get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
                                   dst_stride, src_diff, diff_stride,
                                   sse_norm_arr, sad_norm_arr);
  if (shift) {
    for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
    for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift);
  }
  for (int i = 0; i < 4; ++i) {
    fprintf(fout, " %g", sse_norm_arr[i]);
  }
  for (int i = 0; i < 4; ++i) {
    fprintf(fout, " %g", sad_norm_arr[i]);
  }

  fprintf(fout, " %d %d %d", q_step, bw, bh);

  int model_rate;
  int64_t model_dist;
  model_rd_from_sse(cpi, xd, plane_bsize, plane, sse, &model_rate, &model_dist);
  const double model_rate_norm = (double)model_rate / num_samples;
  const double model_dist_norm = (double)model_dist / num_samples;
  fprintf(fout, " %g %g", model_rate_norm, model_dist_norm);

  double mean = get_mean(src_diff, diff_stride, bw, bh);
  mean /= (1 << shift);
  double hor_corr, vert_corr;
  get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr);
  fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr);

  double hdist[4] = { 0 }, vdist[4] = { 0 };
  get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst,
                               dst_stride, 1, hdist, vdist);
  fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2],
          hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]);

  fprintf(fout, "\n");
  fclose(fout);
}
#endif  // CONFIG_COLLECT_RD_STATS == 2
#endif  // CONFIG_COLLECT_RD_STATS

static void model_rd_with_dnn(const AV1_COMP *const cpi, MACROBLOCK *const x,
                              BLOCK_SIZE plane_bsize, int plane, int64_t *rsse,
                              int *rate, int64_t *dist) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  const int log_numpels = num_pels_log2_lookup[plane_bsize];

  const struct macroblock_plane *const p = &x->plane[plane];
  int bw, bh;
  const int diff_stride = block_size_wide[plane_bsize];
  get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw,
                     &bh);
  const int num_samples = bw * bh;
  const int dequant_shift =
      (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3;
  const int q_step = pd->dequant_Q3[1] >> dequant_shift;

  const int src_stride = p->src.stride;
  const uint8_t *const src = p->src.buf;
  const int dst_stride = pd->dst.stride;
  const uint8_t *const dst = pd->dst.buf;
  const int16_t *const src_diff = p->src_diff;
  const int shift = (xd->bd - 8);
  int64_t sse = aom_sum_squares_2d_i16(p->src_diff, diff_stride, bw, bh);
  sse = ROUND_POWER_OF_TWO(sse, shift * 2);
  const double sse_norm = (double)sse / num_samples;

  if (sse == 0) {
    if (rate) *rate = 0;
    if (dist) *dist = 0;
    if (rsse) *rsse = sse;
    return;
  }
  if (plane) {
    int model_rate;
    int64_t model_dist;
    model_rd_from_sse(cpi, xd, plane_bsize, plane, sse, &model_rate,
                      &model_dist);
    if (rate) *rate = model_rate;
    if (dist) *dist = model_dist;
    if (rsse) *rsse = sse;
    return;
  }

  double sse_norm_arr[4];
  get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst,
                                   dst_stride, src_diff, diff_stride,
                                   sse_norm_arr, NULL);
  double mean = get_mean(src_diff, bw, bw, bh);
  if (shift) {
    for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift));
    mean /= (1 << shift);
  }
  const double variance = sse_norm - mean * mean;
  assert(variance >= 0.0);
  const double q_sqr = (double)(q_step * q_step);
  const double q_sqr_by_sse_norm = q_sqr / (sse_norm + 1.0);
  double hor_corr, vert_corr;
  get_horver_correlation(src_diff, diff_stride, bw, bh, &hor_corr, &vert_corr);

  float features[11];
  features[0] = (float)hor_corr;
  features[1] = (float)log_numpels;
  features[2] = (float)q_sqr;
  features[3] = (float)q_sqr_by_sse_norm;
  features[4] = (float)sse_norm_arr[0];
  features[5] = (float)sse_norm_arr[1];
  features[6] = (float)sse_norm_arr[2];
  features[7] = (float)sse_norm_arr[3];
  features[8] = (float)sse_norm;
  features[9] = (float)variance;
  features[10] = (float)vert_corr;

  float rate_f, dist_by_sse_norm_f;
  av1_nn_predict(features, &av1_pustats_dist_nnconfig, &dist_by_sse_norm_f);
  av1_nn_predict(features, &av1_pustats_rate_nnconfig, &rate_f);
  const float dist_f = (float)((double)dist_by_sse_norm_f * (1.0 + sse_norm));
  int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5);
  int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5);

  // Check if skip is better
  if (RDCOST(x->rdmult, rate_i, dist_i) >= RDCOST(x->rdmult, 0, (sse << 4))) {
    dist_i = sse << 4;
    rate_i = 0;
  } else if (rate_i == 0) {
    dist_i = sse << 4;
  }

  if (rate) *rate = rate_i;
  if (dist) *dist = dist_i;
  if (rsse) *rsse = sse;
  return;
}

void model_rd_for_sb_with_dnn(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
                              MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
                              int plane_to, int *out_rate_sum,
                              int64_t *out_dist_sum, int *skip_txfm_sb,
                              int64_t *skip_sse_sb, int *plane_rate,
                              int64_t *plane_sse, int64_t *plane_dist) {
  // Note our transform coeffs are 8 times an orthogonal transform.
  // Hence quantizer step is also 8 times. To get effective quantizer
  // we need to divide by 8 before sending to modeling function.
  const int ref = xd->mi[0]->ref_frame[0];

  int64_t rate_sum = 0;
  int64_t dist_sum = 0;
  int64_t total_sse = 0;

  x->pred_sse[ref] = 0;

  for (int plane = plane_from; plane <= plane_to; ++plane) {
    struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    int64_t sse;
    int rate;
    int64_t dist;

    if (x->skip_chroma_rd && plane) continue;

    model_rd_with_dnn(cpi, x, plane_bsize, plane, &sse, &rate, &dist);

    if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX);

    total_sse += sse;
    rate_sum += rate;
    dist_sum += dist;

    if (plane_rate) plane_rate[plane] = rate;
    if (plane_sse) plane_sse[plane] = sse;
    if (plane_dist) plane_dist[plane] = dist;
  }

  if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0;
  if (skip_sse_sb) *skip_sse_sb = total_sse << 4;
  *out_rate_sum = (int)rate_sum;
  *out_dist_sum = dist_sum;
}

static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
                               int block, int blk_row, int blk_col,
                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                               const TXB_CTX *const txb_ctx,
                               FAST_TX_SEARCH_MODE ftxs_mode,
                               int use_fast_coef_costing, int64_t ref_best_rd,
                               RD_STATS *best_rd_stats) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  struct macroblockd_plane *const pd = &xd->plane[plane];
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int is_inter = is_inter_block(mbmi);
  int64_t best_rd = INT64_MAX;
  uint16_t best_eob = 0;
  TX_TYPE best_tx_type = DCT_DCT;
  TX_TYPE last_tx_type = TX_TYPES;
  const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY;
  // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff
  // of the best tx_type
  DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]);
  tran_low_t *orig_dqcoeff = pd->dqcoeff;
  tran_low_t *best_dqcoeff = this_dqcoeff;
  const int txk_type_idx =
      av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
  av1_invalid_rd_stats(best_rd_stats);

  TXB_RD_INFO *intra_txb_rd_info = NULL;
  uint16_t cur_joint_ctx = 0;
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
  const int within_border =
      mi_row >= xd->tile.mi_row_start &&
      (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) &&
      mi_col >= xd->tile.mi_col_start &&
      (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end);
  if (within_border && cpi->sf.use_intra_txb_hash && frame_is_intra_only(cm) &&
      !is_inter && plane == 0 &&
      tx_size_wide[tx_size] == tx_size_high[tx_size]) {
    const uint32_t intra_hash =
        get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size);
    const int intra_hash_idx =
        find_tx_size_rd_info(&x->txb_rd_record_intra, intra_hash);
    intra_txb_rd_info = &x->txb_rd_record_intra.tx_rd_info[intra_hash_idx];

    cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx;
    if (intra_hash_idx > 0 &&
        intra_txb_rd_info->entropy_context == cur_joint_ctx &&
        x->txb_rd_record_intra.tx_rd_info[intra_hash_idx].valid) {
      mbmi->txk_type[txk_type_idx] = intra_txb_rd_info->tx_type;
      const TX_TYPE ref_tx_type =
          av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col,
                          tx_size, cpi->common.reduced_tx_set_used);
      if (ref_tx_type == intra_txb_rd_info->tx_type) {
        best_rd_stats->rate = intra_txb_rd_info->rate;
        best_rd_stats->dist = intra_txb_rd_info->dist;
        best_rd_stats->sse = intra_txb_rd_info->sse;
        best_rd_stats->skip = intra_txb_rd_info->eob == 0;
        x->plane[plane].eobs[block] = intra_txb_rd_info->eob;
        x->plane[plane].txb_entropy_ctx[block] =
            intra_txb_rd_info->txb_entropy_ctx;
        best_rd = RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->dist);
        best_eob = intra_txb_rd_info->eob;
        best_tx_type = intra_txb_rd_info->tx_type;
        update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                         best_tx_type);
        goto RECON_INTRA;
      }
    }
  }

  int rate_cost = 0;
  TX_TYPE txk_start = DCT_DCT;
  TX_TYPE txk_end = TX_TYPES - 1;
  if ((!is_inter && x->use_default_intra_tx_type) ||
      (is_inter && x->use_default_inter_tx_type)) {
    txk_start = txk_end = get_default_tx_type(0, xd, tx_size);
  } else if (x->rd_model == LOW_TXFM_RD || x->cb_partition_scan) {
    if (plane == 0) txk_end = DCT_DCT;
  }

  uint8_t best_txb_ctx = 0;
  const TxSetType tx_set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used);

  TX_TYPE uv_tx_type = DCT_DCT;
  if (plane) {
    // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y
    uv_tx_type = txk_start = txk_end =
        av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size,
                        cm->reduced_tx_set_used);
  }
  const uint16_t ext_tx_used_flag = av1_ext_tx_used_flag[tx_set_type];
  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 ||
      ext_tx_used_flag == 0x0001) {
    txk_start = txk_end = DCT_DCT;
  }
  uint16_t allowed_tx_mask = 0;  // 1: allow; 0: skip.
  if (txk_start == txk_end) {
    allowed_tx_mask = 1 << txk_start;
    allowed_tx_mask &= ext_tx_used_flag;
  } else if (fast_tx_search) {
    allowed_tx_mask = 0x0c01;  // V_DCT, H_DCT, DCT_DCT
    allowed_tx_mask &= ext_tx_used_flag;
  } else {
    assert(plane == 0);
    allowed_tx_mask = ext_tx_used_flag;
    // !fast_tx_search && txk_end != txk_start && plane == 0
    const int do_prune = cpi->sf.tx_type_search.prune_mode > NO_PRUNE;
    if (do_prune && is_inter) {
      if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE) {
        const uint16_t prune =
            prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type,
                        cpi->sf.tx_type_search.prune_mode);
        allowed_tx_mask &= (~prune);
      } else {
        allowed_tx_mask &= (~x->tx_search_prune[tx_set_type]);
      }
    }
  }
  // Need to have at least one transform type allowed.
  if (allowed_tx_mask == 0) {
    txk_start = txk_end = (plane ? uv_tx_type : DCT_DCT);
    allowed_tx_mask = (1 << txk_start);
  }

  int use_transform_domain_distortion =
      (cpi->sf.use_transform_domain_distortion > 0) &&
      // Any 64-pt transforms only preserves half the coefficients.
      // Therefore transform domain distortion is not valid for these
      // transform sizes.
      txsize_sqr_up_map[tx_size] != TX_64X64;
#if CONFIG_DIST_8X8
  if (x->using_dist_8x8) use_transform_domain_distortion = 0;
#endif

  int calc_pixel_domain_distortion_final =
      cpi->sf.use_transform_domain_distortion == 1 &&
      use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD &&
      !x->cb_partition_scan;
  if (calc_pixel_domain_distortion_final &&
      (txk_start == txk_end || allowed_tx_mask == 0x0001))
    calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0;

  const uint16_t *eobs_ptr = x->plane[plane].eobs;

  const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
  int64_t block_sse =
      pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, tx_bsize, 1);
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2);
  block_sse *= 16;

  for (TX_TYPE tx_type = txk_start; tx_type <= txk_end; ++tx_type) {
    if (!(allowed_tx_mask & (1 << tx_type))) continue;
    if (plane == 0) mbmi->txk_type[txk_type_idx] = tx_type;
    RD_STATS this_rd_stats;
    av1_invalid_rd_stats(&this_rd_stats);

    if (!cpi->optimize_seg_arr[mbmi->segment_id]) {
      av1_xform_quant(
          cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type,
          USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
      rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type,
                                  txb_ctx, use_fast_coef_costing);
    } else {
      av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
                      tx_size, tx_type, AV1_XFORM_QUANT_FP);
      if (cpi->sf.optimize_b_precheck && best_rd < INT64_MAX &&
          eobs_ptr[block] >= 4) {
        // Calculate distortion quickly in transform domain.
        dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist,
                             &this_rd_stats.sse);

        const int64_t best_rd_ = AOMMIN(best_rd, ref_best_rd);
        const int64_t dist_cost_estimate =
            RDCOST(x->rdmult, 0, AOMMIN(this_rd_stats.dist, this_rd_stats.sse));
        if (dist_cost_estimate - (dist_cost_estimate >> 3) > best_rd_) continue;

        rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type,
                                    txb_ctx, use_fast_coef_costing);
        const int64_t rd_estimate =
            AOMMIN(RDCOST(x->rdmult, rate_cost, this_rd_stats.dist),
                   RDCOST(x->rdmult, 0, this_rd_stats.sse));
        if (rd_estimate - (rd_estimate >> 3) > best_rd_) continue;
      }
      av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, 1,
                     &rate_cost);
    }
    if (eobs_ptr[block] == 0) {
      // When eob is 0, pixel domain distortion is more efficient and accurate.
      this_rd_stats.dist = this_rd_stats.sse = block_sse;
    } else if (use_transform_domain_distortion) {
      dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist,
                           &this_rd_stats.sse);
    } else {
      this_rd_stats.dist = dist_block_px_domain(
          cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
      this_rd_stats.sse = block_sse;
    }

    this_rd_stats.rate = rate_cost;

    const int64_t rd =
        RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);

    if (rd < best_rd) {
      best_rd = rd;
      *best_rd_stats = this_rd_stats;
      best_tx_type = tx_type;
      best_txb_ctx = x->plane[plane].txb_entropy_ctx[block];
      best_eob = x->plane[plane].eobs[block];
      last_tx_type = best_tx_type;

      // Swap qcoeff and dqcoeff buffers
      tran_low_t *const tmp_dqcoeff = best_dqcoeff;
      best_dqcoeff = pd->dqcoeff;
      pd->dqcoeff = tmp_dqcoeff;
    }

#if CONFIG_COLLECT_RD_STATS == 1
    if (plane == 0) {
      PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col,
                              plane_bsize, tx_size, tx_type, rd);
    }
#endif  // CONFIG_COLLECT_RD_STATS == 1

    if (cpi->sf.adaptive_txb_search_level) {
      if ((best_rd - (best_rd >> cpi->sf.adaptive_txb_search_level)) >
          ref_best_rd) {
        break;
      }
    }

    // Skip transform type search when we found the block has been quantized to
    // all zero and at the same time, it has better rdcost than doing transform.
    if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break;
  }

  assert(best_rd != INT64_MAX);

  best_rd_stats->skip = best_eob == 0;
  if (best_eob == 0) best_tx_type = DCT_DCT;
  if (plane == 0) {
    update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                     best_tx_type);
  }
  x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx;
  x->plane[plane].eobs[block] = best_eob;

  pd->dqcoeff = best_dqcoeff;

  if (calc_pixel_domain_distortion_final && best_eob) {
    best_rd_stats->dist = dist_block_px_domain(
        cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size);
    best_rd_stats->sse = block_sse;
  }

  if (intra_txb_rd_info != NULL) {
    intra_txb_rd_info->valid = 1;
    intra_txb_rd_info->entropy_context = cur_joint_ctx;
    intra_txb_rd_info->rate = best_rd_stats->rate;
    intra_txb_rd_info->dist = best_rd_stats->dist;
    intra_txb_rd_info->sse = best_rd_stats->sse;
    intra_txb_rd_info->eob = best_eob;
    intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx;
    if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type;
  }

RECON_INTRA:
  if (!is_inter && best_eob &&
      (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] ||
       blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) {
    // intra mode needs decoded result such that the next transform block
    // can use it for prediction.
    // if the last search tx_type is the best tx_type, we don't need to
    // do this again
    if (best_tx_type != last_tx_type) {
      if (!cpi->optimize_seg_arr[mbmi->segment_id]) {
        av1_xform_quant(
            cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
            best_tx_type,
            USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP);
      } else {
        av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize,
                        tx_size, best_tx_type, AV1_XFORM_QUANT_FP);
        av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, 1,
                       &rate_cost);
      }
    }

    inverse_transform_block_facade(xd, plane, block, blk_row, blk_col,
                                   x->plane[plane].eobs[block],
                                   cm->reduced_tx_set_used);

    // This may happen because of hash collision. The eob stored in the hash
    // table is non-zero, but the real eob is zero. We need to make sure tx_type
    // is DCT_DCT in this case.
    if (plane == 0 && x->plane[plane].eobs[block] == 0 &&
        best_tx_type != DCT_DCT) {
      update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                       DCT_DCT);
    }
  }
  pd->dqcoeff = orig_dqcoeff;

  return best_rd;
}

static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
                          BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
  struct rdcost_block_args *args = arg;
  MACROBLOCK *const x = args->x;
  MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const AV1_COMP *cpi = args->cpi;
  ENTROPY_CONTEXT *a = args->t_above + blk_col;
  ENTROPY_CONTEXT *l = args->t_left + blk_row;
  const AV1_COMMON *cm = &cpi->common;
  int64_t rd1, rd2, rd;
  RD_STATS this_rd_stats;

#if CONFIG_DIST_8X8
  // If sub8x8 tx, 8x8 or larger partition, and luma channel,
  // dist-8x8 disables early skip, because the distortion metrics for
  // sub8x8 tx (MSE) and reference distortion from 8x8 or larger partition
  // (new distortion metric) are different.
  // Exception is: dist-8x8 is enabled but still MSE is used,
  // i.e. "--tune=" encoder option is not used.
  int bw = block_size_wide[plane_bsize];
  int bh = block_size_high[plane_bsize];
  int disable_early_skip =
      x->using_dist_8x8 && plane == AOM_PLANE_Y && bw >= 8 && bh >= 8 &&
      (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4) &&
      x->tune_metric != AOM_TUNE_PSNR;
#endif  // CONFIG_DIST_8X8

  av1_init_rd_stats(&this_rd_stats);

  if (args->exit_early) return;

  if (!is_inter_block(mbmi)) {
    av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
    av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
  }
  TXB_CTX txb_ctx;
  get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
  search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                  &txb_ctx, args->ftxs_mode, args->use_fast_coef_costing,
                  args->best_rd - args->this_rd, &this_rd_stats);

  if (plane == AOM_PLANE_Y && xd->cfl.store_y) {
    assert(!is_inter_block(mbmi) || plane_bsize < BLOCK_8X8);
    cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
  }

#if CONFIG_RD_DEBUG
  av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col,
                            this_rd_stats.rate);
#endif  // CONFIG_RD_DEBUG
  av1_set_txb_context(x, plane, block, tx_size, a, l);

  if (plane == 0) {
    x->blk_skip[blk_row *
                    (block_size_wide[plane_bsize] >> tx_size_wide_log2[0]) +
                blk_col] = (x->plane[plane].eobs[block] == 0);
  }

  rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
  rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse);

  // TODO(jingning): temporarily enabled only for luma component
  rd = AOMMIN(rd1, rd2);

  this_rd_stats.skip &= !x->plane[plane].eobs[block];

  av1_merge_rd_stats(&args->rd_stats, &this_rd_stats);

  args->this_rd += rd;

#if CONFIG_DIST_8X8
  if (!disable_early_skip)
#endif
    if (args->this_rd > args->best_rd) {
      args->exit_early = 1;
      return;
    }
}

#if CONFIG_DIST_8X8
static void dist_8x8_sub8x8_txfm_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize,
                                    struct rdcost_block_args *args) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblockd_plane *const pd = &xd->plane[0];
  const struct macroblock_plane *const p = &x->plane[0];
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int src_stride = p->src.stride;
  const int dst_stride = pd->dst.stride;
  const uint8_t *src = &p->src.buf[0];
  const uint8_t *dst = &pd->dst.buf[0];
  const int16_t *pred = &x->pred_luma[0];
  int bw = block_size_wide[bsize];
  int bh = block_size_high[bsize];
  int visible_w = bw;
  int visible_h = bh;

  int i, j;
  int64_t rd, rd1, rd2;
  int64_t sse = INT64_MAX, dist = INT64_MAX;
  int qindex = x->qindex;

  assert((bw & 0x07) == 0);
  assert((bh & 0x07) == 0);

  get_txb_dimensions(xd, 0, bsize, 0, 0, bsize, &bw, &bh, &visible_w,
                     &visible_h);

  const int diff_stride = block_size_wide[bsize];
  const int16_t *diff = p->src_diff;
  sse = dist_8x8_diff(x, src, src_stride, diff, diff_stride, bw, bh, visible_w,
                      visible_h, qindex);
  sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
  sse *= 16;

  if (!is_inter_block(mbmi)) {
    dist = av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, bsize, bw, bh,
                        visible_w, visible_h, qindex);
    dist *= 16;
  } else {
    // For inter mode, the decoded pixels are provided in x->pred_luma,
    // while the predicted pixels are in dst.
    uint8_t *pred8;
    DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]);

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      pred8 = CONVERT_TO_BYTEPTR(pred16);
    else
      pred8 = (uint8_t *)pred16;

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (j = 0; j < bh; j++)
        for (i = 0; i < bw; i++)
          CONVERT_TO_SHORTPTR(pred8)[j * bw + i] = pred[j * bw + i];
    } else {
      for (j = 0; j < bh; j++)
        for (i = 0; i < bw; i++) pred8[j * bw + i] = (uint8_t)pred[j * bw + i];
    }

    dist = av1_dist_8x8(cpi, x, src, src_stride, pred8, bw, bsize, bw, bh,
                        visible_w, visible_h, qindex);
    dist *= 16;
  }

#ifdef DEBUG_DIST_8X8
  if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8) {
    assert(args->rd_stats.sse == sse);
    assert(args->rd_stats.dist == dist);
  }
#endif  // DEBUG_DIST_8X8

  args->rd_stats.sse = sse;
  args->rd_stats.dist = dist;

  rd1 = RDCOST(x->rdmult, args->rd_stats.rate, args->rd_stats.dist);
  rd2 = RDCOST(x->rdmult, 0, args->rd_stats.sse);
  rd = AOMMIN(rd1, rd2);

  args->rd_stats.rdcost = rd;
  args->this_rd = rd;

  if (args->this_rd > args->best_rd) args->exit_early = 1;
}
#endif  // CONFIG_DIST_8X8

static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi,
                             RD_STATS *rd_stats, int64_t ref_best_rd, int plane,
                             BLOCK_SIZE bsize, TX_SIZE tx_size,
                             int use_fast_coef_casting,
                             FAST_TX_SEARCH_MODE ftxs_mode) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  struct rdcost_block_args args;
  av1_zero(args);
  args.x = x;
  args.cpi = cpi;
  args.best_rd = ref_best_rd;
  args.use_fast_coef_costing = use_fast_coef_casting;
  args.ftxs_mode = ftxs_mode;
  av1_init_rd_stats(&args.rd_stats);

  if (plane == 0) xd->mi[0]->tx_size = tx_size;

  av1_get_entropy_contexts(bsize, pd, args.t_above, args.t_left);

  av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
                                         &args);
#if CONFIG_DIST_8X8
  int bw = block_size_wide[bsize];
  int bh = block_size_high[bsize];

  if (x->using_dist_8x8 && !args.exit_early && plane == 0 && bw >= 8 &&
      bh >= 8 && (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4))
    dist_8x8_sub8x8_txfm_rd(cpi, x, bsize, &args);
#endif

  if (args.exit_early) {
    av1_invalid_rd_stats(rd_stats);
  } else {
    *rd_stats = args.rd_stats;
  }
}

static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x,
                        BLOCK_SIZE bsize, TX_SIZE tx_size) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];

  if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type)) {
    const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
    const int depth = tx_size_to_depth(tx_size, bsize);
    const int tx_size_ctx = get_tx_size_context(xd);
    int r_tx_size = x->tx_size_cost[tx_size_cat][tx_size_ctx][depth];
    return r_tx_size;
  } else {
    return 0;
  }
}

static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
                        RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs,
                        TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int64_t rd = INT64_MAX;
  const int skip_ctx = av1_get_skip_context(xd);
  int s0, s1;
  const int is_inter = is_inter_block(mbmi);
  const int tx_select =
      cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type);
  int ctx = txfm_partition_context(
      xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size);
  const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0]
                                 : tx_size_cost(cm, x, bs, tx_size);

  assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));

  s0 = x->skip_cost[skip_ctx][0];
  s1 = x->skip_cost[skip_ctx][1];

  mbmi->tx_size = tx_size;
  txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, tx_size,
                   cpi->sf.use_fast_coef_costing, ftxs_mode);
  if (rd_stats->rate == INT_MAX) return INT64_MAX;

  if (rd_stats->skip) {
    if (is_inter) {
      rd = RDCOST(x->rdmult, s1, rd_stats->sse);
    } else {
      rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse);
    }
  } else {
    rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select,
                rd_stats->dist);
  }

  if (tx_select) rd_stats->rate += r_tx_size;

  if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip))
    rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse));

  return rd;
}

static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
                                   MACROBLOCK *x, int *r, int64_t *d, int *s,
                                   int64_t *sse, int64_t ref_best_rd) {
  RD_STATS rd_stats;
  av1_subtract_plane(x, bs, 0);
  x->rd_model = LOW_TXFM_RD;
  int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs,
                        max_txsize_rect_lookup[bs], FTXS_NONE);
  x->rd_model = FULL_TXFM_RD;
  *r = rd_stats.rate;
  *d = rd_stats.dist;
  *s = rd_stats.skip;
  *sse = rd_stats.sse;
  return rd;
}

static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
                                   RD_STATS *rd_stats, int64_t ref_best_rd,
                                   BLOCK_SIZE bs) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_inter = is_inter_block(mbmi);
  mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode);
  const TxSetType tx_set_type =
      av1_get_ext_tx_set_type(mbmi->tx_size, is_inter, cm->reduced_tx_set_used);
  prune_tx(cpi, bs, x, xd, tx_set_type);
  txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs,
                   mbmi->tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
  // Reset the pruning flags.
  av1_zero(x->tx_search_prune);
  x->tx_split_prune_flag = 0;
}

static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    RD_STATS *rd_stats, int64_t ref_best_rd,
                                    BLOCK_SIZE bs) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];

  mbmi->tx_size = TX_4X4;
  txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size,
                   cpi->sf.use_fast_coef_costing, FTXS_NONE);
}

static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) {
  int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]);
  return num_blk;
}

static int get_search_init_depth(int mi_width, int mi_height, int is_inter,
                                 const SPEED_FEATURES *sf) {
  if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH;

  if (sf->tx_size_search_lgr_block) {
    if (mi_width > mi_size_wide[BLOCK_64X64] ||
        mi_height > mi_size_high[BLOCK_64X64])
      return MAX_VARTX_DEPTH;
  }

  if (is_inter) {
    return (mi_height != mi_width) ? sf->inter_tx_size_search_init_depth_rect
                                   : sf->inter_tx_size_search_init_depth_sqr;
  } else {
    return (mi_height != mi_width) ? sf->intra_tx_size_search_init_depth_rect
                                   : sf->intra_tx_size_search_init_depth_sqr;
  }
}

static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
                                        MACROBLOCK *x, RD_STATS *rd_stats,
                                        int64_t ref_best_rd, BLOCK_SIZE bs) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int64_t rd = INT64_MAX;
  int n;
  int start_tx;
  int depth;
  int64_t best_rd = INT64_MAX;
  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs];
  TX_SIZE best_tx_size = max_rect_tx_size;
  TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  const int n4 = bsize_to_num_blk(bs);
  const int tx_select = cm->tx_mode == TX_MODE_SELECT;

  av1_invalid_rd_stats(rd_stats);

  if (tx_select) {
    start_tx = max_rect_tx_size;
    depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs],
                                  is_inter_block(mbmi), &cpi->sf);
  } else {
    const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode);
    start_tx = chosen_tx_size;
    depth = MAX_TX_DEPTH;
  }

  prune_tx(cpi, bs, x, xd, EXT_TX_SET_ALL16);

  for (n = start_tx; depth <= MAX_TX_DEPTH; depth++, n = sub_tx_size_map[n]) {
    RD_STATS this_rd_stats;
    if (mbmi->ref_mv_idx > 0) x->rd_model = LOW_TXFM_RD;
    rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, n, FTXS_NONE);
    x->rd_model = FULL_TXFM_RD;

    if (rd < best_rd) {
      memcpy(best_txk_type, mbmi->txk_type,
             sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
      memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4);
      best_tx_size = n;
      best_rd = rd;
      *rd_stats = this_rd_stats;
    }
    if (n == TX_4X4) break;
  }
  mbmi->tx_size = best_tx_size;
  memcpy(mbmi->txk_type, best_txk_type,
         sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
  memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4);

  // Reset the pruning flags.
  av1_zero(x->tx_search_prune);
  x->tx_split_prune_flag = 0;
}

static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
                            RD_STATS *rd_stats, BLOCK_SIZE bs,
                            int64_t ref_best_rd) {
  MACROBLOCKD *xd = &x->e_mbd;
  av1_init_rd_stats(rd_stats);

  assert(bs == xd->mi[0]->sb_type);

  if (xd->lossless[xd->mi[0]->segment_id]) {
    choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
  } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
    choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs);
  } else {
    choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs);
  }
}

// Return the rate cost for luma prediction mode info. of intra blocks.
static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x,
                                  const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
                                  int mode_cost) {
  int total_rate = mode_cost;
  const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
  const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
  const int use_intrabc = mbmi->use_intrabc;
  // Can only activate one mode.
  assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
          use_filter_intra) <= 1);
  const int try_palette =
      av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
  if (try_palette && mbmi->mode == DC_PRED) {
    const MACROBLOCKD *xd = &x->e_mbd;
    const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
    const int mode_ctx = av1_get_palette_mode_ctx(xd);
    total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
    if (use_palette) {
      const uint8_t *const color_map = xd->plane[0].color_index_map;
      int block_width, block_height, rows, cols;
      av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
                               &cols);
      const int plt_size = mbmi->palette_mode_info.palette_size[0];
      int palette_mode_cost =
          x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
          write_uniform_cost(plt_size, color_map[0]);
      uint16_t color_cache[2 * PALETTE_MAX_SIZE];
      const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
      palette_mode_cost +=
          av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
                                   n_cache, cpi->common.seq_params.bit_depth);
      palette_mode_cost +=
          av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
      total_rate += palette_mode_cost;
    }
  }
  if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
    total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra];
    if (use_filter_intra) {
      total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info
                                                  .filter_intra_mode];
    }
  }
  if (av1_is_directional_mode(mbmi->mode)) {
    if (av1_use_angle_delta(bsize)) {
      total_rate += x->angle_delta_cost[mbmi->mode - V_PRED]
                                       [MAX_ANGLE_DELTA +
                                        mbmi->angle_delta[PLANE_TYPE_Y]];
    }
  }
  if (av1_allow_intrabc(&cpi->common))
    total_rate += x->intrabc_cost[use_intrabc];
  return total_rate;
}

// Return the rate cost for chroma prediction mode info. of intra blocks.
static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x,
                                   const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
                                   int mode_cost) {
  int total_rate = mode_cost;
  const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
  const UV_PREDICTION_MODE mode = mbmi->uv_mode;
  // Can only activate one mode.
  assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);

  const int try_palette =
      av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
  if (try_palette && mode == UV_DC_PRED) {
    const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
    total_rate +=
        x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
    if (use_palette) {
      const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
      const int plt_size = pmi->palette_size[1];
      const MACROBLOCKD *xd = &x->e_mbd;
      const uint8_t *const color_map = xd->plane[1].color_index_map;
      int palette_mode_cost =
          x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
          write_uniform_cost(plt_size, color_map[0]);
      uint16_t color_cache[2 * PALETTE_MAX_SIZE];
      const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
      palette_mode_cost += av1_palette_color_cost_uv(
          pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth);
      palette_mode_cost +=
          av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
      total_rate += palette_mode_cost;
    }
  }
  if (av1_is_directional_mode(get_uv_mode(mode))) {
    if (av1_use_angle_delta(bsize)) {
      total_rate +=
          x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] +
                                             MAX_ANGLE_DELTA];
    }
  }
  return total_rate;
}

static int conditional_skipintra(PREDICTION_MODE mode,
                                 PREDICTION_MODE best_intra_mode) {
  if (mode == D113_PRED && best_intra_mode != V_PRED &&
      best_intra_mode != D135_PRED)
    return 1;
  if (mode == D67_PRED && best_intra_mode != V_PRED &&
      best_intra_mode != D45_PRED)
    return 1;
  if (mode == D203_PRED && best_intra_mode != H_PRED &&
      best_intra_mode != D45_PRED)
    return 1;
  if (mode == D157_PRED && best_intra_mode != H_PRED &&
      best_intra_mode != D135_PRED)
    return 1;
  return 0;
}

// Model based RD estimation for luma intra blocks.
static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x,
                               BLOCK_SIZE bsize, int mode_cost) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  RD_STATS this_rd_stats;
  int row, col;
  int64_t temp_sse, this_rd;
  TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);
  const int stepr = tx_size_high_unit[tx_size];
  const int stepc = tx_size_wide_unit[tx_size];
  const int max_blocks_wide = max_block_wide(xd, bsize, 0);
  const int max_blocks_high = max_block_high(xd, bsize, 0);
  mbmi->tx_size = tx_size;
  // Prediction.
  for (row = 0; row < max_blocks_high; row += stepr) {
    for (col = 0; col < max_blocks_wide; col += stepc) {
      av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size);
    }
  }
  // RD estimation.
  av1_subtract_plane(x, bsize, 0);
  model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &this_rd_stats.rate,
                  &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse, NULL,
                  NULL, NULL);
  if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
    mode_cost +=
        x->angle_delta_cost[mbmi->mode - V_PRED]
                           [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]];
  }
  if (mbmi->mode == DC_PRED &&
      av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) {
    if (mbmi->filter_intra_mode_info.use_filter_intra) {
      const int mode = mbmi->filter_intra_mode_info.filter_intra_mode;
      mode_cost += x->filter_intra_cost[mbmi->sb_type][1] +
                   x->filter_intra_mode_cost[mode];
    } else {
      mode_cost += x->filter_intra_cost[mbmi->sb_type][0];
    }
  }
  this_rd =
      RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist);
  return this_rd;
}

// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x
// new_height'. Extra rows and columns are filled in by copying last valid
// row/column.
static void extend_palette_color_map(uint8_t *const color_map, int orig_width,
                                     int orig_height, int new_width,
                                     int new_height) {
  int j;
  assert(new_width >= orig_width);
  assert(new_height >= orig_height);
  if (new_width == orig_width && new_height == orig_height) return;

  for (j = orig_height - 1; j >= 0; --j) {
    memmove(color_map + j * new_width, color_map + j * orig_width, orig_width);
    // Copy last column to extra columns.
    memset(color_map + j * new_width + orig_width,
           color_map[j * new_width + orig_width - 1], new_width - orig_width);
  }
  // Copy last row to extra rows.
  for (j = orig_height; j < new_height; ++j) {
    memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width,
           new_width);
  }
}

// Bias toward using colors in the cache.
// TODO(huisu): Try other schemes to improve compression.
static void optimize_palette_colors(uint16_t *color_cache, int n_cache,
                                    int n_colors, int stride, int *centroids) {
  if (n_cache <= 0) return;
  for (int i = 0; i < n_colors * stride; i += stride) {
    int min_diff = abs(centroids[i] - (int)color_cache[0]);
    int idx = 0;
    for (int j = 1; j < n_cache; ++j) {
      const int this_diff = abs(centroids[i] - color_cache[j]);
      if (this_diff < min_diff) {
        min_diff = this_diff;
        idx = j;
      }
    }
    if (min_diff <= 1) centroids[i] = color_cache[idx];
  }
}

// Given the base colors as specified in centroids[], calculate the RD cost
// of palette mode.
static void palette_rd_y(
    const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
    BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *centroids, int n,
    uint16_t *color_cache, int n_cache, MB_MODE_INFO *best_mbmi,
    uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd,
    int *rate, int *rate_tokenonly, int *rate_overhead, int64_t *distortion,
    int *skippable, PICK_MODE_CONTEXT *ctx, uint8_t *blk_skip) {
  optimize_palette_colors(color_cache, n_cache, n, 1, centroids);
  int k = av1_remove_duplicates(centroids, n);
  if (k < PALETTE_MIN_SIZE) {
    // Too few unique colors to create a palette. And DC_PRED will work
    // well for that case anyway. So skip.
    return;
  }
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  if (cpi->common.seq_params.use_highbitdepth)
    for (int i = 0; i < k; ++i)
      pmi->palette_colors[i] = clip_pixel_highbd(
          (int)centroids[i], cpi->common.seq_params.bit_depth);
  else
    for (int i = 0; i < k; ++i)
      pmi->palette_colors[i] = clip_pixel(centroids[i]);
  pmi->palette_size[0] = k;
  MACROBLOCKD *const xd = &x->e_mbd;
  uint8_t *const color_map = xd->plane[0].color_index_map;
  int block_width, block_height, rows, cols;
  av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
                           &cols);
  av1_calc_indices(data, centroids, color_map, rows * cols, k, 1);
  extend_palette_color_map(color_map, cols, rows, block_width, block_height);
  const int palette_mode_cost =
      intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost);
  int64_t this_model_rd = intra_model_yrd(cpi, x, bsize, palette_mode_cost);
  if (*best_model_rd != INT64_MAX &&
      this_model_rd > *best_model_rd + (*best_model_rd >> 1))
    return;
  if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
  RD_STATS tokenonly_rd_stats;
  super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
  if (tokenonly_rd_stats.rate == INT_MAX) return;
  int this_rate = tokenonly_rd_stats.rate + palette_mode_cost;
  int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
  if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
    tokenonly_rd_stats.rate -=
        tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
  }
  if (this_rd < *best_rd) {
    *best_rd = this_rd;
    memcpy(best_palette_color_map, color_map,
           block_width * block_height * sizeof(color_map[0]));
    *best_mbmi = *mbmi;
    memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
    *rate_overhead = this_rate - tokenonly_rd_stats.rate;
    if (rate) *rate = this_rate;
    if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate;
    if (distortion) *distortion = tokenonly_rd_stats.dist;
    if (skippable) *skippable = tokenonly_rd_stats.skip;
  }
}

static int rd_pick_palette_intra_sby(
    const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
    int dc_mode_cost, MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map,
    int64_t *best_rd, int64_t *best_model_rd, int *rate, int *rate_tokenonly,
    int64_t *distortion, int *skippable, PICK_MODE_CONTEXT *ctx,
    uint8_t *best_blk_skip) {
  int rate_overhead = 0;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize));
  const SequenceHeader *const seq_params = &cpi->common.seq_params;
  int colors, n;
  const int src_stride = x->plane[0].src.stride;
  const uint8_t *const src = x->plane[0].src.buf;
  uint8_t *const color_map = xd->plane[0].color_index_map;
  int block_width, block_height, rows, cols;
  av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
                           &cols);

  int count_buf[1 << 12];  // Maximum (1 << 12) color levels.
  if (seq_params->use_highbitdepth)
    colors = av1_count_colors_highbd(src, src_stride, rows, cols,
                                     seq_params->bit_depth, count_buf);
  else
    colors = av1_count_colors(src, src_stride, rows, cols, count_buf);
  mbmi->filter_intra_mode_info.use_filter_intra = 0;

  if (colors > 1 && colors <= 64) {
    int r, c, i;
    const int max_itr = 50;
    int *const data = x->palette_buffer->kmeans_data_buf;
    int centroids[PALETTE_MAX_SIZE];
    int lb, ub, val;
    uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
    if (seq_params->use_highbitdepth)
      lb = ub = src16[0];
    else
      lb = ub = src[0];

    if (seq_params->use_highbitdepth) {
      for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
          val = src16[r * src_stride + c];
          data[r * cols + c] = val;
          if (val < lb)
            lb = val;
          else if (val > ub)
            ub = val;
        }
      }
    } else {
      for (r = 0; r < rows; ++r) {
        for (c = 0; c < cols; ++c) {
          val = src[r * src_stride + c];
          data[r * cols + c] = val;
          if (val < lb)
            lb = val;
          else if (val > ub)
            ub = val;
        }
      }
    }

    mbmi->mode = DC_PRED;
    mbmi->filter_intra_mode_info.use_filter_intra = 0;

    uint16_t color_cache[2 * PALETTE_MAX_SIZE];
    const int n_cache = av1_get_palette_cache(xd, 0, color_cache);

    // Find the dominant colors, stored in top_colors[].
    int top_colors[PALETTE_MAX_SIZE] = { 0 };
    for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) {
      int max_count = 0;
      for (int j = 0; j < (1 << seq_params->bit_depth); ++j) {
        if (count_buf[j] > max_count) {
          max_count = count_buf[j];
          top_colors[i] = j;
        }
      }
      assert(max_count > 0);
      count_buf[top_colors[i]] = 0;
    }

    // Try the dominant colors directly.
    // TODO(huisu@google.com): Try to avoid duplicate computation in cases
    // where the dominant colors and the k-means results are similar.
    for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) {
      for (i = 0; i < n; ++i) centroids[i] = top_colors[i];
      palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
                   color_cache, n_cache, best_mbmi, best_palette_color_map,
                   best_rd, best_model_rd, rate, rate_tokenonly, &rate_overhead,
                   distortion, skippable, ctx, best_blk_skip);
    }

    // K-means clustering.
    for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) {
      if (colors == PALETTE_MIN_SIZE) {
        // Special case: These colors automatically become the centroids.
        assert(colors == n);
        assert(colors == 2);
        centroids[0] = lb;
        centroids[1] = ub;
      } else {
        for (i = 0; i < n; ++i) {
          centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
        }
        av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr);
      }
      palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
                   color_cache, n_cache, best_mbmi, best_palette_color_map,
                   best_rd, best_model_rd, rate, rate_tokenonly, &rate_overhead,
                   distortion, skippable, ctx, best_blk_skip);
    }
  }

  if (best_mbmi->palette_mode_info.palette_size[0] > 0) {
    memcpy(color_map, best_palette_color_map,
           block_width * block_height * sizeof(best_palette_color_map[0]));
  }
  *mbmi = *best_mbmi;
  return rate_overhead;
}

// Return 1 if an filter intra mode is selected; return 0 otherwise.
static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    int *rate, int *rate_tokenonly,
                                    int64_t *distortion, int *skippable,
                                    BLOCK_SIZE bsize, int mode_cost,
                                    int64_t *best_rd, int64_t *best_model_rd,
                                    PICK_MODE_CONTEXT *ctx) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  int filter_intra_selected_flag = 0;
  FILTER_INTRA_MODE mode;
  TX_SIZE best_tx_size = TX_8X8;
  FILTER_INTRA_MODE_INFO filter_intra_mode_info;
  TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
  (void)ctx;
  av1_zero(filter_intra_mode_info);
  mbmi->filter_intra_mode_info.use_filter_intra = 1;
  mbmi->mode = DC_PRED;
  mbmi->palette_mode_info.palette_size[0] = 0;

  for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
    int64_t this_rd, this_model_rd;
    RD_STATS tokenonly_rd_stats;
    mbmi->filter_intra_mode_info.filter_intra_mode = mode;
    this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost);
    if (*best_model_rd != INT64_MAX &&
        this_model_rd > *best_model_rd + (*best_model_rd >> 1))
      continue;
    if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
    super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
    if (tokenonly_rd_stats.rate == INT_MAX) continue;
    const int this_rate =
        tokenonly_rd_stats.rate +
        intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
    this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);

    if (this_rd < *best_rd) {
      *best_rd = this_rd;
      best_tx_size = mbmi->tx_size;
      filter_intra_mode_info = mbmi->filter_intra_mode_info;
      memcpy(best_txk_type, mbmi->txk_type,
             sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
      memcpy(ctx->blk_skip, x->blk_skip,
             sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
      *rate = this_rate;
      *rate_tokenonly = tokenonly_rd_stats.rate;
      *distortion = tokenonly_rd_stats.dist;
      *skippable = tokenonly_rd_stats.skip;
      filter_intra_selected_flag = 1;
    }
  }

  if (filter_intra_selected_flag) {
    mbmi->mode = DC_PRED;
    mbmi->tx_size = best_tx_size;
    mbmi->filter_intra_mode_info = filter_intra_mode_info;
    memcpy(mbmi->txk_type, best_txk_type,
           sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN);
    return 1;
  } else {
    return 0;
  }
}

// Run RD calculation with given luma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t calc_rd_given_intra_angle(
    const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_cost,
    int64_t best_rd_in, int8_t angle_delta, int max_angle_delta, int *rate,
    RD_STATS *rd_stats, int *best_angle_delta, TX_SIZE *best_tx_size,
    int64_t *best_rd, int64_t *best_model_rd, TX_TYPE *best_txk_type,
    uint8_t *best_blk_skip) {
  int this_rate;
  RD_STATS tokenonly_rd_stats;
  int64_t this_rd, this_model_rd;
  MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
  const int n4 = bsize_to_num_blk(bsize);
  assert(!is_inter_block(mbmi));

  mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta;
  this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost);
  if (*best_model_rd != INT64_MAX &&
      this_model_rd > *best_model_rd + (*best_model_rd >> 1))
    return INT64_MAX;
  if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd;
  super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in);
  if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX;

  this_rate =
      tokenonly_rd_stats.rate + mode_cost +
      x->angle_delta_cost[mbmi->mode - V_PRED]
                         [max_angle_delta + mbmi->angle_delta[PLANE_TYPE_Y]];
  this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);

  if (this_rd < *best_rd) {
    memcpy(best_txk_type, mbmi->txk_type,
           sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
    memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4);
    *best_rd = this_rd;
    *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y];
    *best_tx_size = mbmi->tx_size;
    *rate = this_rate;
    rd_stats->rate = tokenonly_rd_stats.rate;
    rd_stats->dist = tokenonly_rd_stats.dist;
    rd_stats->skip = tokenonly_rd_stats.skip;
  }
  return this_rd;
}

// With given luma directional intra prediction mode, pick the best angle delta
// Return the RD cost corresponding to the best angle delta.
static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
                                       int *rate, RD_STATS *rd_stats,
                                       BLOCK_SIZE bsize, int mode_cost,
                                       int64_t best_rd,
                                       int64_t *best_model_rd) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  int i, angle_delta, best_angle_delta = 0;
  int first_try = 1;
  int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
  TX_SIZE best_tx_size = mbmi->tx_size;
  const int n4 = bsize_to_num_blk(bsize);
  TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];

  for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;

  for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
    for (i = 0; i < 2; ++i) {
      best_rd_in = (best_rd == INT64_MAX)
                       ? INT64_MAX
                       : (best_rd + (best_rd >> (first_try ? 3 : 5)));
      this_rd = calc_rd_given_intra_angle(
          cpi, x, bsize, mode_cost, best_rd_in, (1 - 2 * i) * angle_delta,
          MAX_ANGLE_DELTA, rate, rd_stats, &best_angle_delta, &best_tx_size,
          &best_rd, best_model_rd, best_txk_type, best_blk_skip);
      rd_cost[2 * angle_delta + i] = this_rd;
      if (first_try && this_rd == INT64_MAX) return best_rd;
      first_try = 0;
      if (angle_delta == 0) {
        rd_cost[1] = this_rd;
        break;
      }
    }
  }

  assert(best_rd != INT64_MAX);
  for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
    int64_t rd_thresh;
    for (i = 0; i < 2; ++i) {
      int skip_search = 0;
      rd_thresh = best_rd + (best_rd >> 5);
      if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
          rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
        skip_search = 1;
      if (!skip_search) {
        calc_rd_given_intra_angle(
            cpi, x, bsize, mode_cost, best_rd, (1 - 2 * i) * angle_delta,
            MAX_ANGLE_DELTA, rate, rd_stats, &best_angle_delta, &best_tx_size,
            &best_rd, best_model_rd, best_txk_type, best_blk_skip);
      }
    }
  }

  mbmi->tx_size = best_tx_size;
  mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta;
  memcpy(mbmi->txk_type, best_txk_type,
         sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
  memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4);
  return best_rd;
}

// Indices are sign, integer, and fractional part of the gradient value
static const uint8_t gradient_to_angle_bin[2][7][16] = {
  {
      { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 },
      { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
      { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
      { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
      { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
      { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
      { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
  },
  {
      { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 },
      { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 },
      { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
      { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
      { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
      { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
      { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
  },
};

/* clang-format off */
static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
  0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
  0,
};
/* clang-format on */

static void angle_estimation(const uint8_t *src, int src_stride, int rows,
                             int cols, BLOCK_SIZE bsize,
                             uint8_t *directional_mode_skip_mask) {
  memset(directional_mode_skip_mask, 0,
         INTRA_MODES * sizeof(*directional_mode_skip_mask));
  // Check if angle_delta is used
  if (!av1_use_angle_delta(bsize)) return;
  uint64_t hist[DIRECTIONAL_MODES];
  memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
  src += src_stride;
  int r, c, dx, dy;
  for (r = 1; r < rows; ++r) {
    for (c = 1; c < cols; ++c) {
      dx = src[c] - src[c - 1];
      dy = src[c] - src[c - src_stride];
      int index;
      const int temp = dx * dx + dy * dy;
      if (dy == 0) {
        index = 2;
      } else {
        const int sn = (dx > 0) ^ (dy > 0);
        dx = abs(dx);
        dy = abs(dy);
        const int remd = (dx % dy) * 16 / dy;
        const int quot = dx / dy;
        index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
      }
      hist[index] += temp;
    }
    src += src_stride;
  }

  int i;
  uint64_t hist_sum = 0;
  for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
  for (i = 0; i < INTRA_MODES; ++i) {
    if (av1_is_directional_mode(i)) {
      const uint8_t angle_bin = mode_to_angle_bin[i];
      uint64_t score = 2 * hist[angle_bin];
      int weight = 2;
      if (angle_bin > 0) {
        score += hist[angle_bin - 1];
        ++weight;
      }
      if (angle_bin < DIRECTIONAL_MODES - 1) {
        score += hist[angle_bin + 1];
        ++weight;
      }
      if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
        directional_mode_skip_mask[i] = 1;
    }
  }
}

static void highbd_angle_estimation(const uint8_t *src8, int src_stride,
                                    int rows, int cols, BLOCK_SIZE bsize,
                                    uint8_t *directional_mode_skip_mask) {
  memset(directional_mode_skip_mask, 0,
         INTRA_MODES * sizeof(*directional_mode_skip_mask));
  // Check if angle_delta is used
  if (!av1_use_angle_delta(bsize)) return;
  uint16_t *src = CONVERT_TO_SHORTPTR(src8);
  uint64_t hist[DIRECTIONAL_MODES];
  memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
  src += src_stride;
  int r, c, dx, dy;
  for (r = 1; r < rows; ++r) {
    for (c = 1; c < cols; ++c) {
      dx = src[c] - src[c - 1];
      dy = src[c] - src[c - src_stride];
      int index;
      const int temp = dx * dx + dy * dy;
      if (dy == 0) {
        index = 2;
      } else {
        const int sn = (dx > 0) ^ (dy > 0);
        dx = abs(dx);
        dy = abs(dy);
        const int remd = (dx % dy) * 16 / dy;
        const int quot = dx / dy;
        index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
      }
      hist[index] += temp;
    }
    src += src_stride;
  }

  int i;
  uint64_t hist_sum = 0;
  for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
  for (i = 0; i < INTRA_MODES; ++i) {
    if (av1_is_directional_mode(i)) {
      const uint8_t angle_bin = mode_to_angle_bin[i];
      uint64_t score = 2 * hist[angle_bin];
      int weight = 2;
      if (angle_bin > 0) {
        score += hist[angle_bin - 1];
        ++weight;
      }
      if (angle_bin < DIRECTIONAL_MODES - 1) {
        score += hist[angle_bin + 1];
        ++weight;
      }
      if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
        directional_mode_skip_mask[i] = 1;
    }
  }
}

// Given selected prediction mode, search for the best tx type and size.
static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
                            BLOCK_SIZE bsize, const int *bmode_costs,
                            int64_t *best_rd, int *rate, int *rate_tokenonly,
                            int64_t *distortion, int *skippable,
                            MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  RD_STATS rd_stats;
  super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd);
  if (rd_stats.rate == INT_MAX) return;
  int this_rate_tokenonly = rd_stats.rate;
  if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
    // super_block_yrd above includes the cost of the tx_size in the
    // tokenonly rate, but for intra blocks, tx_size is always coded
    // (prediction granularity), so we account for it in the full rate,
    // not the tokenonly rate.
    this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
  }
  const int this_rate =
      rd_stats.rate +
      intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
  const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist);
  if (this_rd < *best_rd) {
    *best_mbmi = *mbmi;
    *best_rd = this_rd;
    *rate = this_rate;
    *rate_tokenonly = this_rate_tokenonly;
    *distortion = rd_stats.dist;
    *skippable = rd_stats.skip;
    memcpy(ctx->blk_skip, x->blk_skip,
           sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
  }
}

// This function is used only for intra_only frames
static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
                                      int *rate, int *rate_tokenonly,
                                      int64_t *distortion, int *skippable,
                                      BLOCK_SIZE bsize, int64_t best_rd,
                                      PICK_MODE_CONTEXT *ctx) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  int64_t best_model_rd = INT64_MAX;
  const int rows = block_size_high[bsize];
  const int cols = block_size_wide[bsize];
  int is_directional_mode;
  uint8_t directional_mode_skip_mask[INTRA_MODES];
  const int src_stride = x->plane[0].src.stride;
  const uint8_t *src = x->plane[0].src.buf;
  int beat_best_rd = 0;
  const int *bmode_costs;
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const int try_palette =
      av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
  uint8_t *best_palette_color_map =
      try_palette ? x->palette_buffer->best_palette_color_map : NULL;
  const MB_MODE_INFO *above_mi = xd->above_mbmi;
  const MB_MODE_INFO *left_mi = xd->left_mbmi;
  const PREDICTION_MODE A = av1_above_block_mode(above_mi);
  const PREDICTION_MODE L = av1_left_block_mode(left_mi);
  const int above_ctx = intra_mode_context[A];
  const int left_ctx = intra_mode_context[L];
  bmode_costs = x->y_mode_costs[above_ctx][left_ctx];

  mbmi->angle_delta[PLANE_TYPE_Y] = 0;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    highbd_angle_estimation(src, src_stride, rows, cols, bsize,
                            directional_mode_skip_mask);
  else
    angle_estimation(src, src_stride, rows, cols, bsize,
                     directional_mode_skip_mask);
  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  pmi->palette_size[0] = 0;

  if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
    x->use_default_intra_tx_type = 1;
  else
    x->use_default_intra_tx_type = 0;

  MB_MODE_INFO best_mbmi = *mbmi;
  /* Y Search for intra prediction mode */
  for (int mode_idx = DC_PRED; mode_idx < INTRA_MODES; ++mode_idx) {
    RD_STATS this_rd_stats;
    int this_rate, this_rate_tokenonly, s;
    int64_t this_distortion, this_rd, this_model_rd;
    mbmi->mode = intra_rd_search_mode_order[mode_idx];
    mbmi->angle_delta[PLANE_TYPE_Y] = 0;
    this_model_rd = intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode]);
    if (best_model_rd != INT64_MAX &&
        this_model_rd > best_model_rd + (best_model_rd >> 1))
      continue;
    if (this_model_rd < best_model_rd) best_model_rd = this_model_rd;
    is_directional_mode = av1_is_directional_mode(mbmi->mode);
    if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue;
    if (is_directional_mode && av1_use_angle_delta(bsize)) {
      this_rd_stats.rate = INT_MAX;
      rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rd_stats, bsize,
                              bmode_costs[mbmi->mode], best_rd, &best_model_rd);
    } else {
      super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
    }
    this_rate_tokenonly = this_rd_stats.rate;
    this_distortion = this_rd_stats.dist;
    s = this_rd_stats.skip;

    if (this_rate_tokenonly == INT_MAX) continue;

    if (!xd->lossless[mbmi->segment_id] &&
        block_signals_txsize(mbmi->sb_type)) {
      // super_block_yrd above includes the cost of the tx_size in the
      // tokenonly rate, but for intra blocks, tx_size is always coded
      // (prediction granularity), so we account for it in the full rate,
      // not the tokenonly rate.
      this_rate_tokenonly -=
          tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size);
    }
    this_rate =
        this_rd_stats.rate +
        intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
    this_rd = RDCOST(x->rdmult, this_rate, this_distortion);
    if (this_rd < best_rd) {
      best_mbmi = *mbmi;
      best_rd = this_rd;
      beat_best_rd = 1;
      *rate = this_rate;
      *rate_tokenonly = this_rate_tokenonly;
      *distortion = this_distortion;
      *skippable = s;
      memcpy(ctx->blk_skip, x->blk_skip,
             sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
    }
  }

  if (try_palette) {
    rd_pick_palette_intra_sby(cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi,
                              best_palette_color_map, &best_rd, &best_model_rd,
                              rate, rate_tokenonly, distortion, skippable, ctx,
                              ctx->blk_skip);
  }

  if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) {
    if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
                                 skippable, bsize, bmode_costs[DC_PRED],
                                 &best_rd, &best_model_rd, ctx)) {
      best_mbmi = *mbmi;
    }
  }

  // If previous searches use only the default tx type, do an extra search for
  // the best tx type.
  if (x->use_default_intra_tx_type) {
    *mbmi = best_mbmi;
    x->use_default_intra_tx_type = 0;
    intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly,
                    distortion, skippable, &best_mbmi, ctx);
  }

  *mbmi = best_mbmi;
  return best_rd;
}

// Return value 0: early termination triggered, no valid rd cost available;
//              1: rd cost values are valid.
static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x,
                            RD_STATS *rd_stats, BLOCK_SIZE bsize,
                            int64_t ref_best_rd) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U];
  const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
  int plane;
  int is_cost_valid = 1;
  av1_init_rd_stats(rd_stats);

  if (ref_best_rd < 0) is_cost_valid = 0;

  if (x->skip_chroma_rd) return is_cost_valid;

  bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);

  if (is_inter_block(mbmi) && is_cost_valid) {
    for (plane = 1; plane < MAX_MB_PLANE; ++plane)
      av1_subtract_plane(x, bsize, plane);
  }

  if (is_cost_valid) {
    for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
      RD_STATS pn_rd_stats;
      txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize,
                       uv_tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
      if (pn_rd_stats.rate == INT_MAX) {
        is_cost_valid = 0;
        break;
      }
      av1_merge_rd_stats(rd_stats, &pn_rd_stats);
      if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) > ref_best_rd &&
          RDCOST(x->rdmult, 0, rd_stats->sse) > ref_best_rd) {
        is_cost_valid = 0;
        break;
      }
    }
  }

  if (!is_cost_valid) {
    // reset cost value
    av1_invalid_rd_stats(rd_stats);
  }

  return is_cost_valid;
}

static void tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size,
                          int blk_row, int blk_col, int plane, int block,
                          int plane_bsize, const ENTROPY_CONTEXT *a,
                          const ENTROPY_CONTEXT *l, RD_STATS *rd_stats,
                          FAST_TX_SEARCH_MODE ftxs_mode, int64_t ref_rdcost,
                          TXB_RD_INFO *rd_info_array) {
  const struct macroblock_plane *const p = &x->plane[plane];
  TXB_CTX txb_ctx;
  get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
  const uint16_t cur_joint_ctx =
      (txb_ctx.dc_sign_ctx << 8) + txb_ctx.txb_skip_ctx;

  const int txk_type_idx =
      av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
  // Look up RD and terminate early in case when we've already processed exactly
  // the same residual with exactly the same entropy context.
  if (rd_info_array != NULL && rd_info_array->valid &&
      rd_info_array->entropy_context == cur_joint_ctx) {
    if (plane == 0)
      x->e_mbd.mi[0]->txk_type[txk_type_idx] = rd_info_array->tx_type;
    const TX_TYPE ref_tx_type =
        av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col,
                        tx_size, cpi->common.reduced_tx_set_used);
    if (ref_tx_type == rd_info_array->tx_type) {
      rd_stats->rate += rd_info_array->rate;
      rd_stats->dist += rd_info_array->dist;
      rd_stats->sse += rd_info_array->sse;
      rd_stats->skip &= rd_info_array->eob == 0;
      p->eobs[block] = rd_info_array->eob;
      p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx;
      return;
    }
  }

  RD_STATS this_rd_stats;
  search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
                  &txb_ctx, ftxs_mode, 0, ref_rdcost, &this_rd_stats);

  av1_merge_rd_stats(rd_stats, &this_rd_stats);

  // Save RD results for possible reuse in future.
  if (rd_info_array != NULL) {
    rd_info_array->valid = 1;
    rd_info_array->entropy_context = cur_joint_ctx;
    rd_info_array->rate = this_rd_stats.rate;
    rd_info_array->dist = this_rd_stats.dist;
    rd_info_array->sse = this_rd_stats.sse;
    rd_info_array->eob = p->eobs[block];
    rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block];
    if (plane == 0) {
      rd_info_array->tx_type = x->e_mbd.mi[0]->txk_type[txk_type_idx];
    }
  }
}

static void get_mean_and_dev(const int16_t *data, int stride, int bw, int bh,
                             float *mean, float *dev) {
  int x_sum = 0;
  uint64_t x2_sum = 0;
  for (int i = 0; i < bh; ++i) {
    for (int j = 0; j < bw; ++j) {
      const int val = data[j];
      x_sum += val;
      x2_sum += val * val;
    }
    data += stride;
  }

  const int num = bw * bh;
  const float e_x = (float)x_sum / num;
  const float e_x2 = (float)((double)x2_sum / num);
  const float diff = e_x2 - e_x * e_x;
  *dev = (diff > 0) ? sqrtf(diff) : 0;
  *mean = e_x;
}

static void get_mean_and_dev_float(const float *data, int stride, int bw,
                                   int bh, float *mean, float *dev) {
  float x_sum = 0;
  float x2_sum = 0;
  for (int i = 0; i < bh; ++i) {
    for (int j = 0; j < bw; ++j) {
      const float val = data[j];
      x_sum += val;
      x2_sum += val * val;
    }
    data += stride;
  }

  const int num = bw * bh;
  const float e_x = x_sum / num;
  const float e_x2 = x2_sum / num;
  const float diff = e_x2 - e_x * e_x;
  *dev = (diff > 0) ? sqrtf(diff) : 0;
  *mean = e_x;
}

// Feature used by the model to predict tx split: the mean and standard
// deviation values of the block and sub-blocks.
static void get_mean_dev_features(const int16_t *data, int stride, int bw,
                                  int bh, int levels, float *feature) {
  int feature_idx = 0;
  int width = bw;
  int height = bh;
  const int16_t *const data_ptr = &data[0];
  for (int lv = 0; lv < levels; ++lv) {
    if (width < 2 || height < 2) break;
    float mean_buf[16];
    float dev_buf[16];
    int blk_idx = 0;
    for (int row = 0; row < bh; row += height) {
      for (int col = 0; col < bw; col += width) {
        float mean, dev;
        get_mean_and_dev(data_ptr + row * stride + col, stride, width, height,
                         &mean, &dev);
        feature[feature_idx++] = mean;
        feature[feature_idx++] = dev;
        mean_buf[blk_idx] = mean;
        dev_buf[blk_idx++] = dev;
      }
    }
    if (blk_idx > 1) {
      float mean, dev;
      // Deviation of means.
      get_mean_and_dev_float(mean_buf, 1, 1, blk_idx, &mean, &dev);
      feature[feature_idx++] = dev;
      // Mean of deviations.
      get_mean_and_dev_float(dev_buf, 1, 1, blk_idx, &mean, &dev);
      feature[feature_idx++] = mean;
    }
    // Reduce the block size when proceeding to the next level.
    if (height == width) {
      height = height >> 1;
      width = width >> 1;
    } else if (height > width) {
      height = height >> 1;
    } else {
      width = width >> 1;
    }
  }
}

static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row,
                               int blk_col, TX_SIZE tx_size) {
  const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size];
  if (!nn_config) return -1;

  const int diff_stride = block_size_wide[bsize];
  const int16_t *diff =
      x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col;
  const int bw = tx_size_wide[tx_size];
  const int bh = tx_size_high[tx_size];
  aom_clear_system_state();

  float features[64] = { 0.0f };
  get_mean_dev_features(diff, diff_stride, bw, bh, 2, features);

  float score = 0.0f;
  av1_nn_predict(features, nn_config, &score);
  if (score > 8.0f) return 100;
  if (score < -8.0f) return 0;
  score = 1.0f / (1.0f + (float)exp(-score));
  return (int)(score * 100);
}

typedef struct {
  int64_t rd;
  int txb_entropy_ctx;
  TX_TYPE tx_type;
} TxCandidateInfo;

static void try_tx_block_no_split(
    const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
    TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize,
    const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl,
    int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd,
    FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node,
    TxCandidateInfo *no_split) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  struct macroblock_plane *const p = &x->plane[0];
  const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];

  no_split->rd = INT64_MAX;
  no_split->txb_entropy_ctx = 0;
  no_split->tx_type = TX_TYPES;

  const ENTROPY_CONTEXT *const pta = ta + blk_col;
  const ENTROPY_CONTEXT *const ptl = tl + blk_row;

  const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
  TXB_CTX txb_ctx;
  get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx);
  const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y]
                                .txb_skip_cost[txb_ctx.txb_skip_ctx][1];

  rd_stats->ref_rdcost = ref_best_rd;
  rd_stats->zero_rate = zero_blk_rate;
  const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col);
  mbmi->inter_tx_size[index] = tx_size;
  tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, pta,
                ptl, rd_stats, ftxs_mode, ref_best_rd,
                rd_info_node != NULL ? rd_info_node->rd_info_array : NULL);
  assert(rd_stats->rate < INT_MAX);

  if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
           RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
       rd_stats->skip == 1) &&
      !xd->lossless[mbmi->segment_id]) {
#if CONFIG_RD_DEBUG
    av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col,
                              zero_blk_rate - rd_stats->rate);
#endif  // CONFIG_RD_DEBUG
    rd_stats->rate = zero_blk_rate;
    rd_stats->dist = rd_stats->sse;
    rd_stats->skip = 1;
    x->blk_skip[blk_row * bw + blk_col] = 1;
    p->eobs[block] = 0;
    update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                     DCT_DCT);
  } else {
    x->blk_skip[blk_row * bw + blk_col] = 0;
    rd_stats->skip = 0;
  }

  if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
    rd_stats->rate += x->txfm_partition_cost[txfm_partition_ctx][0];

  no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
  no_split->txb_entropy_ctx = p->txb_entropy_ctx[block];
  const int txk_type_idx =
      av1_get_txk_type_index(plane_bsize, blk_row, blk_col);
  no_split->tx_type = mbmi->txk_type[txk_type_idx];
}

static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
                            int blk_col, int block, TX_SIZE tx_size, int depth,
                            BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
                            ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above,
                            TXFM_CONTEXT *tx_left, RD_STATS *rd_stats,
                            int64_t ref_best_rd, int *is_cost_valid,
                            FAST_TX_SEARCH_MODE ftxs_mode,
                            TXB_RD_INFO_NODE *rd_info_node);

static void try_tx_block_split(
    const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block,
    TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
    ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
    int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd,
    FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node,
    RD_STATS *split_rd_stats, int64_t *split_rd) {
  MACROBLOCKD *const xd = &x->e_mbd;
  const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
  struct macroblock_plane *const p = &x->plane[0];
  const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
  const int bsw = tx_size_wide_unit[sub_txs];
  const int bsh = tx_size_high_unit[sub_txs];
  const int sub_step = bsw * bsh;
  RD_STATS this_rd_stats;
  int this_cost_valid = 1;
  int64_t tmp_rd = 0;
#if CONFIG_DIST_8X8
  int sub8x8_eob[4] = { 0, 0, 0, 0 };
  struct macroblockd_plane *const pd = &xd->plane[0];
#endif
  split_rd_stats->rate = x->txfm_partition_cost[txfm_partition_ctx][1];

  assert(tx_size < TX_SIZES_ALL);

  int blk_idx = 0;
  for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
    for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) {
      const int offsetr = blk_row + r;
      const int offsetc = blk_col + c;
      if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
      assert(blk_idx < 4);
      select_tx_block(
          cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta,
          tl, tx_above, tx_left, &this_rd_stats, ref_best_rd - tmp_rd,
          &this_cost_valid, ftxs_mode,
          (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL);

#if CONFIG_DIST_8X8
      if (!x->using_dist_8x8)
#endif
        if (!this_cost_valid) goto LOOP_EXIT;
#if CONFIG_DIST_8X8
      if (x->using_dist_8x8 && tx_size == TX_8X8) {
        sub8x8_eob[2 * (r / bsh) + (c / bsw)] = p->eobs[block];
      }
#endif  // CONFIG_DIST_8X8
      av1_merge_rd_stats(split_rd_stats, &this_rd_stats);

      tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
#if CONFIG_DIST_8X8
      if (!x->using_dist_8x8)
#endif
        if (no_split_rd < tmp_rd) {
          this_cost_valid = 0;
          goto LOOP_EXIT;
        }
      block += sub_step;
    }
  }

LOOP_EXIT : {}

#if CONFIG_DIST_8X8
  if (x->using_dist_8x8 && this_cost_valid && tx_size == TX_8X8) {
    const int src_stride = p->src.stride;
    const int dst_stride = pd->dst.stride;

    const uint8_t *src =
        &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
    const uint8_t *dst =
        &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];

    int64_t dist_8x8;
    const int qindex = x->qindex;
    const int pred_stride = block_size_wide[plane_bsize];
    const int pred_idx = (blk_row * pred_stride + blk_col)
                         << tx_size_wide_log2[0];
    const int16_t *pred = &x->pred_luma[pred_idx];
    int i, j;
    int row, col;

    uint8_t *pred8;
    DECLARE_ALIGNED(16, uint16_t, pred8_16[8 * 8]);

    dist_8x8 = av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, BLOCK_8X8,
                            8, 8, 8, 8, qindex) *
               16;

#ifdef DEBUG_DIST_8X8
    if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8)
      assert(sum_rd_stats.sse == dist_8x8);
#endif  // DEBUG_DIST_8X8

    split_rd_stats->sse = dist_8x8;

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
      pred8 = CONVERT_TO_BYTEPTR(pred8_16);
    else
      pred8 = (uint8_t *)pred8_16;

    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      for (row = 0; row < 2; ++row) {
        for (col = 0; col < 2; ++col) {
          int idx = row * 2 + col;
          int eob = sub8x8_eob[idx];

          if (eob > 0) {
            for (j = 0; j < 4; j++)
              for (i = 0; i < 4; i++)
                CONVERT_TO_SHORTPTR(pred8)
                [(row * 4 + j) * 8 + 4 * col + i] =
                    pred[(row * 4 + j) * pred_stride + 4 * col + i];
          } else {
            for (j = 0; j < 4; j++)
              for (i = 0; i < 4; i++)
                CONVERT_TO_SHORTPTR(pred8)
                [(row * 4 + j) * 8 + 4 * col + i] = CONVERT_TO_SHORTPTR(
                    dst)[(row * 4 + j) * dst_stride + 4 * col + i];
          }
        }
      }
    } else {
      for (row = 0; row < 2; ++row) {
        for (col = 0; col < 2; ++col) {
          int idx = row * 2 + col;
          int eob = sub8x8_eob[idx];

          if (eob > 0) {
            for (j = 0; j < 4; j++)
              for (i = 0; i < 4; i++)
                pred8[(row * 4 + j) * 8 + 4 * col + i] =
                    (uint8_t)pred[(row * 4 + j) * pred_stride + 4 * col + i];
          } else {
            for (j = 0; j < 4; j++)
              for (i = 0; i < 4; i++)
                pred8[(row * 4 + j) * 8 + 4 * col + i] =
                    dst[(row * 4 + j) * dst_stride + 4 * col + i];
          }
        }
      }
    }
    dist_8x8 = av1_dist_8x8(cpi, x, src, src_stride, pred8, 8, BLOCK_8X8, 8, 8,
                            8, 8, qindex) *
               16;

#ifdef DEBUG_DIST_8X8
    if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8)
      assert(sum_rd_stats.dist == dist_8x8);
#endif  // DEBUG_DIST_8X8

    split_rd_stats->dist = dist_8x8;
    tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist);
  }
#endif  // CONFIG_DIST_8X8
  if (this_cost_valid) *split_rd = tmp_rd;
}

// Search for the best tx partition/type for a given luma block.
static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
                            int blk_col, int block, TX_SIZE tx_size, int depth,
                            BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta,
                            ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above,
                            TXFM_CONTEXT *tx_left, RD_STATS *rd_stats,
                            int64_t ref_best_rd, int *is_cost_valid,
                            FAST_TX_SEARCH_MODE ftxs_mode,
                            TXB_RD_INFO_NODE *rd_info_node) {
  assert(tx_size < TX_SIZES_ALL);
  av1_init_rd_stats(rd_stats);
  if (ref_best_rd < 0) {
    *is_cost_valid = 0;
    return;
  }

  MACROBLOCKD *const xd = &x->e_mbd;
  const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
                                         mbmi->sb_type, tx_size);
  struct macroblock_plane *const p = &x->plane[0];

  const int try_no_split = 1;
  int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH;

  TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES };

  // TX no split
  if (try_no_split) {
    try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
                          plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd,
                          ftxs_mode, rd_info_node, &no_split);

    if (cpi->sf.adaptive_txb_search_level &&
        (no_split.rd -
         (no_split.rd >> (1 + cpi->sf.adaptive_txb_search_level))) >
            ref_best_rd) {
      *is_cost_valid = 0;
      return;
    }

    if (cpi->sf.txb_split_cap) {
      if (p->eobs[block] == 0) try_split = 0;
    }
  }

  if (x->e_mbd.bd == 8 && !x->cb_partition_scan && try_split) {
    const int threshold = cpi->sf.tx_type_search.ml_tx_split_thresh;
    if (threshold >= 0) {
      const int split_score =
          ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size);
      if (split_score >= 0 && split_score < threshold) try_split = 0;
    }
  }

#if COLLECT_TX_SIZE_DATA
  // Do not skip tx_split when collecting tx size data.
  try_split = 1;
#endif

  // TX split
  int64_t split_rd = INT64_MAX;
  RD_STATS split_rd_stats;
  av1_init_rd_stats(&split_rd_stats);
  if (try_split) {
    try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth,
                       plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd,
                       AOMMIN(no_split.rd, ref_best_rd), ftxs_mode,
                       rd_info_node, &split_rd_stats, &split_rd);
  }

#if COLLECT_TX_SIZE_DATA
  do {
    if (tx_size <= TX_4X4 || depth >= MAX_VARTX_DEPTH) break;

#if 0
    // Randomly select blocks to collect data to reduce output file size.
    const int rnd_val = rand() % 2;
    if (rnd_val) break;
#endif

    const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
    const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
    const int within_border =
        mi_row >= xd->tile.mi_row_start &&
        (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) &&
        mi_col >= xd->tile.mi_col_start &&
        (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end);
    if (!within_border) break;

    FILE *fp = fopen(av1_tx_size_data_output_file, "a");
    if (!fp) break;

    // Split decision, RD cost, block type(inter/intra), q-index, rdmult,
    // and block size.
    const int split_selected = sum_rd < this_rd;
    const int is_inter = 1;
    const int txb_w = tx_size_wide[tx_size];
    const int txb_h = tx_size_high[tx_size];
    fprintf(fp, "%d,%lld,%lld,%d,%d,%d,%d,%d,", split_selected,
            (long long)this_rd, (long long)sum_rd, cpi->common.base_qindex,
            x->rdmult, is_inter, txb_w, txb_h);

    // Residue signal.
    const int diff_stride = block_size_wide[plane_bsize];
    const int16_t *src_diff =
        &p->src_diff[(blk_row * diff_stride + blk_col) * 4];
    for (int r = 0; r < txb_h; ++r) {
      for (int c = 0; c < txb_w; ++c) {
        fprintf(fp, "%d,", src_diff[c]);
      }
      src_diff += diff_stride;
    }
    fprintf(fp, "\n");

    fclose(fp);
  } while (0);
#endif  // COLLECT_TX_SIZE_DATA

  if (no_split.rd < split_rd) {
    ENTROPY_CONTEXT *pta = ta + blk_col;
    ENTROPY_CONTEXT *ptl = tl + blk_row;
    const TX_SIZE tx_size_selected = tx_size;
    p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx;
    av1_set_txb_context(x, 0, block, tx_size_selected, pta, ptl);
    txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
                          tx_size);
    for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
      for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
        const int index =
            av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx);
        mbmi->inter_tx_size[index] = tx_size_selected;
      }
    }
    mbmi->tx_size = tx_size_selected;
    update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                     no_split.tx_type);
    x->blk_skip[blk_row * bw + blk_col] = rd_stats->skip;
  } else {
    *rd_stats = split_rd_stats;
    if (split_rd == INT64_MAX) *is_cost_valid = 0;
  }
}

static void select_inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
                                   RD_STATS *rd_stats, BLOCK_SIZE bsize,
                                   int64_t ref_best_rd,
                                   FAST_TX_SEARCH_MODE ftxs_mode,
                                   TXB_RD_INFO_NODE *rd_info_tree) {
  MACROBLOCKD *const xd = &x->e_mbd;
  int is_cost_valid = 1;
  int64_t this_rd = 0;

  if (ref_best_rd < 0) is_cost_valid = 0;

  av1_init_rd_stats(rd_stats);

  if (is_cost_valid) {
    const struct macroblockd_plane *const pd = &xd->plane[0];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    const int mi_width = mi_size_wide[plane_bsize];
    const int mi_height = mi_size_high[plane_bsize];
    const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
    const int bh = tx_size_high_unit[max_tx_size];
    const int bw = tx_size_wide_unit[max_tx_size];
    int idx, idy;
    int block = 0;
    int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
    ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
    ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
    TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
    TXFM_CONTEXT tx_left[MAX_MIB_SIZE];

    RD_STATS pn_rd_stats;
    const int init_depth =
        get_search_init_depth(mi_width, mi_height, 1, &cpi->sf);
    av1_init_rd_stats(&pn_rd_stats);

    av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
    memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
    memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);

    for (idy = 0; idy < mi_height; idy += bh) {
      for (idx = 0; idx < mi_width; idx += bw) {
        select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth,
                        plane_bsize, ctxa, ctxl, tx_above, tx_left,
                        &pn_rd_stats, ref_best_rd - this_rd, &is_cost_valid,
                        ftxs_mode, rd_info_tree);
        if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) {
          av1_invalid_rd_stats(rd_stats);
          return;
        }
        av1_merge_rd_stats(rd_stats, &pn_rd_stats);
        this_rd +=
            AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
                   RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
        block += step;
        if (rd_info_tree != NULL) rd_info_tree += 1;
      }
    }
  }

  const int skip_ctx = av1_get_skip_context(xd);
  const int s0 = x->skip_cost[skip_ctx][0];
  const int s1 = x->skip_cost[skip_ctx][1];
  int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse);
  this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);
  if (skip_rd <= this_rd) {
    this_rd = skip_rd;
    rd_stats->rate = 0;
    rd_stats->dist = rd_stats->sse;
    rd_stats->skip = 1;
  } else {
    rd_stats->skip = 0;
  }
  if (this_rd > ref_best_rd) is_cost_valid = 0;

  if (!is_cost_valid) {
    // reset cost value
    av1_invalid_rd_stats(rd_stats);
  }
}

static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x,
                                       RD_STATS *rd_stats, BLOCK_SIZE bsize,
                                       int64_t ref_best_rd,
                                       TXB_RD_INFO_NODE *rd_info_tree) {
  const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_inter = is_inter_block(mbmi);
  const int skip_ctx = av1_get_skip_context(xd);
  int s0 = x->skip_cost[skip_ctx][0];
  int s1 = x->skip_cost[skip_ctx][1];
  int64_t rd;

  // TODO(debargha): enable this as a speed feature where the
  // select_inter_block_yrd() function above will use a simplified search
  // such as not using full optimize, but the inter_block_yrd() function
  // will use more complex search given that the transform partitions have
  // already been decided.

  int64_t rd_thresh = ref_best_rd;
  if (fast_tx_search && rd_thresh < INT64_MAX) {
    if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3);
  }
  assert(rd_thresh > 0);

  FAST_TX_SEARCH_MODE ftxs_mode =
      fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE;
  select_inter_block_yrd(cpi, x, rd_stats, bsize, rd_thresh, ftxs_mode,
                         rd_info_tree);
  if (rd_stats->rate == INT_MAX) return INT64_MAX;

  // If fast_tx_search is true, only DCT and 1D DCT were tested in
  // select_inter_block_yrd() above. Do a better search for tx type with
  // tx sizes already decided.
  if (fast_tx_search) {
    if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE))
      return INT64_MAX;
  }

  if (rd_stats->skip)
    rd = RDCOST(x->rdmult, s1, rd_stats->sse);
  else
    rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);

  if (is_inter && !xd->lossless[xd->mi[0]->segment_id] && !(rd_stats->skip))
    rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse));

  return rd;
}

// Finds rd cost for a y block, given the transform size partitions
static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
                         int blk_col, int block, TX_SIZE tx_size,
                         BLOCK_SIZE plane_bsize, int depth,
                         ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx,
                         TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
                         int64_t ref_best_rd, RD_STATS *rd_stats,
                         FAST_TX_SEARCH_MODE ftxs_mode) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);

  assert(tx_size < TX_SIZES_ALL);

  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index(
      plane_bsize, blk_row, blk_col)];

  int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row,
                                   mbmi->sb_type, tx_size);

  av1_init_rd_stats(rd_stats);
  if (tx_size == plane_tx_size) {
    ENTROPY_CONTEXT *ta = above_ctx + blk_col;
    ENTROPY_CONTEXT *tl = left_ctx + blk_row;
    const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size);
    TXB_CTX txb_ctx;
    get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx);

    const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(0)]
                                  .txb_skip_cost[txb_ctx.txb_skip_ctx][1];
    rd_stats->zero_rate = zero_blk_rate;
    rd_stats->ref_rdcost = ref_best_rd;
    tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, ta,
                  tl, rd_stats, ftxs_mode, ref_best_rd, NULL);
    const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
    if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >=
            RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) ||
        rd_stats->skip == 1) {
      rd_stats->rate = zero_blk_rate;
      rd_stats->dist = rd_stats->sse;
      rd_stats->skip = 1;
      x->blk_skip[blk_row * mi_width + blk_col] = 1;
      x->plane[0].eobs[block] = 0;
      x->plane[0].txb_entropy_ctx[block] = 0;
      update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size,
                       DCT_DCT);
    } else {
      rd_stats->skip = 0;
      x->blk_skip[blk_row * mi_width + blk_col] = 0;
    }
    if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
      rd_stats->rate += x->txfm_partition_cost[ctx][0];
    av1_set_txb_context(x, 0, block, tx_size, ta, tl);
    txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size,
                          tx_size);
  } else {
    const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
    const int bsw = tx_size_wide_unit[sub_txs];
    const int bsh = tx_size_high_unit[sub_txs];
    const int step = bsh * bsw;
    RD_STATS pn_rd_stats;
    int64_t this_rd = 0;
    assert(bsw > 0 && bsh > 0);

    for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
      for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
        const int offsetr = blk_row + row;
        const int offsetc = blk_col + col;

        if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;

        av1_init_rd_stats(&pn_rd_stats);
        tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize,
                     depth + 1, above_ctx, left_ctx, tx_above, tx_left,
                     ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
        if (pn_rd_stats.rate == INT_MAX) {
          av1_invalid_rd_stats(rd_stats);
          return;
        }
        av1_merge_rd_stats(rd_stats, &pn_rd_stats);
        this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist);
        block += step;
      }
    }

    if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
      rd_stats->rate += x->txfm_partition_cost[ctx][1];
  }
}

// Return value 0: early termination triggered, no valid rd cost available;
//              1: rd cost values are valid.
static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
                           RD_STATS *rd_stats, BLOCK_SIZE bsize,
                           int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) {
  MACROBLOCKD *const xd = &x->e_mbd;
  int is_cost_valid = 1;
  int64_t this_rd = 0;

  if (ref_best_rd < 0) is_cost_valid = 0;

  av1_init_rd_stats(rd_stats);

  if (is_cost_valid) {
    const struct macroblockd_plane *const pd = &xd->plane[0];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    const int mi_width = mi_size_wide[plane_bsize];
    const int mi_height = mi_size_high[plane_bsize];
    const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
    const int bh = tx_size_high_unit[max_tx_size];
    const int bw = tx_size_wide_unit[max_tx_size];
    const int init_depth =
        get_search_init_depth(mi_width, mi_height, 1, &cpi->sf);
    int idx, idy;
    int block = 0;
    int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
    ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE];
    ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE];
    TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
    TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
    RD_STATS pn_rd_stats;

    av1_get_entropy_contexts(bsize, pd, ctxa, ctxl);
    memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width);
    memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height);

    for (idy = 0; idy < mi_height; idy += bh) {
      for (idx = 0; idx < mi_width; idx += bw) {
        av1_init_rd_stats(&pn_rd_stats);
        tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, plane_bsize,
                     init_depth, ctxa, ctxl, tx_above, tx_left,
                     ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode);
        if (pn_rd_stats.rate == INT_MAX) {
          av1_invalid_rd_stats(rd_stats);
          return 0;
        }
        av1_merge_rd_stats(rd_stats, &pn_rd_stats);
        this_rd +=
            AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist),
                   RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse));
        block += step;
      }
    }
  }

  const int skip_ctx = av1_get_skip_context(xd);
  const int s0 = x->skip_cost[skip_ctx][0];
  const int s1 = x->skip_cost[skip_ctx][1];
  int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse);
  this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist);
  if (skip_rd < this_rd) {
    this_rd = skip_rd;
    rd_stats->rate = 0;
    rd_stats->dist = rd_stats->sse;
    rd_stats->skip = 1;
  }
  if (this_rd > ref_best_rd) is_cost_valid = 0;

  if (!is_cost_valid) {
    // reset cost value
    av1_invalid_rd_stats(rd_stats);
  }
  return is_cost_valid;
}

static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) {
  const int rows = block_size_high[bsize];
  const int cols = block_size_wide[bsize];
  const int16_t *diff = x->plane[0].src_diff;
  const uint32_t hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator,
                                             (uint8_t *)diff, 2 * rows * cols);
  return (hash << 5) + bsize;
}

static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x,
                            const RD_STATS *const rd_stats,
                            MB_RD_RECORD *tx_rd_record) {
  int index;
  if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) {
    index =
        (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN;
    ++tx_rd_record->num;
  } else {
    index = tx_rd_record->index_start;
    tx_rd_record->index_start =
        (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN;
  }
  MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index];
  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  tx_rd_info->hash_value = hash;
  tx_rd_info->tx_size = mbmi->tx_size;
  memcpy(tx_rd_info->blk_skip, x->blk_skip,
         sizeof(tx_rd_info->blk_skip[0]) * n4);
  av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size);
  av1_copy(tx_rd_info->txk_type, mbmi->txk_type);
  tx_rd_info->rd_stats = *rd_stats;
}

static void fetch_tx_rd_info(int n4, const MB_RD_INFO *const tx_rd_info,
                             RD_STATS *const rd_stats, MACROBLOCK *const x) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  mbmi->tx_size = tx_rd_info->tx_size;
  memcpy(x->blk_skip, tx_rd_info->blk_skip,
         sizeof(tx_rd_info->blk_skip[0]) * n4);
  av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size);
  av1_copy(mbmi->txk_type, tx_rd_info->txk_type);
  *rd_stats = tx_rd_info->rd_stats;
}

static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record,
                                const uint32_t hash) {
  // Linear search through the circular buffer to find matching hash.
  int index;
  for (int i = cur_record->num - 1; i >= 0; i--) {
    index = (cur_record->index_start + i) % TX_SIZE_RD_RECORD_BUFFER_LEN;
    if (cur_record->hash_vals[index] == hash) return index;
  }

  // If not found - add new RD info into the buffer and return its index
  if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) {
    index = (cur_record->index_start + cur_record->num) %
            TX_SIZE_RD_RECORD_BUFFER_LEN;
    cur_record->num++;
  } else {
    index = cur_record->index_start;
    cur_record->index_start =
        (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN;
  }

  cur_record->hash_vals[index] = hash;
  av1_zero(cur_record->tx_rd_info[index]);
  return index;
}

// Go through all TX blocks that could be used in TX size search, compute
// residual hash values for them and find matching RD info that stores previous
// RD search results for these TX blocks. The idea is to prevent repeated
// rate/distortion computations that happen because of the combination of
// partition and TX size search. The resulting RD info records are returned in
// the form of a quadtree for easier access in actual TX size search.
static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
                                   int mi_col, TXB_RD_INFO_NODE *dst_rd_info) {
  TXB_RD_RECORD *rd_records_table[4] = { x->txb_rd_record_8X8,
                                         x->txb_rd_record_16X16,
                                         x->txb_rd_record_32X32,
                                         x->txb_rd_record_64X64 };
  const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize];
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];

  // Hashing is performed only for square TX sizes larger than TX_4X4
  if (max_square_tx_size < TX_8X8) return 0;

  const int bw_mi = mi_size_wide[bsize];
  const int diff_stride = bw;
  const struct macroblock_plane *const p = &x->plane[0];
  const int16_t *diff = &p->src_diff[0];

  // Coordinates of the top-left corner of current block within the superblock
  // measured in pixels:
  const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2;
  const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2;
  int cur_rd_info_idx = 0;
  int cur_tx_depth = 0;
  uint8_t parent_idx_buf[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
  uint8_t child_idx_buf[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
  TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize];
  while (cur_tx_depth <= MAX_VARTX_DEPTH) {
    const int cur_tx_bw = tx_size_wide[cur_tx_size];
    const int cur_tx_bh = tx_size_high[cur_tx_size];
    if (cur_tx_bw < 8 || cur_tx_bh < 8) break;
    const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size];
    for (int row = 0; row < bh; row += cur_tx_bh) {
      for (int col = 0; col < bw; col += cur_tx_bw) {
        if (cur_tx_bw != cur_tx_bh) {
          // Use dummy nodes for all rectangular transforms within the
          // TX size search tree.
          dst_rd_info[cur_rd_info_idx].rd_info_array = NULL;
        } else {
          // Get spatial location of this TX block within the superblock
          // (measured in cur_tx_bsize units).
          const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh;
          const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw;

          int16_t hash_data[MAX_SB_SQUARE];
          int16_t *cur_hash_row = hash_data;
          const int16_t *cur_diff_row = diff + row * diff_stride + col;
          for (int i = 0; i < cur_tx_bh; i++) {
            memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw);
            cur_hash_row += cur_tx_bw;
            cur_diff_row += diff_stride;
          }
          const int hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator,
                                                (uint8_t *)hash_data,
                                                2 * cur_tx_bw * cur_tx_bh);

          // Find corresponding RD info based on the hash value.
          const int rd_record_idx =
              row_in_sb * (MAX_MIB_SIZE >> (cur_tx_size + 1 - TX_8X8)) +
              col_in_sb;

          int idx = find_tx_size_rd_info(
              &rd_records_table[cur_tx_size - TX_8X8][rd_record_idx], hash);
          dst_rd_info[cur_rd_info_idx].rd_info_array =
              &rd_records_table[cur_tx_size - TX_8X8][rd_record_idx]
                   .tx_rd_info[idx];
        }

        // Update the output quadtree RD info structure.
        av1_zero(dst_rd_info[cur_rd_info_idx].children);
        const int this_mi_row = row / MI_SIZE;
        const int this_mi_col = col / MI_SIZE;
        if (cur_tx_depth > 0) {  // Set up child pointers.
          const int mi_index = this_mi_row * bw_mi + this_mi_col;
          const int child_idx = child_idx_buf[mi_index];
          assert(child_idx < 4);
          dst_rd_info[parent_idx_buf[mi_index]].children[child_idx] =
              &dst_rd_info[cur_rd_info_idx];
        }
        if (cur_tx_depth < MAX_VARTX_DEPTH) {  // Set up parent and child idx.
          const int tx_bh_mi = cur_tx_bh / MI_SIZE;
          const int tx_bw_mi = cur_tx_bw / MI_SIZE;
          for (int i = this_mi_row; i < this_mi_row + tx_bh_mi; ++i) {
            memset(parent_idx_buf + i * bw_mi + this_mi_col, cur_rd_info_idx,
                   tx_bw_mi);
          }
          int child_idx = 0;
          const int next_tx_bh_mi = tx_size_wide_unit[next_tx_size];
          const int next_tx_bw_mi = tx_size_wide_unit[next_tx_size];
          for (int i = this_mi_row; i < this_mi_row + tx_bh_mi;
               i += next_tx_bh_mi) {
            for (int j = this_mi_col; j < this_mi_col + tx_bw_mi;
                 j += next_tx_bw_mi) {
              assert(child_idx < 4);
              child_idx_buf[i * bw_mi + j] = child_idx++;
            }
          }
        }
        ++cur_rd_info_idx;
      }
    }
    cur_tx_size = next_tx_size;
    ++cur_tx_depth;
  }
  return 1;
}

// origin_threshold * 128 / 100
static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = {
  {
      64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68,
      68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68,
  },
  {
      88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68,
      68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68,
  },
  {
      90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74,
      74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74,
  },
};

// lookup table for predict_skip_flag
// int max_tx_size = max_txsize_rect_lookup[bsize];
// if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16)
//   max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16);
static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = {
  TX_4X4,   TX_4X8,   TX_8X4,   TX_8X8,   TX_8X16,  TX_16X8,
  TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16,
  TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16,  TX_16X4,
  TX_8X8,   TX_8X8,   TX_16X16, TX_16X16,
};

// Uses simple features on top of DCT coefficients to quickly predict
// whether optimal RD decision is to skip encoding the residual.
// The sse value is stored in dist.
static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist,
                             int reduced_tx_set) {
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const MACROBLOCKD *xd = &x->e_mbd;
  const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd);

  *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize, 1);
  const int64_t mse = *dist / bw / bh;
  // Normalized quantizer takes the transform upscaling factor (8 for tx size
  // smaller than 32) into account.
  const int16_t normalized_dc_q = dc_q >> 3;
  const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8;
  // Predict not to skip when mse is larger than threshold.
  if (mse > mse_thresh) return 0;

  const int max_tx_size = max_predict_sf_tx_size[bsize];
  const int tx_h = tx_size_high[max_tx_size];
  const int tx_w = tx_size_wide[max_tx_size];
  DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]);
  TxfmParam param;
  param.tx_type = DCT_DCT;
  param.tx_size = max_tx_size;
  param.bd = xd->bd;
  param.is_hbd = get_bitdepth_data_path_index(xd);
  param.lossless = 0;
  param.tx_set_type = av1_get_ext_tx_set_type(
      param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set);
  const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2);
  const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize];
  const int16_t *src_diff = x->plane[0].src_diff;
  const int n_coeff = tx_w * tx_h;
  const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
  const uint32_t dc_thresh = max_qcoef_thresh * dc_q;
  const uint32_t ac_thresh = max_qcoef_thresh * ac_q;
  for (int row = 0; row < bh; row += tx_h) {
    for (int col = 0; col < bw; col += tx_w) {
      av1_fwd_txfm(src_diff + col, coefs, bw, &param);
      // Operating on TX domain, not pixels; we want the QTX quantizers
      const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7);
      if (dc_coef >= dc_thresh) return 0;
      for (int i = 1; i < n_coeff; ++i) {
        const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7);
        if (ac_coef >= ac_thresh) return 0;
      }
    }
    src_diff += tx_h * bw;
  }
  return 1;
}

// Used to set proper context for early termination with skip = 1.
static void set_skip_flag(MACROBLOCK *x, RD_STATS *rd_stats, int bsize,
                          int64_t dist) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int n4 = bsize_to_num_blk(bsize);
  const TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
  memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN);
  memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size));
  mbmi->tx_size = tx_size;
  memset(x->blk_skip, 1, sizeof(x->blk_skip[0]) * n4);
  rd_stats->skip = 1;
  rd_stats->rate = 0;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2);
  rd_stats->dist = rd_stats->sse = (dist << 4);
}

static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
                               RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row,
                               int mi_col, int64_t ref_best_rd) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int64_t rd = INT64_MAX;
  int64_t best_rd = INT64_MAX;
  const int is_inter = is_inter_block(mbmi);
  const int n4 = bsize_to_num_blk(bsize);
  // Get the tx_size 1 level down
  const TX_SIZE min_tx_size = sub_tx_size_map[max_txsize_rect_lookup[bsize]];
  const TxSetType tx_set_type =
      av1_get_ext_tx_set_type(min_tx_size, is_inter, cm->reduced_tx_set_used);
  const int within_border =
      mi_row >= xd->tile.mi_row_start &&
      (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) &&
      mi_col >= xd->tile.mi_col_start &&
      (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end);

  av1_invalid_rd_stats(rd_stats);

  if (cpi->sf.model_based_prune_tx_search_level && ref_best_rd != INT64_MAX) {
    int model_rate;
    int64_t model_dist;
    int model_skip;
    model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist,
                    &model_skip, NULL, NULL, NULL, NULL);
    const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist);
    // If the modeled rd is a lot worse than the best so far, breakout.
    // TODO(debargha, urvang): Improve the model and make the check below
    // tighter.
    assert(cpi->sf.model_based_prune_tx_search_level >= 0 &&
           cpi->sf.model_based_prune_tx_search_level <= 2);
    if (!model_skip &&
        model_rd / (5 - cpi->sf.model_based_prune_tx_search_level) >
            ref_best_rd)
      return;
  }

  const uint32_t hash = get_block_residue_hash(x, bsize);
  MB_RD_RECORD *mb_rd_record = &x->mb_rd_record;

  if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_mb_rd_hash) {
    for (int i = 0; i < mb_rd_record->num; ++i) {
      const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN;
      // If there is a match in the tx_rd_record, fetch the RD decision and
      // terminate early.
      if (mb_rd_record->tx_rd_info[index].hash_value == hash) {
        MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[index];
        fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x);
        return;
      }
    }
  }

  // If we predict that skip is the optimal RD decision - set the respective
  // context and terminate early.
  int64_t dist;
  if (is_inter && cpi->sf.tx_type_search.use_skip_flag_prediction &&
      predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) {
    set_skip_flag(x, rd_stats, bsize, dist);
    // Save the RD search results into tx_rd_record.
    if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record);
    return;
  }

  // Precompute residual hashes and find existing or add new RD records to
  // store and reuse rate and distortion values to speed up TX size search.
  TXB_RD_INFO_NODE matched_rd_info[16 + 64 + 256];
  int found_rd_info = 0;
  if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_inter_txb_hash) {
    found_rd_info =
        find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info);
  }

  prune_tx(cpi, bsize, x, xd, tx_set_type);

  int found = 0;

  RD_STATS this_rd_stats;
  av1_init_rd_stats(&this_rd_stats);

  rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd,
                               found_rd_info ? matched_rd_info : NULL);
  assert(IMPLIES(this_rd_stats.skip && !this_rd_stats.invalid_rate,
                 this_rd_stats.rate == 0));

  ref_best_rd = AOMMIN(rd, ref_best_rd);
  if (rd < best_rd) {
    *rd_stats = this_rd_stats;
    found = 1;
  }

  // Reset the pruning flags.
  av1_zero(x->tx_search_prune);
  x->tx_split_prune_flag = 0;

  // We should always find at least one candidate unless ref_best_rd is less
  // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type
  // might have failed to find something better)
  assert(IMPLIES(!found, ref_best_rd != INT64_MAX));
  if (!found) return;

  // Save the RD search results into tx_rd_record.
  if (within_border && cpi->sf.use_mb_rd_hash)
    save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record);
}

static void tx_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
                          int blk_col, int plane, int block, TX_SIZE tx_size,
                          BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx,
                          ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats,
                          FAST_TX_SEARCH_MODE ftxs_mode) {
  assert(plane > 0);
  assert(tx_size < TX_SIZES_ALL);
  MACROBLOCKD *const xd = &x->e_mbd;
  const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
  const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
  if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;

  ENTROPY_CONTEXT *ta = above_ctx + blk_col;
  ENTROPY_CONTEXT *tl = left_ctx + blk_row;
  tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize,
                ta, tl, rd_stats, ftxs_mode, INT64_MAX, NULL);
  av1_set_txb_context(x, plane, block, tx_size, ta, tl);
}

// Return value 0: early termination triggered, no valid rd cost available;
//              1: rd cost values are valid.
static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x,
                            RD_STATS *rd_stats, BLOCK_SIZE bsize,
                            int64_t ref_best_rd,
                            FAST_TX_SEARCH_MODE ftxs_mode) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int plane;
  int is_cost_valid = 1;
  int64_t this_rd = 0;

  if (ref_best_rd < 0) is_cost_valid = 0;

  av1_init_rd_stats(rd_stats);

  if (x->skip_chroma_rd) return is_cost_valid;
  const BLOCK_SIZE bsizec = scale_chroma_bsize(
      bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y);

  if (is_inter_block(mbmi) && is_cost_valid) {
    for (plane = 1; plane < MAX_MB_PLANE; ++plane)
      av1_subtract_plane(x, bsizec, plane);
  }

  if (is_cost_valid) {
    for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
      const struct macroblockd_plane *const pd = &xd->plane[plane];
      const BLOCK_SIZE plane_bsize =
          get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y);
      const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
      const int mi_height =
          block_size_high[plane_bsize] >> tx_size_high_log2[0];
      const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
      const int bh = tx_size_high_unit[max_tx_size];
      const int bw = tx_size_wide_unit[max_tx_size];
      int idx, idy;
      int block = 0;
      const int step = bh * bw;
      ENTROPY_CONTEXT ta[MAX_MIB_SIZE];
      ENTROPY_CONTEXT tl[MAX_MIB_SIZE];
      RD_STATS pn_rd_stats;
      av1_init_rd_stats(&pn_rd_stats);
      av1_get_entropy_contexts(bsizec, pd, ta, tl);

      for (idy = 0; idy < mi_height; idy += bh) {
        for (idx = 0; idx < mi_width; idx += bw) {
          tx_block_uvrd(cpi, x, idy, idx, plane, block, max_tx_size,
                        plane_bsize, ta, tl, &pn_rd_stats, ftxs_mode);
          block += step;
        }
      }

      if (pn_rd_stats.rate == INT_MAX) {
        is_cost_valid = 0;
        break;
      }

      av1_merge_rd_stats(rd_stats, &pn_rd_stats);

      this_rd = AOMMIN(RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist),
                       RDCOST(x->rdmult, rd_stats->zero_rate, rd_stats->sse));

      if (this_rd > ref_best_rd) {
        is_cost_valid = 0;
        break;
      }
    }
  }

  if (!is_cost_valid) {
    // reset cost value
    av1_invalid_rd_stats(rd_stats);
  }

  return is_cost_valid;
}

static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
                                       int dc_mode_cost,
                                       uint8_t *best_palette_color_map,
                                       MB_MODE_INFO *const best_mbmi,
                                       int64_t *best_rd, int *rate,
                                       int *rate_tokenonly, int64_t *distortion,
                                       int *skippable) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  assert(
      av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type));
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const BLOCK_SIZE bsize = mbmi->sb_type;
  const SequenceHeader *const seq_params = &cpi->common.seq_params;
  int this_rate;
  int64_t this_rd;
  int colors_u, colors_v, colors;
  const int src_stride = x->plane[1].src.stride;
  const uint8_t *const src_u = x->plane[1].src.buf;
  const uint8_t *const src_v = x->plane[2].src.buf;
  uint8_t *const color_map = xd->plane[1].color_index_map;
  RD_STATS tokenonly_rd_stats;
  int plane_block_width, plane_block_height, rows, cols;
  av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
                           &plane_block_height, &rows, &cols);

  mbmi->uv_mode = UV_DC_PRED;

  int count_buf[1 << 12];  // Maximum (1 << 12) color levels.
  if (seq_params->use_highbitdepth) {
    colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols,
                                       seq_params->bit_depth, count_buf);
    colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols,
                                       seq_params->bit_depth, count_buf);
  } else {
    colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf);
    colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf);
  }

  uint16_t color_cache[2 * PALETTE_MAX_SIZE];
  const int n_cache = av1_get_palette_cache(xd, 1, color_cache);

  colors = colors_u > colors_v ? colors_u : colors_v;
  if (colors > 1 && colors <= 64) {
    int r, c, n, i, j;
    const int max_itr = 50;
    int lb_u, ub_u, val_u;
    int lb_v, ub_v, val_v;
    int *const data = x->palette_buffer->kmeans_data_buf;
    int centroids[2 * PALETTE_MAX_SIZE];

    uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
    uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
    if (seq_params->use_highbitdepth) {
      lb_u = src_u16[0];
      ub_u = src_u16[0];
      lb_v = src_v16[0];
      ub_v = src_v16[0];
    } else {
      lb_u = src_u[0];
      ub_u = src_u[0];
      lb_v = src_v[0];
      ub_v = src_v[0];
    }

    for (r = 0; r < rows; ++r) {
      for (c = 0; c < cols; ++c) {
        if (seq_params->use_highbitdepth) {
          val_u = src_u16[r * src_stride + c];
          val_v = src_v16[r * src_stride + c];
          data[(r * cols + c) * 2] = val_u;
          data[(r * cols + c) * 2 + 1] = val_v;
        } else {
          val_u = src_u[r * src_stride + c];
          val_v = src_v[r * src_stride + c];
          data[(r * cols + c) * 2] = val_u;
          data[(r * cols + c) * 2 + 1] = val_v;
        }
        if (val_u < lb_u)
          lb_u = val_u;
        else if (val_u > ub_u)
          ub_u = val_u;
        if (val_v < lb_v)
          lb_v = val_v;
        else if (val_v > ub_v)
          ub_v = val_v;
      }
    }

    for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
         --n) {
      for (i = 0; i < n; ++i) {
        centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
        centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
      }
      av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
      optimize_palette_colors(color_cache, n_cache, n, 2, centroids);
      // Sort the U channel colors in ascending order.
      for (i = 0; i < 2 * (n - 1); i += 2) {
        int min_idx = i;
        int min_val = centroids[i];
        for (j = i + 2; j < 2 * n; j += 2)
          if (centroids[j] < min_val) min_val = centroids[j], min_idx = j;
        if (min_idx != i) {
          int temp_u = centroids[i], temp_v = centroids[i + 1];
          centroids[i] = centroids[min_idx];
          centroids[i + 1] = centroids[min_idx + 1];
          centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v;
        }
      }
      av1_calc_indices(data, centroids, color_map, rows * cols, n, 2);
      extend_palette_color_map(color_map, cols, rows, plane_block_width,
                               plane_block_height);
      pmi->palette_size[1] = n;
      for (i = 1; i < 3; ++i) {
        for (j = 0; j < n; ++j) {
          if (seq_params->use_highbitdepth)
            pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
                (int)centroids[j * 2 + i - 1], seq_params->bit_depth);
          else
            pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
                clip_pixel((int)centroids[j * 2 + i - 1]);
        }
      }

      super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
      if (tokenonly_rd_stats.rate == INT_MAX) continue;
      this_rate = tokenonly_rd_stats.rate +
                  intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost);
      this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
      if (this_rd < *best_rd) {
        *best_rd = this_rd;
        *best_mbmi = *mbmi;
        memcpy(best_palette_color_map, color_map,
               plane_block_width * plane_block_height *
                   sizeof(best_palette_color_map[0]));
        *rate = this_rate;
        *distortion = tokenonly_rd_stats.dist;
        *rate_tokenonly = tokenonly_rd_stats.rate;
        *skippable = tokenonly_rd_stats.skip;
      }
    }
  }
  if (best_mbmi->palette_mode_info.palette_size[1] > 0) {
    memcpy(color_map, best_palette_color_map,
           plane_block_width * plane_block_height *
               sizeof(best_palette_color_map[0]));
  }
}

// Run RD calculation with given chroma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t pick_intra_angle_routine_sbuv(
    const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
    int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
    int *best_angle_delta, int64_t *best_rd) {
  MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
  assert(!is_inter_block(mbmi));
  int this_rate;
  int64_t this_rd;
  RD_STATS tokenonly_rd_stats;

  if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in))
    return INT64_MAX;
  this_rate = tokenonly_rd_stats.rate +
              intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead);
  this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
  if (this_rd < *best_rd) {
    *best_rd = this_rd;
    *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
    *rate = this_rate;
    rd_stats->rate = tokenonly_rd_stats.rate;
    rd_stats->dist = tokenonly_rd_stats.dist;
    rd_stats->skip = tokenonly_rd_stats.skip;
  }
  return this_rd;
}

// With given chroma directional intra prediction mode, pick the best angle
// delta. Return true if a RD cost that is smaller than the input one is found.
static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize, int rate_overhead,
                                    int64_t best_rd, int *rate,
                                    RD_STATS *rd_stats) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  int i, angle_delta, best_angle_delta = 0;
  int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];

  rd_stats->rate = INT_MAX;
  rd_stats->skip = 0;
  rd_stats->dist = INT64_MAX;
  for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;

  for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
    for (i = 0; i < 2; ++i) {
      best_rd_in = (best_rd == INT64_MAX)
                       ? INT64_MAX
                       : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
      mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
      this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
                                              best_rd_in, rate, rd_stats,
                                              &best_angle_delta, &best_rd);
      rd_cost[2 * angle_delta + i] = this_rd;
      if (angle_delta == 0) {
        if (this_rd == INT64_MAX) return 0;
        rd_cost[1] = this_rd;
        break;
      }
    }
  }

  assert(best_rd != INT64_MAX);
  for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
    int64_t rd_thresh;
    for (i = 0; i < 2; ++i) {
      int skip_search = 0;
      rd_thresh = best_rd + (best_rd >> 5);
      if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
          rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
        skip_search = 1;
      if (!skip_search) {
        mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
        pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd,
                                      rate, rd_stats, &best_angle_delta,
                                      &best_rd);
      }
    }
  }

  mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta;
  return rd_stats->rate != INT_MAX;
}

#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \
  (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1)
static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi,
                             TX_SIZE tx_size, int64_t best_rd) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];

  const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_DEBUG
  assert(is_cfl_allowed(xd));
  const int ssx = xd->plane[AOM_PLANE_U].subsampling_x;
  const int ssy = xd->plane[AOM_PLANE_U].subsampling_y;
  const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, ssx, ssy);
  (void)plane_bsize;
  assert(plane_bsize < BLOCK_SIZES_ALL);
  if (!xd->lossless[mbmi->segment_id]) {
    assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
    assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
  }
#endif  // CONFIG_DEBUG

  xd->cfl.use_dc_pred_cache = 1;
  const int64_t mode_rd =
      RDCOST(x->rdmult,
             x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0);
  int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
  int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
#if CONFIG_DEBUG
  int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
#endif  // CONFIG_DEBUG

  for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
    RD_STATS rd_stats;
    av1_init_rd_stats(&rd_stats);
    for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
      best_rd_uv[joint_sign][plane] = INT64_MAX;
      best_c[joint_sign][plane] = 0;
    }
    // Collect RD stats for an alpha value of zero in this plane.
    // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid.
    for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) {
      const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i);
      if (i == CFL_SIGN_NEG) {
        mbmi->cfl_alpha_idx = 0;
        mbmi->cfl_alpha_signs = joint_sign;
        txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, tx_size,
                         cpi->sf.use_fast_coef_costing, FTXS_NONE);
        if (rd_stats.rate == INT_MAX) break;
      }
      const int alpha_rate = x->cfl_cost[joint_sign][plane][0];
      best_rd_uv[joint_sign][plane] =
          RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
#if CONFIG_DEBUG
      best_rate_uv[joint_sign][plane] = rd_stats.rate;
#endif  // CONFIG_DEBUG
    }
  }

  int best_joint_sign = -1;

  for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
    for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) {
      int progress = 0;
      for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
        int flag = 0;
        RD_STATS rd_stats;
        if (c > 2 && progress < c) break;
        av1_init_rd_stats(&rd_stats);
        for (int i = 0; i < CFL_SIGNS; i++) {
          const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i);
          if (i == 0) {
            mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c;
            mbmi->cfl_alpha_signs = joint_sign;
            txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize,
                             tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE);
            if (rd_stats.rate == INT_MAX) break;
          }
          const int alpha_rate = x->cfl_cost[joint_sign][plane][c];
          int64_t this_rd =
              RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
          if (this_rd >= best_rd_uv[joint_sign][plane]) continue;
          best_rd_uv[joint_sign][plane] = this_rd;
          best_c[joint_sign][plane] = c;
#if CONFIG_DEBUG
          best_rate_uv[joint_sign][plane] = rd_stats.rate;
#endif  // CONFIG_DEBUG
          flag = 2;
          if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue;
          this_rd += mode_rd + best_rd_uv[joint_sign][!plane];
          if (this_rd >= best_rd) continue;
          best_rd = this_rd;
          best_joint_sign = joint_sign;
        }
        progress += flag;
      }
    }
  }

  int best_rate_overhead = INT_MAX;
  int ind = 0;
  if (best_joint_sign >= 0) {
    const int u = best_c[best_joint_sign][CFL_PRED_U];
    const int v = best_c[best_joint_sign][CFL_PRED_V];
    ind = (u << CFL_ALPHABET_SIZE_LOG2) + v;
    best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] +
                         x->cfl_cost[best_joint_sign][CFL_PRED_V][v];
#if CONFIG_DEBUG
    xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] +
                   best_rate_overhead +
                   best_rate_uv[best_joint_sign][CFL_PRED_U] +
                   best_rate_uv[best_joint_sign][CFL_PRED_V];
#endif  // CONFIG_DEBUG
  } else {
    best_joint_sign = 0;
  }

  mbmi->cfl_alpha_idx = ind;
  mbmi->cfl_alpha_signs = best_joint_sign;
  xd->cfl.use_dc_pred_cache = 0;
  xd->cfl.dc_pred_is_cached[0] = 0;
  xd->cfl.dc_pred_is_cached[1] = 0;
  return best_rate_overhead;
}

static void init_sbuv_mode(MB_MODE_INFO *const mbmi) {
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->palette_mode_info.palette_size[1] = 0;
}

static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
                                       int *rate, int *rate_tokenonly,
                                       int64_t *distortion, int *skippable,
                                       BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  assert(!is_inter_block(mbmi));
  MB_MODE_INFO best_mbmi = *mbmi;
  int64_t best_rd = INT64_MAX, this_rd;

  for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) {
    int this_rate;
    RD_STATS tokenonly_rd_stats;
    UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx];
    const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode));
    if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] &
          (1 << mode)))
      continue;

    mbmi->uv_mode = mode;
    int cfl_alpha_rate = 0;
    if (mode == UV_CFL_PRED) {
      if (!is_cfl_allowed(xd)) continue;
      assert(!is_directional_mode);
      const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
      cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd);
      if (cfl_alpha_rate == INT_MAX) continue;
    }
    mbmi->angle_delta[PLANE_TYPE_UV] = 0;
    if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type)) {
      const int rate_overhead =
          x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode];
      if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
                                    &this_rate, &tokenonly_rd_stats))
        continue;
    } else {
      if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
        continue;
      }
    }
    const int mode_cost =
        x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] +
        cfl_alpha_rate;
    this_rate = tokenonly_rd_stats.rate +
                intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost);
    if (mode == UV_CFL_PRED) {
      assert(is_cfl_allowed(xd));
#if CONFIG_DEBUG
      if (!xd->lossless[mbmi->segment_id])
        assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost);
#endif  // CONFIG_DEBUG
    }
    this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);

    if (this_rd < best_rd) {
      best_mbmi = *mbmi;
      best_rd = this_rd;
      *rate = this_rate;
      *rate_tokenonly = tokenonly_rd_stats.rate;
      *distortion = tokenonly_rd_stats.dist;
      *skippable = tokenonly_rd_stats.skip;
    }
  }

  const int try_palette =
      av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type);
  if (try_palette) {
    uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map;
    rd_pick_palette_intra_sbuv(
        cpi, x,
        x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED],
        best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly,
        distortion, skippable);
  }

  *mbmi = best_mbmi;
  // Make sure we actually chose a mode
  assert(best_rd < INT64_MAX);
  return best_rd;
}

static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
                                 BLOCK_SIZE bsize, TX_SIZE max_tx_size,
                                 int *rate_uv, int *rate_uv_tokenonly,
                                 int64_t *dist_uv, int *skip_uv,
                                 UV_PREDICTION_MODE *mode_uv) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2);
  const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2);
  // Use an estimated rd for uv_intra based on DC_PRED if the
  // appropriate speed flag is set.
  init_sbuv_mode(mbmi);
  if (x->skip_chroma_rd) {
    *rate_uv = 0;
    *rate_uv_tokenonly = 0;
    *dist_uv = 0;
    *skip_uv = 1;
    *mode_uv = UV_DC_PRED;
    return;
  }
  xd->cfl.is_chroma_reference =
      is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
                          cm->seq_params.subsampling_y);
  bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x,
                             xd->plane[AOM_PLANE_U].subsampling_y);
  // Only store reconstructed luma when there's chroma RDO. When there's no
  // chroma RDO, the reconstructed luma will be stored in encode_superblock().
  xd->cfl.store_y = store_cfl_required_rdo(cm, x);
  if (xd->cfl.store_y) {
    // Restore reconstructed luma values.
    av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y,
                                 cpi->optimize_seg_arr[mbmi->segment_id],
                                 mi_row, mi_col);
    xd->cfl.store_y = 0;
  }
  rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
                          bsize, max_tx_size);
  *mode_uv = mbmi->uv_mode;
}

static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode,
                       int16_t mode_context) {
  if (is_inter_compound_mode(mode)) {
    return x
        ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
  }

  int mode_cost = 0;
  int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;

  assert(is_inter_mode(mode));

  if (mode == NEWMV) {
    mode_cost = x->newmv_mode_cost[mode_ctx][0];
    return mode_cost;
  } else {
    mode_cost = x->newmv_mode_cost[mode_ctx][1];
    mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;

    if (mode == GLOBALMV) {
      mode_cost += x->zeromv_mode_cost[mode_ctx][0];
      return mode_cost;
    } else {
      mode_cost += x->zeromv_mode_cost[mode_ctx][1];
      mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
      mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
      return mode_cost;
    }
  }
}

static int get_interinter_compound_mask_rate(const MACROBLOCK *const x,
                                             const MB_MODE_INFO *const mbmi) {
  switch (mbmi->interinter_comp.type) {
    case COMPOUND_AVERAGE: return 0;
    case COMPOUND_WEDGE:
      return get_interinter_wedge_bits(mbmi->sb_type) > 0
                 ? av1_cost_literal(1) +
                       x->wedge_idx_cost[mbmi->sb_type]
                                        [mbmi->interinter_comp.wedge_index]
                 : 0;
    case COMPOUND_DIFFWTD: return av1_cost_literal(1);
    default: assert(0); return 0;
  }
}

typedef struct {
  int eobs;
  int brate;
  int byrate;
  int64_t bdist;
  int64_t bsse;
  int64_t brdcost;
  int_mv mvs[2];
  int_mv pred_mv[2];
  int_mv ref_mv[2];

  ENTROPY_CONTEXT ta[2];
  ENTROPY_CONTEXT tl[2];
} SEG_RDSTAT;

typedef struct {
  int_mv *ref_mv[2];
  int_mv mvp;

  int64_t segment_rd;
  int r;
  int64_t d;
  int64_t sse;
  int segment_yrate;
  PREDICTION_MODE modes[4];
  SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES];
  int mvthresh;
} BEST_SEG_INFO;

static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) {
  return (mv->row >> 3) < mv_limits->row_min ||
         (mv->row >> 3) > mv_limits->row_max ||
         (mv->col >> 3) < mv_limits->col_min ||
         (mv->col >> 3) > mv_limits->col_max;
}

static INLINE int get_single_mode(int this_mode, int ref_idx,
                                  int is_comp_pred) {
  int single_mode;
  if (is_comp_pred) {
    single_mode =
        ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode);
  } else {
    single_mode = this_mode;
  }
  return single_mode;
}

/* If the current mode shares the same mv with other modes with higher prority,
 * skip this mode. This priority order is nearest > global > near. */
static int skip_repeated_mv(const AV1_COMMON *const cm,
                            const MACROBLOCK *const x, int this_mode,
                            const MV_REFERENCE_FRAME ref_frames[2]) {
  const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
  const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
  const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
  if (!is_comp_pred) {
    if (this_mode == NEARMV) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] == 0) {
        // NEARMV has the same motion vector as NEARESTMV
        return 1;
      }
      if (mbmi_ext->ref_mv_count[ref_frame_type] == 1 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
        // NEARMV has the same motion vector as GLOBALMV
        return 1;
      }
    }
    if (this_mode == GLOBALMV) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] == 0 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
        // GLOBALMV has the same motion vector as NEARESTMV
        return 1;
      }
    }
  } else {
    for (int i = 0; i < 2; ++i) {
      const int single_mode = get_single_mode(this_mode, i, is_comp_pred);
      if (single_mode == NEARMV) {
        if (mbmi_ext->ref_mv_count[ref_frame_type] == 0) {
          // NEARMV has the same motion vector as NEARESTMV in compound mode
          return 1;
        }
      }
    }
    if (this_mode == NEAR_NEARMV) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] == 1 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION &&
          cm->global_motion[ref_frames[1]].wmtype <= TRANSLATION) {
        // NEAR_NEARMV has the same motion vector as GLOBAL_GLOBALMV
        return 1;
      }
    }
    if (this_mode == GLOBAL_GLOBALMV) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] == 0 &&
          cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION &&
          cm->global_motion[ref_frames[1]].wmtype <= TRANSLATION) {
        // GLOBAL_GLOBALMV has the same motion vector as NEARST_NEARSTMV
        return 1;
      }
    }
  }
  return 0;
}

static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
                                BLOCK_SIZE bsize, int_mv *cur_mv, int mi_row,
                                int mi_col, int_mv *ref_mv_sub8x8[2],
                                const uint8_t *mask, int mask_stride,
                                int *rate_mv, const int block) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const int pw = block_size_wide[bsize];
  const int ph = block_size_high[bsize];
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  // This function should only ever be called for compound modes
  assert(has_second_ref(mbmi));
  const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] };
  int_mv ref_mv[2];
  int ite, ref;
  // ic and ir are the 4x4 coordinates of the sub8x8 at index "block"
  const int ic = block & 1;
  const int ir = (block - ic) >> 1;
  struct macroblockd_plane *const pd = &xd->plane[0];
  const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic;
  const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir;
  int is_global[2];
  for (ref = 0; ref < 2; ++ref) {
    const WarpedMotionParams *const wm =
        &xd->global_motion[xd->mi[0]->ref_frame[ref]];
    is_global[ref] = is_global_mv_block(xd->mi[0], wm->wmtype);
  }

  // Do joint motion search in compound mode to get more accurate mv.
  struct buf_2d backup_yv12[2][MAX_MB_PLANE];
  int last_besterr[2] = { INT_MAX, INT_MAX };
  const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
    av1_get_scaled_ref_frame(cpi, refs[0]),
    av1_get_scaled_ref_frame(cpi, refs[1])
  };

  // Prediction buffer from second frame.
  DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
  uint8_t *second_pred;
  (void)ref_mv_sub8x8;

  // Allow joint search multiple times iteratively for each reference frame
  // and break out of the search loop if it couldn't find a better mv.
  for (ite = 0; ite < 4; ite++) {
    struct buf_2d ref_yv12[2];
    int bestsme = INT_MAX;
    int sadpb = x->sadperbit16;
    MV *const best_mv = &x->best_mv.as_mv;
    int search_range = 3;

    MvLimits tmp_mv_limits = x->mv_limits;
    int id = ite % 2;  // Even iterations search in the first reference frame,
                       // odd iterations search in the second. The predictor
                       // found for the 'other' reference frame is factored in.
    const int plane = 0;
    ConvolveParams conv_params = get_conv_params(!id, 0, plane, xd->bd);
    conv_params.use_jnt_comp_avg = 0;
    WarpTypesAllowed warp_types;
    warp_types.global_warp_allowed = is_global[!id];
    warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL;

    for (ref = 0; ref < 2; ++ref) {
      ref_mv[ref] = av1_get_ref_mv(x, ref);
      // Swap out the reference frame for a version that's been scaled to
      // match the resolution of the current frame, allowing the existing
      // motion search code to be used without additional modifications.
      if (scaled_ref_frame[ref]) {
        int i;
        for (i = 0; i < num_planes; i++)
          backup_yv12[ref][i] = xd->plane[i].pre[ref];
        av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
                             NULL, num_planes);
      }
    }

    assert(IMPLIES(scaled_ref_frame[0] != NULL,
                   cm->width == scaled_ref_frame[0]->y_crop_width &&
                       cm->height == scaled_ref_frame[0]->y_crop_height));
    assert(IMPLIES(scaled_ref_frame[1] != NULL,
                   cm->width == scaled_ref_frame[1]->y_crop_width &&
                       cm->height == scaled_ref_frame[1]->y_crop_height));

    // Initialize based on (possibly scaled) prediction buffers.
    ref_yv12[0] = xd->plane[plane].pre[0];
    ref_yv12[1] = xd->plane[plane].pre[1];

    // Get the prediction block from the 'other' reference frame.
    InterpFilters interp_filters = EIGHTTAP_REGULAR;

    // Since we have scaled the reference frames to match the size of the
    // current frame we must use a unit scaling factor during mode selection.
    if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
      second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
      av1_highbd_build_inter_predictor(
          ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
          &cur_mv[!id].as_mv, &cm->sf_identity, pw, ph, 0, interp_filters,
          &warp_types, p_col, p_row, plane, MV_PRECISION_Q3, mi_col * MI_SIZE,
          mi_row * MI_SIZE, xd, cm->allow_warped_motion);
    } else {
      second_pred = (uint8_t *)second_pred_alloc_16;
      av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
                                second_pred, pw, &cur_mv[!id].as_mv,
                                &cm->sf_identity, pw, ph, &conv_params,
                                interp_filters, &warp_types, p_col, p_row,
                                plane, !id, MV_PRECISION_Q3, mi_col * MI_SIZE,
                                mi_row * MI_SIZE, xd, cm->allow_warped_motion);
    }

    const int order_idx = id != 0;
    av1_jnt_comp_weight_assign(cm, mbmi, order_idx, &xd->jcp_param.fwd_offset,
                               &xd->jcp_param.bck_offset,
                               &xd->jcp_param.use_jnt_comp_avg, 1);

    // Do full-pixel compound motion search on the current reference frame.
    if (id) xd->plane[plane].pre[0] = ref_yv12[id];
    av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv);

    // Use the mv result from the single mode as mv predictor.
    // Use the mv result from the single mode as mv predictor.
    *best_mv = cur_mv[id].as_mv;

    best_mv->col >>= 3;
    best_mv->row >>= 3;

    av1_set_mvcost(
        x, id,
        mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));

    // Small-range full-pixel motion search.
    bestsme = av1_refining_search_8p_c(x, sadpb, search_range,
                                       &cpi->fn_ptr[bsize], mask, mask_stride,
                                       id, &ref_mv[id].as_mv, second_pred);
    if (bestsme < INT_MAX) {
      if (mask)
        bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv,
                                          second_pred, mask, mask_stride, id,
                                          &cpi->fn_ptr[bsize], 1);
      else
        bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv,
                                        second_pred, &cpi->fn_ptr[bsize], 1);
    }

    x->mv_limits = tmp_mv_limits;

    // Restore the pointer to the first (possibly scaled) prediction buffer.
    if (id) xd->plane[plane].pre[0] = ref_yv12[0];

    for (ref = 0; ref < 2; ++ref) {
      if (scaled_ref_frame[ref]) {
        // Swap back the original buffers for subpel motion search.
        for (int i = 0; i < num_planes; i++) {
          xd->plane[i].pre[ref] = backup_yv12[ref][i];
        }
        // Re-initialize based on unscaled prediction buffers.
        ref_yv12[ref] = xd->plane[plane].pre[ref];
      }
    }

    // Do sub-pixel compound motion search on the current reference frame.
    if (id) xd->plane[plane].pre[0] = ref_yv12[id];

    if (cpi->common.cur_frame_force_integer_mv) {
      x->best_mv.as_mv.row *= 8;
      x->best_mv.as_mv.col *= 8;
    }
    if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) {
      int dis; /* TODO: use dis in distortion calculation later. */
      unsigned int sse;
      bestsme = cpi->find_fractional_mv_step(
          x, cm, mi_row, mi_col, &ref_mv[id].as_mv,
          cpi->common.allow_high_precision_mv, x->errorperbit,
          &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL,
          x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask,
          mask_stride, id, pw, ph, cpi->sf.use_accurate_subpel_search);
    }

    // Restore the pointer to the first prediction buffer.
    if (id) xd->plane[plane].pre[0] = ref_yv12[0];

    if (bestsme < last_besterr[id]) {
      cur_mv[id].as_mv = *best_mv;
      last_besterr[id] = bestsme;
    } else {
      break;
    }
  }

  *rate_mv = 0;

  for (ref = 0; ref < 2; ++ref) {
    av1_set_mvcost(
        x, ref,
        mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));

    const int_mv curr_ref_mv = av1_get_ref_mv(x, ref);
    *rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv,
                                x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
  }
}

static void estimate_ref_frame_costs(
    const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x,
    int segment_id, unsigned int *ref_costs_single,
    unsigned int (*ref_costs_comp)[REF_FRAMES]) {
  int seg_ref_active =
      segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
  if (seg_ref_active) {
    memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
    int ref_frame;
    for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
      memset(ref_costs_comp[ref_frame], 0,
             REF_FRAMES * sizeof((*ref_costs_comp)[0]));
  } else {
    int intra_inter_ctx = av1_get_intra_inter_context(xd);
    ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0];
    unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1];

    for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
      ref_costs_single[i] = base_cost;

    const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
    const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
    const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
    const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
    const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
    const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);

    // Determine cost of a single ref frame, where frame types are represented
    // by a tree:
    // Level 0: add cost whether this ref is a forward or backward ref
    ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0];
    ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];
    ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1];
    ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1];

    // Level 1: if this ref is forward ref,
    // add cost whether it is last/last2 or last3/golden
    ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0];
    ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0];
    ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1];
    ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1];

    // Level 1: if this ref is backward ref
    // then add cost whether this ref is altref or backward ref
    ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0];
    ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0];
    ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1];

    // Level 2: further add cost whether this ref is last or last2
    ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0];
    ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1];

    // Level 2: last3 or golden
    ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0];
    ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1];

    // Level 2: bwdref or altref2
    ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0];
    ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1];

    if (cm->reference_mode != SINGLE_REFERENCE) {
      // Similar to single ref, determine cost of compound ref frames.
      // cost_compound_refs = cost_first_ref + cost_second_ref
      const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
      const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
      const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
      const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
      const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);

      const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
      unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };

      ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
          ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
              base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1];
      ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
      ref_bicomp_costs[ALTREF_FRAME] = 0;

      // cost of first ref frame
      ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
      ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0];
      ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];
      ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1];

      ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0];
      ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1];

      ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0];
      ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1];

      // cost of second ref frame
      ref_bicomp_costs[BWDREF_FRAME] +=
          x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
      ref_bicomp_costs[ALTREF2_FRAME] +=
          x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
      ref_bicomp_costs[ALTREF_FRAME] +=
          x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];

      ref_bicomp_costs[BWDREF_FRAME] +=
          x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
      ref_bicomp_costs[ALTREF2_FRAME] +=
          x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];

      // cost: if one ref frame is forward ref, the other ref is backward ref
      int ref0, ref1;
      for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
        for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
          ref_costs_comp[ref0][ref1] =
              ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
        }
      }

      // cost: if both ref frames are the same side.
      const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
      const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
      const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
      ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
          base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
      ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
          base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
      ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
          base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
      ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
          base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] +
          x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
    } else {
      int ref0, ref1;
      for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
        for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
          ref_costs_comp[ref0][ref1] = 512;
      }
      ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
      ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
      ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
      ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
    }
  }
}

static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
                                 int mode_index,
                                 int64_t comp_pred_diff[REFERENCE_MODES],
                                 int skippable) {
  MACROBLOCKD *const xd = &x->e_mbd;

  // Take a snapshot of the coding context so it can be
  // restored if we decide to encode this way
  ctx->skip = x->skip;
  ctx->skippable = skippable;
  ctx->best_mode_index = mode_index;
  ctx->mic = *xd->mi[0];
  ctx->mbmi_ext = *x->mbmi_ext;
  ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
  ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
  ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
}

static void setup_buffer_ref_mvs_inter(
    const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
    BLOCK_SIZE block_size, int mi_row, int mi_col,
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;

  assert(yv12 != NULL);

  // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
  // use the UV scaling factors.
  av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf,
                       num_planes);

  // Gets an initial list of candidate vectors from neighbours and orders them
  av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                   mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
                   mi_col, mbmi_ext->mode_context);

  // Further refinement that is encode side only to test the top few candidates
  // in full and choose the best as the centre point for subsequent searches.
  // The current implementation doesn't support scaling.
  (void)block_size;
  av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
              block_size);
}

static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
                                 BLOCK_SIZE bsize, int mi_row, int mi_col,
                                 int ref_idx, int *rate_mv) {
  MACROBLOCKD *xd = &x->e_mbd;
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MB_MODE_INFO *mbmi = xd->mi[0];
  struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
  int bestsme = INT_MAX;
  int step_param;
  int sadpb = x->sadperbit16;
  MV mvp_full;
  int ref = mbmi->ref_frame[ref_idx];
  MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;

  MvLimits tmp_mv_limits = x->mv_limits;
  int cost_list[5];

  const YV12_BUFFER_CONFIG *scaled_ref_frame =
      av1_get_scaled_ref_frame(cpi, ref);

  if (scaled_ref_frame) {
    // Swap out the reference frame for a version that's been scaled to
    // match the resolution of the current frame, allowing the existing
    // full-pixel motion search code to be used without additional
    // modifications.
    for (int i = 0; i < num_planes; i++) {
      backup_yv12[i] = xd->plane[i].pre[ref_idx];
    }
    av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
                         num_planes);
  }

  av1_set_mvcost(
      x, ref_idx,
      mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));

  // Work out the size of the first step in the mv step search.
  // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
  if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
    // Take the weighted average of the step_params based on the last frame's
    // max mv magnitude and that based on the best ref mvs of the current
    // block for the given reference.
    step_param =
        (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
        2;
  } else {
    step_param = cpi->mv_step_param;
  }

  if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) {
    int boffset =
        2 * (mi_size_wide_log2[cm->seq_params.sb_size] -
             AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize]));
    step_param = AOMMAX(step_param, boffset);
  }

  if (cpi->sf.adaptive_motion_search) {
    int bwl = mi_size_wide_log2[bsize];
    int bhl = mi_size_high_log2[bsize];
    int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);

    if (tlevel < 5) {
      step_param += 2;
      step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1);
    }

    // prev_mv_sad is not setup for dynamically scaled frames.
    if (cpi->oxcf.resize_mode != RESIZE_RANDOM) {
      int i;
      for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
        if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
          x->pred_mv[ref].row = 0;
          x->pred_mv[ref].col = 0;
          x->best_mv.as_int = INVALID_MV;

          if (scaled_ref_frame) {
            // Swap back the original buffers before returning.
            for (int j = 0; j < num_planes; ++j)
              xd->plane[j].pre[ref_idx] = backup_yv12[j];
          }
          return;
        }
      }
    }
  }

  // Note: MV limits are modified here. Always restore the original values
  // after full-pixel motion search.
  av1_set_mv_search_range(&x->mv_limits, &ref_mv);

  if (mbmi->motion_mode != SIMPLE_TRANSLATION)
    mvp_full = mbmi->mv[0].as_mv;
  else
    mvp_full = ref_mv;

  mvp_full.col >>= 3;
  mvp_full.row >>= 3;

  x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;

  switch (mbmi->motion_mode) {
    case SIMPLE_TRANSLATION:
      bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
                                      sadpb, cond_cost_list(cpi, cost_list),
                                      &ref_mv, INT_MAX, 1, (MI_SIZE * mi_col),
                                      (MI_SIZE * mi_row), 0);
      break;
    case OBMC_CAUSAL:
      bestsme = av1_obmc_full_pixel_diamond(
          cpi, x, &mvp_full, step_param, sadpb,
          MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
          &(x->best_mv.as_mv), 0);
      break;
    default: assert(0 && "Invalid motion mode!\n");
  }

  if (scaled_ref_frame) {
    // Swap back the original buffers for subpel motion search.
    for (int i = 0; i < num_planes; i++) {
      xd->plane[i].pre[ref_idx] = backup_yv12[i];
    }
  }

  x->mv_limits = tmp_mv_limits;

  if (cpi->common.cur_frame_force_integer_mv) {
    x->best_mv.as_mv.row *= 8;
    x->best_mv.as_mv.col *= 8;
  }
  const int use_fractional_mv =
      bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
  if (use_fractional_mv) {
    int dis; /* TODO: use dis in distortion calculation later. */
    switch (mbmi->motion_mode) {
      case SIMPLE_TRANSLATION:
        if (cpi->sf.use_accurate_subpel_search) {
          int best_mv_var;
          const int try_second = x->second_best_mv.as_int != INVALID_MV &&
                                 x->second_best_mv.as_int != x->best_mv.as_int;
          const int pw = block_size_wide[bsize];
          const int ph = block_size_high[bsize];

          best_mv_var = cpi->find_fractional_mv_step(
              x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
              x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
              cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
              x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL,
              0, 0, pw, ph, 1);

          if (try_second) {
            const int minc =
                AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX);
            const int maxc =
                AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX);
            const int minr =
                AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX);
            const int maxr =
                AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX);
            int this_var;
            MV best_mv = x->best_mv.as_mv;

            x->best_mv = x->second_best_mv;
            if (x->best_mv.as_mv.row * 8 <= maxr &&
                x->best_mv.as_mv.row * 8 >= minr &&
                x->best_mv.as_mv.col * 8 <= maxc &&
                x->best_mv.as_mv.col * 8 >= minc) {
              this_var = cpi->find_fractional_mv_step(
                  x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
                  x->errorperbit, &cpi->fn_ptr[bsize],
                  cpi->sf.mv.subpel_force_stop,
                  cpi->sf.mv.subpel_iters_per_step,
                  cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
                  &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph, 1);
              if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
              x->best_mv.as_mv = best_mv;
            }
          }
        } else {
          cpi->find_fractional_mv_step(
              x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv,
              x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
              cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
              x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL,
              0, 0, 0, 0, 0);
        }
        break;
      case OBMC_CAUSAL:
        av1_find_best_obmc_sub_pixel_tree_up(
            x, cm, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv,
            cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
            cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
            x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0,
            cpi->sf.use_accurate_subpel_search);
        break;
      default: assert(0 && "Invalid motion mode!\n");
    }
  }
  *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost,
                             x->mvcost, MV_COST_WEIGHT);

  if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION)
    x->pred_mv[ref] = x->best_mv.as_mv;
}

static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst,
                                   const int num_planes) {
  int i;
  for (i = 0; i < num_planes; i++) {
    xd->plane[i].dst.buf = dst.plane[i];
    xd->plane[i].dst.stride = dst.stride[i];
  }
}

static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x,
                                    BLOCK_SIZE bsize, const MV *other_mv,
                                    int mi_row, int mi_col, const int block,
                                    int ref_idx, uint8_t *second_pred) {
  const AV1_COMMON *const cm = &cpi->common;
  const int pw = block_size_wide[bsize];
  const int ph = block_size_high[bsize];
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int other_ref = mbmi->ref_frame[!ref_idx];
  struct macroblockd_plane *const pd = &xd->plane[0];
  // ic and ir are the 4x4 coordinates of the sub8x8 at index "block"
  const int ic = block & 1;
  const int ir = (block - ic) >> 1;
  const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic;
  const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir;
  const WarpedMotionParams *const wm = &xd->global_motion[other_ref];
  int is_global = is_global_mv_block(xd->mi[0], wm->wmtype);

  // This function should only ever be called for compound modes
  assert(has_second_ref(mbmi));

  const int plane = 0;
  struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx];

  struct scale_factors sf;
  av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height,
                                    cm->width, cm->height);

  ConvolveParams conv_params = get_conv_params(!ref_idx, 0, plane, xd->bd);
  WarpTypesAllowed warp_types;
  warp_types.global_warp_allowed = is_global;
  warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL;

  // Get the prediction block from the 'other' reference frame.
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    av1_highbd_build_inter_predictor(
        ref_yv12.buf, ref_yv12.stride, second_pred, pw, other_mv, &sf, pw, ph,
        0, mbmi->interp_filters, &warp_types, p_col, p_row, plane,
        MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd,
        cm->allow_warped_motion);
  } else {
    av1_build_inter_predictor(
        ref_yv12.buf, ref_yv12.stride, second_pred, pw, other_mv, &sf, pw, ph,
        &conv_params, mbmi->interp_filters, &warp_types, p_col, p_row, plane,
        !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd,
        cm->allow_warped_motion);
  }

  av1_jnt_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset,
                             &xd->jcp_param.bck_offset,
                             &xd->jcp_param.use_jnt_comp_avg, 1);
}

// Search for the best mv for one component of a compound,
// given that the other component is fixed.
static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
                                          BLOCK_SIZE bsize, MV *this_mv,
                                          int mi_row, int mi_col,
                                          const uint8_t *second_pred,
                                          const uint8_t *mask, int mask_stride,
                                          int *rate_mv, int ref_idx) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const int pw = block_size_wide[bsize];
  const int ph = block_size_high[bsize];
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int ref = mbmi->ref_frame[ref_idx];
  const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
  struct macroblockd_plane *const pd = &xd->plane[0];

  struct buf_2d backup_yv12[MAX_MB_PLANE];
  const YV12_BUFFER_CONFIG *const scaled_ref_frame =
      av1_get_scaled_ref_frame(cpi, ref);

  // Check that this is either an interinter or an interintra block
  assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi)));

  // Store the first prediction buffer.
  struct buf_2d orig_yv12;
  if (ref_idx) {
    orig_yv12 = pd->pre[0];
    pd->pre[0] = pd->pre[ref_idx];
  }

  if (scaled_ref_frame) {
    int i;
    // Swap out the reference frame for a version that's been scaled to
    // match the resolution of the current frame, allowing the existing
    // full-pixel motion search code to be used without additional
    // modifications.
    for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx];
    av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL,
                         num_planes);
  }

  int bestsme = INT_MAX;
  int sadpb = x->sadperbit16;
  MV *const best_mv = &x->best_mv.as_mv;
  int search_range = 3;

  MvLimits tmp_mv_limits = x->mv_limits;

  // Do compound motion search on the current reference frame.
  av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv);

  // Use the mv result from the single mode as mv predictor.
  *best_mv = *this_mv;

  best_mv->col >>= 3;
  best_mv->row >>= 3;

  av1_set_mvcost(
      x, ref_idx,
      mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));

  // Small-range full-pixel motion search.
  bestsme = av1_refining_search_8p_c(x, sadpb, search_range,
                                     &cpi->fn_ptr[bsize], mask, mask_stride,
                                     ref_idx, &ref_mv.as_mv, second_pred);
  if (bestsme < INT_MAX) {
    if (mask)
      bestsme =
          av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask,
                                  mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1);
    else
      bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred,
                                      &cpi->fn_ptr[bsize], 1);
  }

  x->mv_limits = tmp_mv_limits;

  if (scaled_ref_frame) {
    // Swap back the original buffers for subpel motion search.
    for (int i = 0; i < num_planes; i++) {
      xd->plane[i].pre[ref_idx] = backup_yv12[i];
    }
  }

  if (cpi->common.cur_frame_force_integer_mv) {
    x->best_mv.as_mv.row *= 8;
    x->best_mv.as_mv.col *= 8;
  }
  const int use_fractional_mv =
      bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0;
  if (use_fractional_mv) {
    int dis; /* TODO: use dis in distortion calculation later. */
    unsigned int sse;
    bestsme = cpi->find_fractional_mv_step(
        x, cm, mi_row, mi_col, &ref_mv.as_mv,
        cpi->common.allow_high_precision_mv, x->errorperbit,
        &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL,
        x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, mask_stride,
        ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search);
  }

  // Restore the pointer to the first unscaled prediction buffer.
  if (ref_idx) pd->pre[0] = orig_yv12;

  if (bestsme < INT_MAX) *this_mv = *best_mv;

  *rate_mv = 0;

  av1_set_mvcost(
      x, ref_idx,
      mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0));
  *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost,
                              x->mvcost, MV_COST_WEIGHT);
}

// Wrapper for compound_single_motion_search, for the common case
// where the second prediction is also an inter mode.
static void compound_single_motion_search_interinter(
    const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv,
    int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv,
    const int block, int ref_idx) {
  MACROBLOCKD *xd = &x->e_mbd;
  // This function should only ever be called for compound modes
  assert(has_second_ref(xd->mi[0]));

  // Prediction buffer from second frame.
  DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
  uint8_t *second_pred;
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
    second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
  else
    second_pred = (uint8_t *)second_pred_alloc_16;

  MV *this_mv = &cur_mv[ref_idx].as_mv;
  const MV *other_mv = &cur_mv[!ref_idx].as_mv;

  build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block,
                          ref_idx, second_pred);

  compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col,
                                second_pred, mask, mask_stride, rate_mv,
                                ref_idx);
}

static void do_masked_motion_search_indexed(
    const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
    const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize,
    int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) {
  // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  BLOCK_SIZE sb_type = mbmi->sb_type;
  const uint8_t *mask;
  const int mask_stride = block_size_wide[bsize];

  mask = av1_get_compound_type_mask(comp_data, sb_type);

  tmp_mv[0].as_int = cur_mv[0].as_int;
  tmp_mv[1].as_int = cur_mv[1].as_int;
  if (which == 0 || which == 1) {
    compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mi_row,
                                             mi_col, mask, mask_stride, rate_mv,
                                             0, which);
  } else if (which == 2) {
    joint_motion_search(cpi, x, bsize, tmp_mv, mi_row, mi_col, NULL, mask,
                        mask_stride, rate_mv, 0);
  }
}

#define USE_DISCOUNT_NEWMV_TEST 0
#if USE_DISCOUNT_NEWMV_TEST
// In some situations we want to discount the apparent cost of a new motion
// vector. Where there is a subtle motion field and especially where there is
// low spatial complexity then it can be hard to cover the cost of a new motion
// vector in a single block, even if that motion vector reduces distortion.
// However, once established that vector may be usable through the nearest and
// near mv modes to reduce distortion in subsequent blocks and also improve
// visual quality.
#define NEW_MV_DISCOUNT_FACTOR 8
static INLINE void get_this_mv(int_mv *this_mv, int this_mode, int ref_idx,
                               int ref_mv_idx,
                               const MV_REFERENCE_FRAME *ref_frame,
                               const MB_MODE_INFO_EXT *mbmi_ext);
static int discount_newmv_test(const AV1_COMP *const cpi, const MACROBLOCK *x,
                               int this_mode, int_mv this_mv) {
  if (this_mode == NEWMV && this_mv.as_int != 0 &&
      !cpi->rc.is_src_frame_alt_ref) {
    // Only discount new_mv when nearst_mv and all near_mv are zero, and the
    // new_mv is not equal to global_mv
    const AV1_COMMON *const cm = &cpi->common;
    const MACROBLOCKD *const xd = &x->e_mbd;
    const MB_MODE_INFO *const mbmi = xd->mi[0];
    const MV_REFERENCE_FRAME tmp_ref_frames[2] = { mbmi->ref_frame[0],
                                                   NONE_FRAME };
    const uint8_t ref_frame_type = av1_ref_frame_type(tmp_ref_frames);
    int_mv nearest_mv;
    get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
    int ret = nearest_mv.as_int == 0;
    for (int ref_mv_idx = 0;
         ref_mv_idx < x->mbmi_ext->ref_mv_count[ref_frame_type]; ++ref_mv_idx) {
      int_mv near_mv;
      get_this_mv(&near_mv, NEARMV, 0, ref_mv_idx, tmp_ref_frames, x->mbmi_ext);
      ret &= near_mv.as_int == 0;
    }
    if (cm->global_motion[tmp_ref_frames[0]].wmtype <= TRANSLATION) {
      int_mv global_mv;
      get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
      ret &= global_mv.as_int != this_mv.as_int;
    }
    return ret;
  }
  return 0;
}
#endif

#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)

// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
  clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
           xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
           xd->mb_to_top_edge - LEFT_TOP_MARGIN,
           xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
}

static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
                               const BLOCK_SIZE bsize, const uint8_t *pred0,
                               int stride0, const uint8_t *pred1, int stride1) {
  static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = {
    //                            4X4
    BLOCK_INVALID,
    // 4X8,        8X4,           8X8
    BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4,
    // 8X16,       16X8,          16X16
    BLOCK_4X8, BLOCK_8X4, BLOCK_8X8,
    // 16X32,      32X16,         32X32
    BLOCK_8X16, BLOCK_16X8, BLOCK_16X16,
    // 32X64,      64X32,         64X64
    BLOCK_16X32, BLOCK_32X16, BLOCK_32X32,
    // 64x128,     128x64,        128x128
    BLOCK_32X64, BLOCK_64X32, BLOCK_64X64,
    // 4X16,       16X4,          8X32
    BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16,
    // 32X8,       16X64,         64X16
    BLOCK_16X4, BLOCK_8X32, BLOCK_32X8
  };
  const struct macroblock_plane *const p = &x->plane[0];
  const uint8_t *src = p->src.buf;
  int src_stride = p->src.stride;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  uint32_t esq[2][4];
  int64_t tl, br;

  const BLOCK_SIZE f_index = split_qtr[bsize];
  assert(f_index != BLOCK_INVALID);

  if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    pred0 = CONVERT_TO_BYTEPTR(pred0);
    pred1 = CONVERT_TO_BYTEPTR(pred1);
  }

  cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
  cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0,
                          &esq[0][1]);
  cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
                          pred0 + bh / 2 * stride0, stride0, &esq[0][2]);
  cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
                          pred0 + bh / 2 * stride0 + bw / 2, stride0,
                          &esq[0][3]);
  cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
  cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1,
                          &esq[1][1]);
  cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
                          pred1 + bh / 2 * stride1, stride0, &esq[1][2]);
  cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
                          pred1 + bh / 2 * stride1 + bw / 2, stride0,
                          &esq[1][3]);

  tl = ((int64_t)esq[0][0] + esq[0][1] + esq[0][2]) -
       ((int64_t)esq[1][0] + esq[1][1] + esq[1][2]);
  br = ((int64_t)esq[1][3] + esq[1][1] + esq[1][2]) -
       ((int64_t)esq[0][3] + esq[0][1] + esq[0][2]);
  return (tl + br > 0);
}

// Choose the best wedge index and sign
static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
                          const BLOCK_SIZE bsize, const uint8_t *const p0,
                          const int16_t *const residual1,
                          const int16_t *const diff10,
                          int *const best_wedge_sign,
                          int *const best_wedge_index) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  const struct buf_2d *const src = &x->plane[0].src;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = bw * bh;
  int rate;
  int64_t dist;
  int64_t rd, best_rd = INT64_MAX;
  int wedge_index;
  int wedge_sign;
  int wedge_types = (1 << get_wedge_bits_lookup(bsize));
  const uint8_t *mask;
  uint64_t sse;
  const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;

  DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]);  // src - pred0
  if (hbd) {
    aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride,
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
  } else {
    aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw);
  }

  int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) -
                        (int64_t)aom_sum_squares_i16(residual1, N)) *
                       (1 << WEDGE_WEIGHT_BITS) / 2;
  int16_t *ds = residual0;
  if (N < 64)
    av1_wedge_compute_delta_squares_c(ds, residual0, residual1, N);
  else
    av1_wedge_compute_delta_squares(ds, residual0, residual1, N);

  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
    mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);

    // TODO(jingning): Make sse2 functions support N = 16 case
    if (N < 64)
      wedge_sign = av1_wedge_sign_from_residuals_c(ds, mask, N, sign_limit);
    else
      wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);

    mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
    if (N < 64)
      sse = av1_wedge_sse_from_residuals_c(residual1, diff10, mask, N);
    else
      sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
    rate += x->wedge_idx_cost[bsize][wedge_index];
    rd = RDCOST(x->rdmult, rate, dist);

    if (rd < best_rd) {
      *best_wedge_index = wedge_index;
      *best_wedge_sign = wedge_sign;
      best_rd = rd;
    }
  }

  return best_rd -
         RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0);
}

// Choose the best wedge index the specified sign
static int64_t pick_wedge_fixed_sign(const AV1_COMP *const cpi,
                                     const MACROBLOCK *const x,
                                     const BLOCK_SIZE bsize,
                                     const int16_t *const residual1,
                                     const int16_t *const diff10,
                                     const int wedge_sign,
                                     int *const best_wedge_index) {
  const MACROBLOCKD *const xd = &x->e_mbd;

  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = bw * bh;
  int rate;
  int64_t dist;
  int64_t rd, best_rd = INT64_MAX;
  int wedge_index;
  int wedge_types = (1 << get_wedge_bits_lookup(bsize));
  const uint8_t *mask;
  uint64_t sse;
  const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
  for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
    mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
    if (N < 64)
      sse = av1_wedge_sse_from_residuals_c(residual1, diff10, mask, N);
    else
      sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
    rate += x->wedge_idx_cost[bsize][wedge_index];
    rd = RDCOST(x->rdmult, rate, dist);

    if (rd < best_rd) {
      *best_wedge_index = wedge_index;
      best_rd = rd;
    }
  }
  return best_rd -
         RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0);
}

static int64_t pick_interinter_wedge(
    const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize,
    const uint8_t *const p0, const uint8_t *const p1,
    const int16_t *const residual1, const int16_t *const diff10) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int bw = block_size_wide[bsize];

  int64_t rd;
  int wedge_index = -1;
  int wedge_sign = 0;

  assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
  assert(cpi->common.seq_params.enable_masked_compound);

  if (cpi->sf.fast_wedge_sign_estimate) {
    wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
    rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign,
                               &wedge_index);
  } else {
    rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign,
                    &wedge_index);
  }

  mbmi->interinter_comp.wedge_sign = wedge_sign;
  mbmi->interinter_comp.wedge_index = wedge_index;
  return rd;
}

static int64_t pick_interinter_seg(const AV1_COMP *const cpi,
                                   MACROBLOCK *const x, const BLOCK_SIZE bsize,
                                   const uint8_t *const p0,
                                   const uint8_t *const p1,
                                   const int16_t *const residual1,
                                   const int16_t *const diff10) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int N = bw * bh;
  int rate;
  uint64_t sse;
  int64_t dist;
  int64_t rd0;
  DIFFWTD_MASK_TYPE cur_mask_type;
  int64_t best_rd = INT64_MAX;
  DIFFWTD_MASK_TYPE best_mask_type = 0;
  const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
  const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
  // try each mask type and its inverse
  for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) {
    // build mask and inverse
    if (hbd)
      av1_build_compound_diffwtd_mask_highbd(
          xd->seg_mask, cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw,
          CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd);
    else
      av1_build_compound_diffwtd_mask(xd->seg_mask, cur_mask_type, p0, bw, p1,
                                      bw, bh, bw);

    // compute rd for mask
    sse = av1_wedge_sse_from_residuals(residual1, diff10, xd->seg_mask, N);
    sse = ROUND_POWER_OF_TWO(sse, bd_round);

    model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
    rd0 = RDCOST(x->rdmult, rate, dist);

    if (rd0 < best_rd) {
      best_mask_type = cur_mask_type;
      best_rd = rd0;
    }
  }

  // make final mask
  mbmi->interinter_comp.mask_type = best_mask_type;
  if (hbd)
    av1_build_compound_diffwtd_mask_highbd(
        xd->seg_mask, mbmi->interinter_comp.mask_type, CONVERT_TO_BYTEPTR(p0),
        bw, CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd);
  else
    av1_build_compound_diffwtd_mask(
        xd->seg_mask, mbmi->interinter_comp.mask_type, p0, bw, p1, bw, bh, bw);

  return best_rd;
}

static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
                                     const MACROBLOCK *const x,
                                     const BLOCK_SIZE bsize,
                                     const uint8_t *const p0,
                                     const uint8_t *const p1) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(is_interintra_wedge_used(bsize));
  assert(cpi->common.seq_params.enable_interintra_compound);

  const struct buf_2d *const src = &x->plane[0].src;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]);  // src - pred1
  DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]);     // pred1 - pred0
  if (get_bitdepth_data_path_index(xd)) {
    aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
                              CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
    aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw,
                              CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
  } else {
    aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw);
    aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw);
  }
  int wedge_index = -1;
  int64_t rd =
      pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0, &wedge_index);

  mbmi->interintra_wedge_sign = 0;
  mbmi->interintra_wedge_index = wedge_index;
  return rd;
}

static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x,
                                    const BLOCK_SIZE bsize,
                                    const uint8_t *const p0,
                                    const uint8_t *const p1,
                                    const int16_t *const residual1,
                                    const int16_t *const diff10) {
  const COMPOUND_TYPE compound_type = x->e_mbd.mi[0]->interinter_comp.type;
  switch (compound_type) {
    case COMPOUND_WEDGE:
      return pick_interinter_wedge(cpi, x, bsize, p0, p1, residual1, diff10);
    case COMPOUND_DIFFWTD:
      return pick_interinter_seg(cpi, x, bsize, p0, p1, residual1, diff10);
    default: assert(0); return 0;
  }
}

static int interinter_compound_motion_search(
    const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
    const BLOCK_SIZE bsize, const int this_mode, int mi_row, int mi_col) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int_mv tmp_mv[2];
  int tmp_rate_mv = 0;
  mbmi->interinter_comp.seg_mask = xd->seg_mask;
  const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp;

  if (this_mode == NEW_NEWMV) {
    do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
                                    mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2);
    mbmi->mv[0].as_int = tmp_mv[0].as_int;
    mbmi->mv[1].as_int = tmp_mv[1].as_int;
  } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) {
    do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
                                    mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0);
    mbmi->mv[0].as_int = tmp_mv[0].as_int;
  } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
    do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize,
                                    mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1);
    mbmi->mv[1].as_int = tmp_mv[1].as_int;
  }
  return tmp_rate_mv;
}

static int64_t build_and_cost_compound_type(
    const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv,
    const BLOCK_SIZE bsize, const int this_mode, int *rs2, int rate_mv,
    BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, uint8_t **preds1,
    int16_t *residual1, int16_t *diff10, int *strides, int mi_row, int mi_col) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int rate_sum;
  int64_t dist_sum;
  int64_t best_rd_cur = INT64_MAX;
  int64_t rd = INT64_MAX;
  int tmp_skip_txfm_sb;
  int64_t tmp_skip_sse_sb;
  const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type;

  best_rd_cur =
      pick_interinter_mask(cpi, x, bsize, *preds0, *preds1, residual1, diff10);
  *rs2 += get_interinter_compound_mask_rate(x, mbmi);
  best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0);

  if (have_newmv_in_inter_mode(this_mode) &&
      use_masked_motion_search(compound_type)) {
    *out_rate_mv = interinter_compound_motion_search(cpi, x, cur_mv, bsize,
                                                     this_mode, mi_row, mi_col);
    av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize);
    av1_subtract_plane(x, bsize, 0);
    model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
                    &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
    rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
    if (rd >= best_rd_cur) {
      mbmi->mv[0].as_int = cur_mv[0].as_int;
      mbmi->mv[1].as_int = cur_mv[1].as_int;
      *out_rate_mv = rate_mv;
      av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
                                               preds1, strides);
    }
    rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
                             &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
    if (rd != INT64_MAX)
      rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum);
    best_rd_cur = rd;

  } else {
    av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides,
                                             preds1, strides);
    rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
                             &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
    if (rd != INT64_MAX)
      rd = RDCOST(x->rdmult, *rs2 + rate_mv + rate_sum, dist_sum);
    best_rd_cur = rd;
  }
  return best_rd_cur;
}

typedef struct {
  // OBMC secondary prediction buffers and respective strides
  uint8_t *above_pred_buf[MAX_MB_PLANE];
  int above_pred_stride[MAX_MB_PLANE];
  uint8_t *left_pred_buf[MAX_MB_PLANE];
  int left_pred_stride[MAX_MB_PLANE];
  int_mv (*single_newmv)[REF_FRAMES];
  // Pointer to array of motion vectors to use for each ref and their rates
  // Should point to first of 2 arrays in 2D array
  int (*single_newmv_rate)[REF_FRAMES];
  int (*single_newmv_valid)[REF_FRAMES];
  // Pointer to array of predicted rate-distortion
  // Should point to first of 2 arrays in 2D array
  int64_t (*modelled_rd)[REF_FRAMES];
  InterpFilter single_filter[MB_MODE_COUNT][REF_FRAMES];
  int ref_frame_cost;
  int single_comp_cost;
} HandleInterModeArgs;

static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
                                     const AV1_COMMON *cm,
                                     const MACROBLOCK *x) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  *out_mv = in_mv;
  lower_mv_precision(&out_mv->as_mv, cm->allow_high_precision_mv,
                     cm->cur_frame_force_integer_mv);
  clamp_mv2(&out_mv->as_mv, xd);
  return !mv_check_bounds(&x->mv_limits, &out_mv->as_mv);
}

static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
                            const BLOCK_SIZE bsize, int_mv *cur_mv,
                            const int mi_row, const int mi_col,
                            int *const rate_mv,
                            HandleInterModeArgs *const args) {
  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);
  const PREDICTION_MODE this_mode = mbmi->mode;
  const int refs[2] = { mbmi->ref_frame[0],
                        mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
  const int ref_mv_idx = mbmi->ref_mv_idx;
  int i;

  (void)args;

  if (is_comp_pred) {
    if (this_mode == NEW_NEWMV) {
      cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
      cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;

      if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
        joint_motion_search(cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, NULL,
                            0, rate_mv, 0);
      } else {
        *rate_mv = 0;
        for (i = 0; i < 2; ++i) {
          const int_mv ref_mv = av1_get_ref_mv(x, i);
          av1_set_mvcost(x, i, mbmi->ref_mv_idx);
          *rate_mv +=
              av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->nmvjointcost,
                              x->mvcost, MV_COST_WEIGHT);
        }
      }
    } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
      cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
      if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
        compound_single_motion_search_interinter(
            cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1);
      } else {
        av1_set_mvcost(x, 1,
                       mbmi->ref_mv_idx + (this_mode == NEAR_NEWMV ? 1 : 0));
        const int_mv ref_mv = av1_get_ref_mv(x, 1);
        *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
                                   x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
      }
    } else {
      assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
      cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
      if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
        compound_single_motion_search_interinter(
            cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0);
      } else {
        const int_mv ref_mv = av1_get_ref_mv(x, 0);
        av1_set_mvcost(x, 0,
                       mbmi->ref_mv_idx + (this_mode == NEW_NEARMV ? 1 : 0));
        *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
                                   x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
      }
    }
  } else {
    single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv);
    if (x->best_mv.as_int == INVALID_MV) return INT64_MAX;

    args->single_newmv[ref_mv_idx][refs[0]] = x->best_mv;
    args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
    args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;

    cur_mv[0].as_int = x->best_mv.as_int;

#if USE_DISCOUNT_NEWMV_TEST
    // Estimate the rate implications of a new mv but discount this
    // under certain circumstances where we want to help initiate a weak
    // motion field, where the distortion gain for a single block may not
    // be enough to overcome the cost of a new mv.
    if (discount_newmv_test(cpi, x, this_mode, x->best_mv)) {
      *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1);
    }
#endif
  }

  return 0;
}

static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2],
                                int num_planes) {
  const BUFFER_SET *buf0 = dst_bufs[0];
  dst_bufs[0] = dst_bufs[1];
  dst_bufs[1] = buf0;
  restore_dst_buf(xd, *dst_bufs[0], num_planes);
}

static INLINE int get_switchable_rate(MACROBLOCK *const x,
                                      const InterpFilters filters,
                                      const int ctx[2]) {
  int inter_filter_cost;
  const InterpFilter filter0 = av1_extract_interp_filter(filters, 0);
  const InterpFilter filter1 = av1_extract_interp_filter(filters, 1);
  inter_filter_cost = x->switchable_interp_costs[ctx[0]][filter0];
  inter_filter_cost += x->switchable_interp_costs[ctx[1]][filter1];
  return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost;
}

// calculate the rdcost of given interpolation_filter
static INLINE int64_t interpolation_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
    int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
    int *const switchable_rate, int *const skip_txfm_sb,
    int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], int filter_idx,
    const int switchable_ctx[2], const int skip_pred, int *rate,
    int64_t *dist) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  int tmp_rate, tmp_skip_sb = 0;
  int64_t tmp_dist, tmp_skip_sse = INT64_MAX;

  const InterpFilters last_best = mbmi->interp_filters;
  mbmi->interp_filters = filter_sets[filter_idx];
  const int tmp_rs =
      get_switchable_rate(x, mbmi->interp_filters, switchable_ctx);

  if (!skip_pred) {
    av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, bsize);
    av1_subtract_plane(x, bsize, 0);
#if DNN_BASED_RD_INTERP_FILTER
    model_rd_for_sb_with_dnn(cpi, bsize, x, xd, 0, 0, &tmp_rate, &tmp_dist,
                             &tmp_skip_sb, &tmp_skip_sse, NULL, NULL, NULL);
#else
    model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &tmp_rate, &tmp_dist, &tmp_skip_sb,
                    &tmp_skip_sse, NULL, NULL, NULL);
#endif
    if (num_planes > 1) {
      int64_t tmp_y_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate, tmp_dist);
      if (tmp_y_rd > *rd) {
        mbmi->interp_filters = last_best;
        return 0;
      }
      int tmp_rate_uv, tmp_skip_sb_uv;
      int64_t tmp_dist_uv, tmp_skip_sse_uv;
      av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, orig_dst, bsize);
      for (int plane = 1; plane < num_planes; ++plane)
        av1_subtract_plane(x, bsize, plane);
#if DNN_BASED_RD_INTERP_FILTER
      model_rd_for_sb_with_dnn(cpi, bsize, x, xd, 1, num_planes - 1,
                               &tmp_rate_uv, &tmp_dist_uv, &tmp_skip_sb_uv,
                               &tmp_skip_sse_uv, NULL, NULL, NULL);
#else
      model_rd_for_sb(cpi, bsize, x, xd, 1, num_planes - 1, &tmp_rate_uv,
                      &tmp_dist_uv, &tmp_skip_sb_uv, &tmp_skip_sse_uv, NULL,
                      NULL, NULL);
#endif
      tmp_rate += tmp_rate_uv;
      tmp_skip_sb &= tmp_skip_sb_uv;
      tmp_dist += tmp_dist_uv;
      tmp_skip_sse += tmp_skip_sse_uv;
    }
  } else {
    tmp_rate = *rate;
    tmp_dist = *dist;
  }
  int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate, tmp_dist);
  if (tmp_rd < *rd) {
    *rd = tmp_rd;
    *switchable_rate = tmp_rs;
    *skip_txfm_sb = tmp_skip_sb;
    *skip_sse_sb = tmp_skip_sse;
    *rate = tmp_rate;
    *dist = tmp_dist;
    if (!skip_pred) {
      swap_dst_buf(xd, dst_bufs, num_planes);
    }
    return 1;
  }
  mbmi->interp_filters = last_best;
  return 0;
}

// Find the best rd filter in horizontal direction
static INLINE int find_best_horiz_interp_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
    int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
    int *const switchable_rate, int *const skip_txfm_sb,
    int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2],
    const int switchable_ctx[2], const int skip_hor, int *rate, int64_t *dist,
    int best_dual_mode) {
  int i;
  const int bw = block_size_wide[bsize];
  assert(best_dual_mode == 0);
  if ((bw <= 4) && (!skip_hor)) {
    int skip_pred = 1;
    // Process the filters in reverse order to enable reusing rate and
    // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP
    for (i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) {
      if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
                                  switchable_rate, skip_txfm_sb, skip_sse_sb,
                                  dst_bufs, i, switchable_ctx, skip_pred, rate,
                                  dist)) {
        best_dual_mode = i;
      }
      skip_pred = 0;
    }
  } else {
    for (i = 1; i < SWITCHABLE_FILTERS; ++i) {
      if (interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
                                  switchable_rate, skip_txfm_sb, skip_sse_sb,
                                  dst_bufs, i, switchable_ctx, skip_hor, rate,
                                  dist)) {
        best_dual_mode = i;
      }
    }
  }
  return best_dual_mode;
}

// Find the best rd filter in vertical direction
static INLINE void find_best_vert_interp_filter_rd(
    MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
    int mi_row, int mi_col, BUFFER_SET *const orig_dst, int64_t *const rd,
    int *const switchable_rate, int *const skip_txfm_sb,
    int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2],
    const int switchable_ctx[2], const int skip_ver, int *rate, int64_t *dist,
    int best_dual_mode, int filter_set_size) {
  int i;
  const int bh = block_size_high[bsize];
  if ((bh <= 4) && (!skip_ver)) {
    int skip_pred = 1;
    // Process the filters in reverse order to enable reusing rate and
    // distortion (calcuated during EIGHTTAP_REGULAR) for MULTITAP_SHARP
    assert(filter_set_size == DUAL_FILTER_SET_SIZE);
    for (i = (filter_set_size - SWITCHABLE_FILTERS + best_dual_mode);
         i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) {
      interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
                              switchable_rate, skip_txfm_sb, skip_sse_sb,
                              dst_bufs, i, switchable_ctx, skip_pred, rate,
                              dist);
      skip_pred = 0;
    }
  } else {
    for (i = best_dual_mode + SWITCHABLE_FILTERS; i < filter_set_size;
         i += SWITCHABLE_FILTERS) {
      interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
                              switchable_rate, skip_txfm_sb, skip_sse_sb,
                              dst_bufs, i, switchable_ctx, skip_ver, rate,
                              dist);
    }
  }
}

// check if there is saved result match with this search
static INLINE int is_interp_filter_match(const INTERPOLATION_FILTER_STATS *st,
                                         MB_MODE_INFO *const mi) {
  for (int i = 0; i < 2; ++i) {
    if ((st->ref_frames[i] != mi->ref_frame[i]) ||
        (st->mv[i].as_int != mi->mv[i].as_int)) {
      return 0;
    }
  }
  return 1;
}

static INLINE int find_interp_filter_in_stats(MACROBLOCK *x,
                                              MB_MODE_INFO *const mbmi) {
  const int comp_idx = mbmi->compound_idx;
  const int offset = x->interp_filter_stats_idx[comp_idx];
  for (int j = 0; j < offset; ++j) {
    const INTERPOLATION_FILTER_STATS *st = &x->interp_filter_stats[comp_idx][j];
    if (is_interp_filter_match(st, mbmi)) {
      mbmi->interp_filters = st->filters;
      return j;
    }
  }
  return -1;  // no match result found
}

static INLINE void save_interp_filter_search_stat(MACROBLOCK *x,
                                                  MB_MODE_INFO *const mbmi) {
  const int comp_idx = mbmi->compound_idx;
  const int offset = x->interp_filter_stats_idx[comp_idx];
  if (offset < MAX_INTERP_FILTER_STATS) {
    INTERPOLATION_FILTER_STATS stat = {
      mbmi->interp_filters,
      { mbmi->mv[0], mbmi->mv[1] },
      { mbmi->ref_frame[0], mbmi->ref_frame[1] },
    };
    x->interp_filter_stats[comp_idx][offset] = stat;
    x->interp_filter_stats_idx[comp_idx]++;
  }
}

static int64_t interpolation_filter_search(
    MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize,
    int mi_row, int mi_col, const BUFFER_SET *const tmp_dst,
    BUFFER_SET *const orig_dst, InterpFilter (*const single_filter)[REF_FRAMES],
    int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb,
    int64_t *const skip_sse_sb) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int need_search =
      av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd);
  int i, tmp_rate;
  int64_t tmp_dist;

  (void)single_filter;
  int match_found = -1;
  const InterpFilter assign_filter = cm->interp_filter;
  if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) {
    match_found = find_interp_filter_in_stats(x, mbmi);
  }
  if (!need_search || match_found == -1) {
    set_default_interp_filters(mbmi, assign_filter);
  }
  int switchable_ctx[2];
  switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0);
  switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1);
  *switchable_rate =
      get_switchable_rate(x, mbmi->interp_filters, switchable_ctx);
  av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
  for (int plane = 0; plane < num_planes; ++plane)
    av1_subtract_plane(x, bsize, plane);
#if DNN_BASED_RD_INTERP_FILTER
  model_rd_for_sb_with_dnn(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate,
                           &tmp_dist, skip_txfm_sb, skip_sse_sb, NULL, NULL,
                           NULL);
#else
  model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, &tmp_dist,
                  skip_txfm_sb, skip_sse_sb, NULL, NULL, NULL);
#endif  // DNN_BASED_RD_INTERP_FILTER
  *rd = RDCOST(x->rdmult, *switchable_rate + tmp_rate, tmp_dist);

  if (assign_filter != SWITCHABLE || match_found != -1) {
    return 0;
  }
  if (!need_search) {
    assert(mbmi->interp_filters ==
           av1_broadcast_interp_filter(EIGHTTAP_REGULAR));
    return 0;
  }
  int skip_hor = 1;
  int skip_ver = 1;
  const int is_compound = has_second_ref(mbmi);
  for (int k = 0; k < num_planes - 1; ++k) {
    struct macroblockd_plane *const pd = &xd->plane[k];
    const int bw = pd->width;
    const int bh = pd->height;
    for (int j = 0; j < 1 + is_compound; ++j) {
      const MV mv = mbmi->mv[j].as_mv;
      const MV mv_q4 = clamp_mv_to_umv_border_sb(
          xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
      const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
      const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
      skip_hor &= (sub_x == 0);
      skip_ver &= (sub_y == 0);
    }
  }
  // do interp_filter search
  const int filter_set_size = DUAL_FILTER_SET_SIZE;
  restore_dst_buf(xd, *tmp_dst, num_planes);
  const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst };
  if (cpi->sf.use_fast_interpolation_filter_search &&
      cm->seq_params.enable_dual_filter) {
    // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR
    int best_dual_mode = 0;
    // Find best of {R}x{R,Sm,Sh}
    // EIGHTTAP_REGULAR mode is calculated beforehand
    best_dual_mode = find_best_horiz_interp_filter_rd(
        x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate,
        skip_txfm_sb, skip_sse_sb, dst_bufs, switchable_ctx, skip_hor,
        &tmp_rate, &tmp_dist, best_dual_mode);

    // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes
    find_best_vert_interp_filter_rd(
        x, cpi, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate,
        skip_txfm_sb, skip_sse_sb, dst_bufs, switchable_ctx, skip_ver,
        &tmp_rate, &tmp_dist, best_dual_mode, filter_set_size);
  } else {
    // EIGHTTAP_REGULAR mode is calculated beforehand
    for (i = 1; i < filter_set_size; ++i) {
      if (cm->seq_params.enable_dual_filter == 0) {
        const int16_t filter_y = filter_sets[i] & 0xffff;
        const int16_t filter_x = filter_sets[i] >> 16;
        if (filter_x != filter_y) continue;
      }
      interpolation_filter_rd(x, cpi, bsize, mi_row, mi_col, orig_dst, rd,
                              switchable_rate, skip_txfm_sb, skip_sse_sb,
                              dst_bufs, i, switchable_ctx, 0, &tmp_rate,
                              &tmp_dist);
    }
  }
  swap_dst_buf(xd, dst_bufs, num_planes);
  // save search results
  if (cpi->sf.skip_repeat_interpolation_filter_search) {
    assert(match_found == -1);
    save_interp_filter_search_stat(x, mbmi);
  }
  return 0;
}

// TODO(afergs): Refactor the MBMI references in here - there's four
// TODO(afergs): Refactor optional args - add them to a struct or remove
static int64_t motion_mode_rd(const AV1_COMP *const cpi, MACROBLOCK *const x,
                              BLOCK_SIZE bsize, RD_STATS *rd_stats,
                              RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
                              int *disable_skip, int mi_row, int mi_col,
                              HandleInterModeArgs *const args,
                              int64_t ref_best_rd, const int *refs, int rate_mv,
                              BUFFER_SET *orig_dst
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
                              ,
                              int64_t *best_est_rd
#endif
) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);
  const PREDICTION_MODE this_mode = mbmi->mode;
  int rate2_nocoeff = 0, best_xskip, best_disable_skip = 0;
  RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
  MB_MODE_INFO base_mbmi, best_mbmi;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  int interintra_allowed = cm->seq_params.enable_interintra_compound &&
                           is_interintra_allowed(mbmi) && mbmi->compound_idx;
  int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE];
  int total_samples;

  (void)rate_mv;

  av1_invalid_rd_stats(&best_rd_stats);

  aom_clear_system_state();
  mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0);
  total_samples = mbmi->num_proj_ref[0];
  rate2_nocoeff = rd_stats->rate;
  base_mbmi = *mbmi;
  MOTION_MODE last_motion_mode_allowed =
      cm->switchable_motion_mode
          ? motion_mode_allowed(xd->global_motion, xd, mbmi,
                                cm->allow_warped_motion)
          : SIMPLE_TRANSLATION;
  assert(mbmi->ref_frame[1] != INTRA_FRAME);
  const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];

  int64_t best_rd = INT64_MAX;

  for (int mode_index = (int)SIMPLE_TRANSLATION;
       mode_index <= (int)last_motion_mode_allowed + interintra_allowed;
       mode_index++) {
    int64_t tmp_rd = INT64_MAX;
    int tmp_rate2 = rate2_nocoeff;
    int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
    int skip_txfm_sb = 0;

    *mbmi = base_mbmi;
    if (is_interintra_mode) {
      mbmi->motion_mode = SIMPLE_TRANSLATION;
    } else {
      mbmi->motion_mode = (MOTION_MODE)mode_index;
      assert(mbmi->ref_frame[1] != INTRA_FRAME);
    }

    if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
      // SIMPLE_TRANSLATION mode: no need to recalculate.
      // The prediction is calculated before motion_mode_rd() is called in
      // handle_inter_mode()
    } else if (mbmi->motion_mode == OBMC_CAUSAL) {
      mbmi->motion_mode = OBMC_CAUSAL;
      if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) {
        int tmp_rate_mv = 0;

        single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv);
        mbmi->mv[0].as_int = x->best_mv.as_int;
#if USE_DISCOUNT_NEWMV_TEST
        if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
          tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
        }
#endif
        tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv;
      }
      av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
      av1_build_obmc_inter_prediction(
          cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride,
          args->left_pred_buf, args->left_pred_stride);
    } else if (mbmi->motion_mode == WARPED_CAUSAL) {
      int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
      mbmi->motion_mode = WARPED_CAUSAL;
      mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE;
      mbmi->interp_filters = av1_broadcast_interp_filter(
          av1_unswitchable_filter(cm->interp_filter));

      memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
      memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
      // Select the samples according to motion vector difference
      if (mbmi->num_proj_ref[0] > 1) {
        mbmi->num_proj_ref[0] = selectSamples(
            &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref[0], bsize);
      }

      if (!find_projection(mbmi->num_proj_ref[0], pts, pts_inref, bsize,
                           mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
                           &mbmi->wm_params[0], mi_row, mi_col)) {
        // Refine MV for NEWMV mode
        if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) {
          int tmp_rate_mv = 0;
          const int_mv mv0 = mbmi->mv[0];
          const WarpedMotionParams wm_params0 = mbmi->wm_params[0];
          int num_proj_ref0 = mbmi->num_proj_ref[0];

          // Refine MV in a small range.
          av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0,
                               total_samples);

          // Keep the refined MV and WM parameters.
          if (mv0.as_int != mbmi->mv[0].as_int) {
            const int ref = refs[0];
            const int_mv ref_mv = av1_get_ref_mv(x, 0);
            tmp_rate_mv =
                av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv.as_mv,
                                x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);

            if (cpi->sf.adaptive_motion_search)
              x->pred_mv[ref] = mbmi->mv[0].as_mv;

#if USE_DISCOUNT_NEWMV_TEST
            if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
              tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
            }
#endif
            tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv;
          } else {
            // Restore the old MV and WM parameters.
            mbmi->mv[0] = mv0;
            mbmi->wm_params[0] = wm_params0;
            mbmi->num_proj_ref[0] = num_proj_ref0;
          }
        }

        av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
      } else {
        continue;
      }
    } else if (is_interintra_mode) {
      INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
      int64_t rd, best_interintra_rd = INT64_MAX;
      int rmode, rate_sum;
      int64_t dist_sum;
      int j;
      int tmp_rate_mv = 0;
      int tmp_skip_txfm_sb;
      int bw = block_size_wide[bsize];
      int64_t tmp_skip_sse_sb;
      DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]);
      DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]);
      uint8_t *tmp_buf, *intrapred;
      const int *const interintra_mode_cost =
          x->interintra_mode_cost[size_group_lookup[bsize]];

      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
        tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_);
        intrapred = CONVERT_TO_BYTEPTR(intrapred_);
      } else {
        tmp_buf = tmp_buf_;
        intrapred = intrapred_;
      }
      const int_mv mv0 = mbmi->mv[0];

      mbmi->ref_frame[1] = NONE_FRAME;
      xd->plane[0].dst.buf = tmp_buf;
      xd->plane[0].dst.stride = bw;
      av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize);

      restore_dst_buf(xd, *orig_dst, num_planes);
      mbmi->ref_frame[1] = INTRA_FRAME;
      mbmi->use_wedge_interintra = 0;
      for (j = 0; j < INTERINTRA_MODES; ++j) {
        mbmi->interintra_mode = (INTERINTRA_MODE)j;
        rmode = interintra_mode_cost[mbmi->interintra_mode];
        av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                  intrapred, bw);
        av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
        av1_subtract_plane(x, bsize, 0);
        model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
                        &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL);
        rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum);
        if (rd < best_interintra_rd) {
          best_interintra_rd = rd;
          best_interintra_mode = mbmi->interintra_mode;
        }
      }
      mbmi->interintra_mode = best_interintra_mode;
      rmode = interintra_mode_cost[mbmi->interintra_mode];
      av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst,
                                                intrapred, bw);
      av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
      rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
                               &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
      if (rd != INT64_MAX)
        rd = RDCOST(x->rdmult, rate_mv + rmode + rate_sum, dist_sum);
      best_interintra_rd = rd;

      if (ref_best_rd < INT64_MAX && (best_interintra_rd >> 1) > ref_best_rd) {
        // restore ref_frame[1]
        mbmi->ref_frame[1] = ref_frame_1;
        continue;
      }

      if (is_interintra_wedge_used(bsize)) {
        int64_t best_interintra_rd_nowedge = INT64_MAX;
        int64_t best_interintra_rd_wedge = INT64_MAX;
        int_mv tmp_mv;
        InterpFilters backup_interp_filters = mbmi->interp_filters;
        int rwedge = x->wedge_interintra_cost[bsize][0];
        if (rd != INT64_MAX)
          rd = RDCOST(x->rdmult, rate_mv + rmode + rate_sum + rwedge, dist_sum);
        best_interintra_rd_nowedge = rd;

        // Disable wedge search if source variance is small
        if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
          mbmi->use_wedge_interintra = 1;

          rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) +
                   x->wedge_interintra_cost[bsize][1];

          best_interintra_rd_wedge =
              pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);

          best_interintra_rd_wedge +=
              RDCOST(x->rdmult, rmode + rate_mv + rwedge, 0);
          // Refine motion vector.
          if (have_newmv_in_inter_mode(mbmi->mode)) {
            // get negative of mask
            const uint8_t *mask = av1_get_contiguous_soft_mask(
                mbmi->interintra_wedge_index, 1, bsize);
            tmp_mv = av1_get_ref_mv(x, 0);
            compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row,
                                          mi_col, intrapred, mask, bw,
                                          &tmp_rate_mv, 0);
            mbmi->mv[0].as_int = tmp_mv.as_int;
            av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst,
                                           bsize);
            av1_subtract_plane(x, bsize, 0);
            model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
                            &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL,
                            NULL);
            rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge,
                        dist_sum);
            if (rd >= best_interintra_rd_wedge) {
              tmp_mv.as_int = mv0.as_int;
              tmp_rate_mv = rate_mv;
              mbmi->interp_filters = backup_interp_filters;
              av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
            }
          } else {
            tmp_mv.as_int = mv0.as_int;
            tmp_rate_mv = rate_mv;
            av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
          }
          // Evaluate closer to true rd
          rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
                                   &tmp_skip_txfm_sb, &tmp_skip_sse_sb,
                                   INT64_MAX);
          if (rd != INT64_MAX)
            rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rate_sum,
                        dist_sum);
          best_interintra_rd_wedge = rd;
          if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
            mbmi->use_wedge_interintra = 1;
            mbmi->mv[0].as_int = tmp_mv.as_int;
            tmp_rate2 += tmp_rate_mv - rate_mv;
          } else {
            mbmi->use_wedge_interintra = 0;
            mbmi->mv[0].as_int = mv0.as_int;
            mbmi->interp_filters = backup_interp_filters;
          }
        } else {
          mbmi->use_wedge_interintra = 0;
        }
      }  // if (is_interintra_wedge_used(bsize))
      restore_dst_buf(xd, *orig_dst, num_planes);
      av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);
    }

    if (!cpi->common.all_lossless)
      check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb);

    x->skip = 0;

    rd_stats->dist = 0;
    rd_stats->sse = 0;
    rd_stats->skip = 1;
    rd_stats->rate = tmp_rate2;
    if (av1_is_interp_needed(xd))
      rd_stats->rate += av1_get_switchable_rate(cm, x, xd);
    if (interintra_allowed) {
      rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]]
                                          [mbmi->ref_frame[1] == INTRA_FRAME];
      if (mbmi->ref_frame[1] == INTRA_FRAME) {
        rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]]
                                                 [mbmi->interintra_mode];
        if (is_interintra_wedge_used(bsize)) {
          rd_stats->rate +=
              x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra];
          if (mbmi->use_wedge_interintra) {
            rd_stats->rate +=
                av1_cost_literal(get_interintra_wedge_bits(bsize));
          }
        }
      }
    }
    if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
        (mbmi->ref_frame[1] != INTRA_FRAME)) {
      if (last_motion_mode_allowed == WARPED_CAUSAL) {
        rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode];
      } else {
        rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode];
      }
    }
    if (!skip_txfm_sb) {
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
      int64_t est_rd = 0;
      int est_skip = 0;
      if (cpi->sf.inter_mode_rd_model_estimation) {
        InterModeRdModel *md = &inter_mode_rd_models[mbmi->sb_type];
        if (md->ready) {
          const int64_t curr_sse = get_sse(cpi, x);
          est_rd =
              get_est_rd(mbmi->sb_type, x->rdmult, curr_sse, rd_stats->rate);
          est_skip = est_rd * 0.8 > *best_est_rd;
#if INTER_MODE_RD_TEST
          if (est_rd < *best_est_rd) {
            *best_est_rd = est_rd;
          }
#else   // INTER_MODE_RD_TEST
          if (est_skip) {
            ++md->skip_count;
            mbmi->ref_frame[1] = ref_frame_1;
            continue;
          } else {
            if (est_rd < *best_est_rd) {
              *best_est_rd = est_rd;
            }
            ++md->non_skip_count;
          }
#endif  // INTER_MODE_RD_TEST
        }
      }
#endif  // CONFIG_COLLECT_INTER_MODE_RD_STATS

      int64_t rdcosty = INT64_MAX;
      int is_cost_valid_uv = 0;

      // cost and distortion
      av1_subtract_plane(x, bsize, 0);
      if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
        // Motion mode
        select_tx_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col,
                           ref_best_rd);
#if CONFIG_COLLECT_RD_STATS == 2
        PrintPredictionUnitStats(cpi, x, rd_stats_y, bsize);
#endif  // CONFIG_COLLECT_RD_STATS == 2
      } else {
        super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd);
        memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
        memset(x->blk_skip, rd_stats_y->skip,
               sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
      }

      if (rd_stats_y->rate == INT_MAX) {
        av1_invalid_rd_stats(rd_stats);
        if (mbmi->motion_mode != SIMPLE_TRANSLATION ||
            mbmi->ref_frame[1] == INTRA_FRAME) {
          mbmi->ref_frame[1] = ref_frame_1;
          continue;
        } else {
          restore_dst_buf(xd, *orig_dst, num_planes);
          mbmi->ref_frame[1] = ref_frame_1;
          return INT64_MAX;
        }
      }

      av1_merge_rd_stats(rd_stats, rd_stats_y);

      rdcosty = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
      rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, 0, rd_stats->sse));
      if (num_planes > 1) {
        /* clang-format off */
        is_cost_valid_uv =
            inter_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty,
                             FTXS_NONE);
        if (!is_cost_valid_uv) {
          mbmi->ref_frame[1] = ref_frame_1;
          continue;
        }
        /* clang-format on */
        av1_merge_rd_stats(rd_stats, rd_stats_uv);
      } else {
        av1_init_rd_stats(rd_stats_uv);
      }
#if CONFIG_RD_DEBUG
      // record transform block coefficient cost
      // TODO(angiebird): So far rd_debug tool only detects discrepancy of
      // coefficient cost. Therefore, it is fine to copy rd_stats into mbmi
      // here because we already collect the coefficient cost. Move this part to
      // other place when we need to compare non-coefficient cost.
      mbmi->rd_stats = *rd_stats;
#endif  // CONFIG_RD_DEBUG
      const int skip_ctx = av1_get_skip_context(xd);
      if (rd_stats->skip) {
        rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
        rd_stats_y->rate = 0;
        rd_stats_uv->rate = 0;
        rd_stats->rate += x->skip_cost[skip_ctx][1];
        mbmi->skip = 0;
        // here mbmi->skip temporarily plays a role as what this_skip2 does
      } else if (!xd->lossless[mbmi->segment_id] &&
                 (RDCOST(x->rdmult,
                         rd_stats_y->rate + rd_stats_uv->rate +
                             x->skip_cost[skip_ctx][0],
                         rd_stats->dist) >= RDCOST(x->rdmult,
                                                   x->skip_cost[skip_ctx][1],
                                                   rd_stats->sse))) {
        rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate;
        rd_stats->rate += x->skip_cost[skip_ctx][1];
        rd_stats->dist = rd_stats->sse;
        rd_stats_y->rate = 0;
        rd_stats_uv->rate = 0;
        mbmi->skip = 1;
      } else {
        rd_stats->rate += x->skip_cost[skip_ctx][0];
        mbmi->skip = 0;
      }
      *disable_skip = 0;
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
      if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 &&
          cm->tile_rows == 1) {
#if INTER_MODE_RD_TEST
        if (md->ready) {
          int64_t real_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
          if (est_skip) {
            ++md->skip_count;
            if (real_rd < ref_best_rd) {
              ++md->fp_skip_count;
            }
            // int fp_skip = real_rd < ref_best_rd;
            // printf("est_skip %d fp_skip %d est_rd %ld best_est_rd %ld real_rd
            // %ld ref_best_rd %ld\n",
            //        est_skip, fp_skip, est_rd, *best_est_rd, real_rd,
            //        ref_best_rd);
          } else {
            ++md->non_skip_count;
          }
        }
#endif  // INTER_MODE_RD_TEST
        inter_mode_data_push(mbmi->sb_type, rd_stats->sse, rd_stats->dist,
                             rd_stats_y->rate + rd_stats_uv->rate +
                                 x->skip_cost[skip_ctx][mbmi->skip],
                             rd_stats->rate, ref_best_rd);
      }
#endif  // CONFIG_COLLECT_INTER_MODE_RD_STATS
      int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
      if (curr_rd < ref_best_rd) {
        ref_best_rd = curr_rd;
      }
    } else {
      x->skip = 1;
      *disable_skip = 1;
      mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);

      // The cost of skip bit needs to be added.
      mbmi->skip = 0;
      rd_stats->rate += x->skip_cost[av1_get_skip_context(xd)][1];

      rd_stats->dist = 0;
      rd_stats->sse = 0;
      rd_stats_y->rate = 0;
      rd_stats_uv->rate = 0;
      rd_stats->skip = 1;
    }

    if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
      if (is_nontrans_global_motion(xd, xd->mi[0])) {
        mbmi->interp_filters = av1_broadcast_interp_filter(
            av1_unswitchable_filter(cm->interp_filter));
      }
    }

    tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
    if ((mbmi->motion_mode == SIMPLE_TRANSLATION &&
         mbmi->ref_frame[1] != INTRA_FRAME) ||
        (tmp_rd < best_rd)) {
      best_mbmi = *mbmi;
      best_rd = tmp_rd;
      best_rd_stats = *rd_stats;
      best_rd_stats_y = *rd_stats_y;
      if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
      memcpy(best_blk_skip, x->blk_skip,
             sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
      best_xskip = x->skip;
      best_disable_skip = *disable_skip;
      if (best_xskip) break;
    }
  }
  mbmi->ref_frame[1] = ref_frame_1;

  if (best_rd == INT64_MAX) {
    av1_invalid_rd_stats(rd_stats);
    restore_dst_buf(xd, *orig_dst, num_planes);
    return INT64_MAX;
  }
  *mbmi = best_mbmi;
  *rd_stats = best_rd_stats;
  *rd_stats_y = best_rd_stats_y;
  if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
  memcpy(x->blk_skip, best_blk_skip,
         sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
  x->skip = best_xskip;
  *disable_skip = best_disable_skip;

  restore_dst_buf(xd, *orig_dst, num_planes);
  return 0;
}

static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
                            MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row,
                            int mi_col, BUFFER_SET *const orig_dst) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize);

  int64_t total_sse = 0;
  for (int plane = 0; plane < num_planes; ++plane) {
    const struct macroblock_plane *const p = &x->plane[plane];
    const struct macroblockd_plane *const pd = &xd->plane[plane];
    const BLOCK_SIZE plane_bsize =
        get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
    const int bw = block_size_wide[plane_bsize];
    const int bh = block_size_high[plane_bsize];

    av1_subtract_plane(x, bsize, plane);
    int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh);
    sse = sse << 4;
    total_sse += sse;
  }
  const int skip_mode_ctx = av1_get_skip_mode_context(xd);
  rd_stats->dist = rd_stats->sse = total_sse;
  rd_stats->rate = x->skip_mode_cost[skip_mode_ctx][1];
  rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);

  restore_dst_buf(xd, *orig_dst, num_planes);
  return 0;
}

#ifndef NDEBUG
static INLINE int is_single_inter_mode(int this_mode) {
  return this_mode >= SINGLE_INTER_MODE_START &&
         this_mode < SINGLE_INTER_MODE_END;
}
#endif

static INLINE int get_ref_mv_offset(int single_mode, uint8_t ref_mv_idx) {
  assert(is_single_inter_mode(single_mode));
  int ref_mv_offset;
  if (single_mode == NEARESTMV) {
    ref_mv_offset = 0;
  } else if (single_mode == NEARMV) {
    ref_mv_offset = ref_mv_idx + 1;
  } else {
    ref_mv_offset = -1;
  }
  return ref_mv_offset;
}

static INLINE void get_this_mv(int_mv *this_mv, int this_mode, int ref_idx,
                               int ref_mv_idx,
                               const MV_REFERENCE_FRAME *ref_frame,
                               const MB_MODE_INFO_EXT *mbmi_ext) {
  const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
  const int is_comp_pred = ref_frame[1] > INTRA_FRAME;
  const int single_mode = get_single_mode(this_mode, ref_idx, is_comp_pred);
  assert(is_single_inter_mode(single_mode));
  if (single_mode == NEWMV) {
    this_mv->as_int = INVALID_MV;
  } else if (single_mode == GLOBALMV) {
    *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
  } else {
    assert(single_mode == NEARMV || single_mode == NEARESTMV);
    const int ref_mv_offset = get_ref_mv_offset(single_mode, ref_mv_idx);
    if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
      assert(ref_mv_offset >= 0);
      if (ref_idx == 0) {
        *this_mv =
            mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
      } else {
        *this_mv =
            mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
      }
    } else {
      *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
    }
  }
}

// This function update the non-new mv for the current prediction mode
static INLINE int build_cur_mv(int_mv *cur_mv, int this_mode,
                               const AV1_COMMON *cm, const MACROBLOCK *x) {
  const MACROBLOCKD *xd = &x->e_mbd;
  const MB_MODE_INFO *mbmi = xd->mi[0];
  const int is_comp_pred = has_second_ref(mbmi);
  int ret = 1;
  for (int i = 0; i < is_comp_pred + 1; ++i) {
    int_mv this_mv;
    get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, mbmi->ref_frame,
                x->mbmi_ext);
    const int single_mode = get_single_mode(this_mode, i, is_comp_pred);
    if (single_mode == NEWMV) {
      cur_mv[i] = this_mv;
    } else {
      ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
    }
  }
  return ret;
}

static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi,
                               const MB_MODE_INFO_EXT *mbmi_ext,
                               int (*drl_mode_cost0)[2],
                               int8_t ref_frame_type) {
  int cost = 0;
  if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
    for (int idx = 0; idx < 2; ++idx) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx =
            av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
        cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
        if (mbmi->ref_mv_idx == idx) return cost;
      }
    }
    return cost;
  }

  if (have_nearmv_in_inter_mode(mbmi->mode)) {
    for (int idx = 1; idx < 3; ++idx) {
      if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
        uint8_t drl_ctx =
            av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
        cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
        if (mbmi->ref_mv_idx == (idx - 1)) return cost;
      }
    }
    return cost;
  }
  return cost;
}

static INLINE int compound_type_rd(const AV1_COMP *const cpi, MACROBLOCK *x,
                                   BLOCK_SIZE bsize, int mi_col, int mi_row,
                                   int_mv *cur_mv, int masked_compound_used,
                                   BUFFER_SET *orig_dst, BUFFER_SET *tmp_dst,
                                   int *rate_mv, int64_t *rd,
                                   RD_STATS *rd_stats, int64_t ref_best_rd) {
  const AV1_COMMON *cm = &cpi->common;
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int this_mode = mbmi->mode;
  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  int rate_sum, rs2;
  int64_t dist_sum;

  int_mv best_mv[2];
  int best_tmp_rate_mv = *rate_mv;
  int tmp_skip_txfm_sb;
  int64_t tmp_skip_sse_sb;
  INTERINTER_COMPOUND_DATA best_compound_data;
  best_compound_data.type = COMPOUND_AVERAGE;
  DECLARE_ALIGNED(16, uint8_t, pred0[2 * MAX_SB_SQUARE]);
  DECLARE_ALIGNED(16, uint8_t, pred1[2 * MAX_SB_SQUARE]);
  DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]);  // src - pred1
  DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]);     // pred1 - pred0
  uint8_t tmp_best_mask_buf[2 * MAX_SB_SQUARE];
  uint8_t *preds0[1] = { pred0 };
  uint8_t *preds1[1] = { pred1 };
  int strides[1] = { bw };
  int tmp_rate_mv;
  const int num_pix = 1 << num_pels_log2_lookup[bsize];
  const int mask_len = 2 * num_pix * sizeof(uint8_t);
  COMPOUND_TYPE cur_type;
  int best_compmode_interinter_cost = 0;
  int can_use_previous = cm->allow_warped_motion;

  best_mv[0].as_int = cur_mv[0].as_int;
  best_mv[1].as_int = cur_mv[1].as_int;
  *rd = INT64_MAX;
  if (masked_compound_used) {
    // get inter predictors to use for masked compound modes
    av1_build_inter_predictors_for_planes_single_buf(
        xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides, can_use_previous);
    av1_build_inter_predictors_for_planes_single_buf(
        xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides, can_use_previous);
    const struct buf_2d *const src = &x->plane[0].src;
    if (get_bitdepth_data_path_index(xd)) {
      aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride,
                                CONVERT_TO_BYTEPTR(pred1), bw, xd->bd);
      aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(pred1),
                                bw, CONVERT_TO_BYTEPTR(pred0), bw, xd->bd);
    } else {
      aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, pred1,
                         bw);
      aom_subtract_block(bh, bw, diff10, bw, pred1, bw, pred0, bw);
    }
  }
  const int orig_is_best = xd->plane[0].dst.buf == orig_dst->plane[0];
  const BUFFER_SET *backup_buf = orig_is_best ? tmp_dst : orig_dst;
  const BUFFER_SET *best_buf = orig_is_best ? orig_dst : tmp_dst;
  for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) {
    if (cur_type != COMPOUND_AVERAGE && !masked_compound_used) break;
    if (!is_interinter_compound_used(cur_type, bsize)) continue;
    tmp_rate_mv = *rate_mv;
    int64_t best_rd_cur = INT64_MAX;
    mbmi->interinter_comp.type = cur_type;
    int masked_type_cost = 0;

    const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
    const int comp_index_ctx = get_comp_index_context(cm, xd);
    mbmi->compound_idx = 1;
    if (cur_type == COMPOUND_AVERAGE) {
      mbmi->comp_group_idx = 0;
      if (masked_compound_used) {
        masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][0];
      }
      masked_type_cost += x->comp_idx_cost[comp_index_ctx][1];
      rs2 = masked_type_cost;
      // No need to call av1_build_inter_predictors_sby here
      // 1. COMPOUND_AVERAGE is always the first candidate
      // 2. av1_build_inter_predictors_sby has been called by
      // interpolation_filter_search
      int64_t est_rd =
          estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
                              &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
      // use spare buffer for following compound type try
      restore_dst_buf(xd, *backup_buf, 1);
      if (est_rd != INT64_MAX)
        best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum);
    } else {
      mbmi->comp_group_idx = 1;
      masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][1];
      masked_type_cost += x->compound_type_cost[bsize][cur_type - 1];
      rs2 = masked_type_cost;
      if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
          *rd / 3 < ref_best_rd) {
        best_rd_cur = build_and_cost_compound_type(
            cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst,
            &tmp_rate_mv, preds0, preds1, residual1, diff10, strides, mi_row,
            mi_col);
      }
    }
    if (best_rd_cur < *rd) {
      *rd = best_rd_cur;
      best_compound_data = mbmi->interinter_comp;
      if (masked_compound_used && cur_type != COMPOUND_TYPES - 1) {
        memcpy(tmp_best_mask_buf, xd->seg_mask, mask_len);
      }
      best_compmode_interinter_cost = rs2;
      if (have_newmv_in_inter_mode(this_mode)) {
        if (use_masked_motion_search(cur_type)) {
          best_tmp_rate_mv = tmp_rate_mv;
          best_mv[0].as_int = mbmi->mv[0].as_int;
          best_mv[1].as_int = mbmi->mv[1].as_int;
        } else {
          best_mv[0].as_int = cur_mv[0].as_int;
          best_mv[1].as_int = cur_mv[1].as_int;
        }
      }
    }
    // reset to original mvs for next iteration
    mbmi->mv[0].as_int = cur_mv[0].as_int;
    mbmi->mv[1].as_int = cur_mv[1].as_int;
  }
  if (mbmi->interinter_comp.type != best_compound_data.type) {
    mbmi->comp_group_idx =
        (best_compound_data.type == COMPOUND_AVERAGE) ? 0 : 1;
    mbmi->interinter_comp = best_compound_data;
    memcpy(xd->seg_mask, tmp_best_mask_buf, mask_len);
  }
  if (have_newmv_in_inter_mode(this_mode)) {
    mbmi->mv[0].as_int = best_mv[0].as_int;
    mbmi->mv[1].as_int = best_mv[1].as_int;
    if (use_masked_motion_search(mbmi->interinter_comp.type)) {
      rd_stats->rate += best_tmp_rate_mv - *rate_mv;
      *rate_mv = best_tmp_rate_mv;
    }
  }
  restore_dst_buf(xd, *best_buf, 1);
  return best_compmode_interinter_cost;
}

static int64_t handle_inter_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
                                 BLOCK_SIZE bsize, RD_STATS *rd_stats,
                                 RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv,
                                 int *disable_skip, int mi_row, int mi_col,
                                 HandleInterModeArgs *args, int64_t ref_best_rd
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
                                 ,
                                 int64_t *best_est_rd
#endif
) {
  const AV1_COMMON *cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *xd = &x->e_mbd;
  MB_MODE_INFO *mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
  const int is_comp_pred = has_second_ref(mbmi);
  const int this_mode = mbmi->mode;
  int i;
  int refs[2] = { mbmi->ref_frame[0],
                  (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
  int rate_mv = 0;
  DECLARE_ALIGNED(32, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
  uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_);
  int64_t rd = INT64_MAX;
  BUFFER_SET orig_dst, tmp_dst;

  int skip_txfm_sb = 0;
  int64_t skip_sse_sb = INT64_MAX;
  int16_t mode_ctx;
  const int masked_compound_used = is_any_masked_compound_used(bsize) &&
                                   cm->seq_params.enable_masked_compound;
  int64_t ret_val = INT64_MAX;
  const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
  RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
  int64_t best_rd = INT64_MAX;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  MB_MODE_INFO best_mbmi = *mbmi;
  int best_disable_skip;
  int best_xskip;
  int plane_rate[MAX_MB_PLANE] = { 0 };
  int64_t plane_sse[MAX_MB_PLANE] = { 0 };
  int64_t plane_dist[MAX_MB_PLANE] = { 0 };
  int64_t newmv_ret_val = INT64_MAX;
  int_mv backup_mv[2] = { { 0 } };
  int backup_rate_mv = 0;

  int comp_idx;
  const int search_jnt_comp = is_comp_pred & cm->seq_params.enable_jnt_comp &
                              (mbmi->mode != GLOBAL_GLOBALMV);

  const int has_drl = (have_nearmv_in_inter_mode(mbmi->mode) &&
                       mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
                      ((mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) &&
                       mbmi_ext->ref_mv_count[ref_frame_type] > 1);

  // TODO(jingning): This should be deprecated shortly.
  const int idx_offset = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
  const int ref_set =
      has_drl ? AOMMIN(MAX_REF_MV_SERCH,
                       mbmi_ext->ref_mv_count[ref_frame_type] - idx_offset)
              : 1;

  for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
    if (cpi->sf.reduce_inter_modes && ref_mv_idx > 0) {
      if (mbmi->ref_frame[0] == LAST2_FRAME ||
          mbmi->ref_frame[0] == LAST3_FRAME ||
          mbmi->ref_frame[1] == LAST2_FRAME ||
          mbmi->ref_frame[1] == LAST3_FRAME) {
        if (mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx + idx_offset]
                .weight < REF_CAT_LEVEL) {
          continue;
        }
      }
    }

    av1_init_rd_stats(rd_stats);

    mbmi->interinter_comp.type = COMPOUND_AVERAGE;
    mbmi->comp_group_idx = 0;
    mbmi->compound_idx = 1;
    if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;

    mode_ctx =
        av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);

    mbmi->num_proj_ref[0] = 0;
    mbmi->num_proj_ref[1] = 0;
    mbmi->motion_mode = SIMPLE_TRANSLATION;
    mbmi->ref_mv_idx = ref_mv_idx;

    if (is_comp_pred) {
      for (int ref_idx = 0; ref_idx < is_comp_pred + 1; ++ref_idx) {
        const int single_mode =
            get_single_mode(this_mode, ref_idx, is_comp_pred);
        if (single_mode == NEWMV &&
            args->single_newmv[mbmi->ref_mv_idx][mbmi->ref_frame[ref_idx]]
                    .as_int == INVALID_MV)
          continue;
      }
    }

    rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
    rd_stats->rate +=
        get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type);

    const RD_STATS backup_rd_stats = *rd_stats;
    const MB_MODE_INFO backup_mbmi = *mbmi;
    int64_t best_rd2 = INT64_MAX;

    // If !search_jnt_comp, we need to force mbmi->compound_idx = 1.
    for (comp_idx = 1; comp_idx >= !search_jnt_comp; --comp_idx) {
      int rs = 0;
      int compmode_interinter_cost = 0;
      *rd_stats = backup_rd_stats;
      *mbmi = backup_mbmi;
      mbmi->compound_idx = comp_idx;

      if (is_comp_pred && comp_idx == 0) {
        mbmi->comp_group_idx = 0;
        mbmi->compound_idx = 0;

        const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
        const int comp_index_ctx = get_comp_index_context(cm, xd);
        if (masked_compound_used) {
          compmode_interinter_cost +=
              x->comp_group_idx_cost[comp_group_idx_ctx][0];
        }
        compmode_interinter_cost += x->comp_idx_cost[comp_index_ctx][0];
      }

      int_mv cur_mv[2];
      if (!build_cur_mv(cur_mv, this_mode, cm, x)) {
        continue;
      }
      if (have_newmv_in_inter_mode(this_mode)) {
        if (comp_idx == 0) {
          cur_mv[0] = backup_mv[0];
          cur_mv[1] = backup_mv[1];
          rate_mv = backup_rate_mv;
        }

        // when jnt_comp_skip_mv_search flag is on, new mv will be searched once
        if (!(search_jnt_comp && cpi->sf.jnt_comp_skip_mv_search &&
              comp_idx == 0)) {
          newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, mi_row, mi_col,
                                       &rate_mv, args);

          // Store cur_mv and rate_mv so that they can be restored in the next
          // iteration of the loop
          backup_mv[0] = cur_mv[0];
          backup_mv[1] = cur_mv[1];
          backup_rate_mv = rate_mv;
        }

        if (newmv_ret_val != 0) {
          continue;
        } else {
          rd_stats->rate += rate_mv;
        }
      }
      for (i = 0; i < is_comp_pred + 1; ++i) {
        mbmi->mv[i].as_int = cur_mv[i].as_int;
      }

      // Initialise tmp_dst and orig_dst buffers to prevent "may be used
      // uninitialized" warnings in GCC when the stream is monochrome.
      memset(tmp_dst.plane, 0, sizeof(tmp_dst.plane));
      memset(tmp_dst.stride, 0, sizeof(tmp_dst.stride));
      memset(orig_dst.plane, 0, sizeof(tmp_dst.plane));
      memset(orig_dst.stride, 0, sizeof(tmp_dst.stride));

      // do first prediction into the destination buffer. Do the next
      // prediction into a temporary buffer. Then keep track of which one
      // of these currently holds the best predictor, and use the other
      // one for future predictions. In the end, copy from tmp_buf to
      // dst if necessary.
      for (i = 0; i < num_planes; i++) {
        tmp_dst.plane[i] = tmp_buf + i * MAX_SB_SQUARE;
        tmp_dst.stride[i] = MAX_SB_SIZE;
      }
      for (i = 0; i < num_planes; i++) {
        orig_dst.plane[i] = xd->plane[i].dst.buf;
        orig_dst.stride[i] = xd->plane[i].dst.stride;
      }

      const int ref_mv_cost = cost_mv_ref(x, this_mode, mode_ctx);
#if USE_DISCOUNT_NEWMV_TEST
      // We don't include the cost of the second reference here, because there
      // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in
      // other words if you present them in that order, the second one is always
      // known if the first is known.
      //
      // Under some circumstances we discount the cost of new mv mode to
      // encourage initiation of a motion field.
      if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) {
        // discount_newmv_test only applies discount on NEWMV mode.
        assert(this_mode == NEWMV);
        rd_stats->rate += AOMMIN(cost_mv_ref(x, this_mode, mode_ctx),
                                 cost_mv_ref(x, NEARESTMV, mode_ctx));
      } else {
        rd_stats->rate += ref_mv_cost;
      }
#else
      rd_stats->rate += ref_mv_cost;
#endif

      if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
          mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
        continue;
      }

      ret_val = interpolation_filter_search(
          x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst,
          args->single_filter, &rd, &rs, &skip_txfm_sb, &skip_sse_sb);
      if (ret_val != 0) {
        restore_dst_buf(xd, orig_dst, num_planes);
        continue;
      } else if (cpi->sf.model_based_post_interp_filter_breakout &&
                 ref_best_rd != INT64_MAX && (rd / 6 > ref_best_rd)) {
        restore_dst_buf(xd, orig_dst, num_planes);
        if ((rd >> 4) > ref_best_rd) break;
        continue;
      }

      if (is_comp_pred && comp_idx) {
        int64_t best_rd_compound;
        compmode_interinter_cost = compound_type_rd(
            cpi, x, bsize, mi_col, mi_row, cur_mv, masked_compound_used,
            &orig_dst, &tmp_dst, &rate_mv, &best_rd_compound, rd_stats,
            ref_best_rd);
        if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) {
          restore_dst_buf(xd, orig_dst, num_planes);
          continue;
        }
        if (mbmi->interinter_comp.type != COMPOUND_AVERAGE) {
          int tmp_rate;
          int64_t tmp_dist;
          av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, &orig_dst,
                                        bsize);
          for (int plane = 0; plane < num_planes; ++plane)
            av1_subtract_plane(x, bsize, plane);
          model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate,
                          &tmp_dist, &skip_txfm_sb, &skip_sse_sb, plane_rate,
                          plane_sse, plane_dist);
          rd = RDCOST(x->rdmult, rs + tmp_rate, tmp_dist);
        }
      }

      if (search_jnt_comp) {
        // if 1/2 model rd is larger than best_rd in jnt_comp mode,
        // use jnt_comp mode, save additional search
        if ((rd >> 1) > best_rd) {
          restore_dst_buf(xd, orig_dst, num_planes);
          continue;
        }
      }

      if (!is_comp_pred)
        args->single_filter[this_mode][refs[0]] =
            av1_extract_interp_filter(mbmi->interp_filters, 0);

      if (args->modelled_rd != NULL) {
        if (is_comp_pred) {
          const int mode0 = compound_ref0_mode(this_mode);
          const int mode1 = compound_ref1_mode(this_mode);
          const int64_t mrd = AOMMIN(args->modelled_rd[mode0][refs[0]],
                                     args->modelled_rd[mode1][refs[1]]);
          if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) {
            restore_dst_buf(xd, orig_dst, num_planes);
            continue;
          }
        } else {
          args->modelled_rd[this_mode][refs[0]] = rd;
        }
      }

      if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
        // if current pred_error modeled rd is substantially more than the best
        // so far, do not bother doing full rd
        if (rd / 2 > ref_best_rd) {
          restore_dst_buf(xd, orig_dst, num_planes);
          continue;
        }
      }

      rd_stats->rate += compmode_interinter_cost;

      if (search_jnt_comp && cpi->sf.jnt_comp_fast_tx_search && comp_idx == 0) {
        // TODO(chengchen): this speed feature introduces big loss.
        // Need better estimation of rate distortion.
        rd_stats->rate += rs;
        rd_stats->rate += plane_rate[0] + plane_rate[1] + plane_rate[2];
        rd_stats_y->rate = plane_rate[0];
        rd_stats_uv->rate = plane_rate[1] + plane_rate[2];
        rd_stats->sse = plane_sse[0] + plane_sse[1] + plane_sse[2];
        rd_stats_y->sse = plane_sse[0];
        rd_stats_uv->sse = plane_sse[1] + plane_sse[2];
        rd_stats->dist = plane_dist[0] + plane_dist[1] + plane_dist[2];
        rd_stats_y->dist = plane_dist[0];
        rd_stats_uv->dist = plane_dist[1] + plane_dist[2];
      } else {
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
        ret_val =
            motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv,
                           disable_skip, mi_row, mi_col, args, ref_best_rd,
                           refs, rate_mv, &orig_dst, best_est_rd);
#else
        ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y,
                                 rd_stats_uv, disable_skip, mi_row, mi_col,
                                 args, ref_best_rd, refs, rate_mv, &orig_dst);
#endif
      }
      if (ret_val != INT64_MAX) {
        int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
        if (tmp_rd < best_rd) {
          best_rd_stats = *rd_stats;
          best_rd_stats_y = *rd_stats_y;
          best_rd_stats_uv = *rd_stats_uv;
          best_rd = tmp_rd;
          best_mbmi = *mbmi;
          best_disable_skip = *disable_skip;
          best_xskip = x->skip;
          memcpy(best_blk_skip, x->blk_skip,
                 sizeof(best_blk_skip[0]) * xd->n8_h * xd->n8_w);
        }

        if (tmp_rd < best_rd2) {
          best_rd2 = tmp_rd;
        }

        if (tmp_rd < ref_best_rd) {
          ref_best_rd = tmp_rd;
        }
      }
      restore_dst_buf(xd, orig_dst, num_planes);
    }

    args->modelled_rd = NULL;
  }

  if (best_rd == INT64_MAX) return INT64_MAX;

  // re-instate status of the best choice
  *rd_stats = best_rd_stats;
  *rd_stats_y = best_rd_stats_y;
  *rd_stats_uv = best_rd_stats_uv;
  *mbmi = best_mbmi;
  *disable_skip = best_disable_skip;
  x->skip = best_xskip;
  assert(IMPLIES(mbmi->comp_group_idx == 1,
                 mbmi->interinter_comp.type != COMPOUND_AVERAGE));
  memcpy(x->blk_skip, best_blk_skip,
         sizeof(best_blk_skip[0]) * xd->n8_h * xd->n8_w);

  return RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
}

static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
                                       RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                       int64_t best_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  if (!av1_allow_intrabc(cm)) return INT64_MAX;
  const int num_planes = av1_num_planes(cm);

  MACROBLOCKD *const xd = &x->e_mbd;
  const TileInfo *tile = &xd->tile;
  MB_MODE_INFO *mbmi = xd->mi[0];
  const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE);
  const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE);
  const int w = block_size_wide[bsize];
  const int h = block_size_high[bsize];
  const int sb_row = mi_row >> cm->seq_params.mib_size_log2;
  const int sb_col = mi_col >> cm->seq_params.mib_size_log2;

  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
  MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
  av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                   mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
                   mi_col, mbmi_ext->mode_context);

  int_mv nearestmv, nearmv;
  av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
                                   0);

  if (nearestmv.as_int == INVALID_MV) {
    nearestmv.as_int = 0;
  }
  if (nearmv.as_int == INVALID_MV) {
    nearmv.as_int = 0;
  }

  int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
  if (dv_ref.as_int == 0)
    av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col);
  // Ref DV should not have sub-pel.
  assert((dv_ref.as_mv.col & 7) == 0);
  assert((dv_ref.as_mv.row & 7) == 0);
  mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;

  struct buf_2d yv12_mb[MAX_MB_PLANE];
  av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL,
                       num_planes);
  for (int i = 0; i < num_planes; ++i) {
    xd->plane[i].pre[0] = yv12_mb[i];
  }

  enum IntrabcMotionDirection {
    IBC_MOTION_ABOVE,
    IBC_MOTION_LEFT,
    IBC_MOTION_DIRECTIONS
  };

  MB_MODE_INFO best_mbmi = *mbmi;
  RD_STATS best_rdcost = *rd_cost;
  int best_skip = x->skip;

  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
  for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE;
       dir < IBC_MOTION_DIRECTIONS; ++dir) {
    const MvLimits tmp_mv_limits = x->mv_limits;
    switch (dir) {
      case IBC_MOTION_ABOVE:
        x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE;
        x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w;
        x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE;
        x->mv_limits.row_max =
            (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h;
        break;
      case IBC_MOTION_LEFT:
        x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE;
        x->mv_limits.col_max =
            (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w;
        // TODO(aconverse@google.com): Minimize the overlap between above and
        // left areas.
        x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE;
        int bottom_coded_mi_edge =
            AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end);
        x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
        break;
      default: assert(0);
    }
    assert(x->mv_limits.col_min >= tmp_mv_limits.col_min);
    assert(x->mv_limits.col_max <= tmp_mv_limits.col_max);
    assert(x->mv_limits.row_min >= tmp_mv_limits.row_min);
    assert(x->mv_limits.row_max <= tmp_mv_limits.row_max);
    av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv);

    if (x->mv_limits.col_max < x->mv_limits.col_min ||
        x->mv_limits.row_max < x->mv_limits.row_min) {
      x->mv_limits = tmp_mv_limits;
      continue;
    }

    int step_param = cpi->mv_step_param;
    MV mvp_full = dv_ref.as_mv;
    mvp_full.col >>= 3;
    mvp_full.row >>= 3;
    int sadpb = x->sadperbit16;
    int cost_list[5];
    int bestsme = av1_full_pixel_search(
        cpi, x, bsize, &mvp_full, step_param, sadpb,
        cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1,
        (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1);

    x->mv_limits = tmp_mv_limits;
    if (bestsme == INT_MAX) continue;
    mvp_full = x->best_mv.as_mv;
    MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 };
    if (mv_check_bounds(&x->mv_limits, &dv)) continue;
    if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
                         cm->seq_params.mib_size_log2))
      continue;

    // DV should not have sub-pel.
    assert((dv.col & 7) == 0);
    assert((dv.row & 7) == 0);
    memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
    mbmi->filter_intra_mode_info.use_filter_intra = 0;
    mbmi->use_intrabc = 1;
    mbmi->mode = DC_PRED;
    mbmi->uv_mode = UV_DC_PRED;
    mbmi->motion_mode = SIMPLE_TRANSLATION;
    mbmi->mv[0].as_mv = dv;
    mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
    mbmi->skip = 0;
    x->skip = 0;
    av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);

    int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX],
                       (int *)&cpi->dv_cost[1][MV_MAX] };
    // TODO(aconverse@google.com): The full motion field defining discount
    // in MV_COST_WEIGHT is too large. Explore other values.
    int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost,
                                  dvcost, MV_COST_WEIGHT_SUB);
    const int rate_mode = x->intrabc_cost[1];
    RD_STATS rd_stats, rd_stats_uv;
    av1_subtract_plane(x, bsize, 0);
    if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
      // Intrabc
      select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX);
    } else {
      super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX);
      memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
      memset(x->blk_skip, rd_stats.skip,
             sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
    }
    if (num_planes > 1) {
      super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
      av1_merge_rd_stats(&rd_stats, &rd_stats_uv);
    }
#if CONFIG_RD_DEBUG
    mbmi->rd_stats = rd_stats;
#endif

    const int skip_ctx = av1_get_skip_context(xd);

    RD_STATS rdc_noskip;
    av1_init_rd_stats(&rdc_noskip);
    rdc_noskip.rate =
        rate_mode + rate_mv + rd_stats.rate + x->skip_cost[skip_ctx][0];
    rdc_noskip.dist = rd_stats.dist;
    rdc_noskip.rdcost = RDCOST(x->rdmult, rdc_noskip.rate, rdc_noskip.dist);
    if (rdc_noskip.rdcost < best_rd) {
      best_rd = rdc_noskip.rdcost;
      best_mbmi = *mbmi;
      best_skip = x->skip;
      best_rdcost = rdc_noskip;
      memcpy(best_blk_skip, x->blk_skip,
             sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
    }

    if (!xd->lossless[mbmi->segment_id]) {
      x->skip = 1;
      mbmi->skip = 1;
      RD_STATS rdc_skip;
      av1_init_rd_stats(&rdc_skip);
      rdc_skip.rate = rate_mode + rate_mv + x->skip_cost[skip_ctx][1];
      rdc_skip.dist = rd_stats.sse;
      rdc_skip.rdcost = RDCOST(x->rdmult, rdc_skip.rate, rdc_skip.dist);
      if (rdc_skip.rdcost < best_rd) {
        best_rd = rdc_skip.rdcost;
        best_mbmi = *mbmi;
        best_skip = x->skip;
        best_rdcost = rdc_skip;
        memcpy(best_blk_skip, x->blk_skip,
               sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
      }
    }
  }
  *mbmi = best_mbmi;
  *rd_cost = best_rdcost;
  x->skip = best_skip;
  memcpy(x->blk_skip, best_blk_skip,
         sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
  return best_rd;
}

void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row,
                               int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize,
                               PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int num_planes = av1_num_planes(cm);
  int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
  int y_skip = 0, uv_skip = 0;
  int64_t dist_y = 0, dist_uv = 0;
  TX_SIZE max_uv_tx_size;

  ctx->skip = 0;
  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->use_intrabc = 0;
  mbmi->mv[0].as_int = 0;

  const int64_t intra_yrd =
      rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
                             &y_skip, bsize, best_rd, ctx);

  if (intra_yrd < best_rd) {
    // Only store reconstructed luma when there's chroma RDO. When there's no
    // chroma RDO, the reconstructed luma will be stored in encode_superblock().
    xd->cfl.is_chroma_reference =
        is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
                            cm->seq_params.subsampling_y);
    xd->cfl.store_y = store_cfl_required_rdo(cm, x);
    if (xd->cfl.store_y) {
      // Restore reconstructed luma values.
      memcpy(x->blk_skip, ctx->blk_skip,
             sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
      av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y,
                                   cpi->optimize_seg_arr[mbmi->segment_id],
                                   mi_row, mi_col);
      xd->cfl.store_y = 0;
    }
    if (num_planes > 1) {
      max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
      init_sbuv_mode(mbmi);
      if (!x->skip_chroma_rd)
        rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv,
                                &uv_skip, bsize, max_uv_tx_size);
    }

    if (y_skip && (uv_skip || x->skip_chroma_rd)) {
      rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
                      x->skip_cost[av1_get_skip_context(xd)][1];
      rd_cost->dist = dist_y + dist_uv;
    } else {
      rd_cost->rate =
          rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0];
      rd_cost->dist = dist_y + dist_uv;
    }
    rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
  } else {
    rd_cost->rate = INT_MAX;
  }

  if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
    best_rd = rd_cost->rdcost;
  if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) {
    ctx->skip = x->skip;
    memcpy(ctx->blk_skip, x->blk_skip,
           sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
    assert(rd_cost->rate != INT_MAX);
  }
  if (rd_cost->rate == INT_MAX) return;

  ctx->mic = *xd->mi[0];
  ctx->mbmi_ext = *x->mbmi_ext;
}

static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) {
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const BLOCK_SIZE bsize = mbmi->sb_type;
  int src_stride = x->plane[1].src.stride;
  const uint8_t *const src_u = x->plane[1].src.buf;
  const uint8_t *const src_v = x->plane[2].src.buf;
  int *const data = x->palette_buffer->kmeans_data_buf;
  int centroids[2 * PALETTE_MAX_SIZE];
  uint8_t *const color_map = xd->plane[1].color_index_map;
  int r, c;
  const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
  const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
  int plane_block_width, plane_block_height, rows, cols;
  av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
                           &plane_block_height, &rows, &cols);

  for (r = 0; r < rows; ++r) {
    for (c = 0; c < cols; ++c) {
      if (cpi->common.seq_params.use_highbitdepth) {
        data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
        data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
      } else {
        data[(r * cols + c) * 2] = src_u[r * src_stride + c];
        data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
      }
    }
  }

  for (r = 1; r < 3; ++r) {
    for (c = 0; c < pmi->palette_size[1]; ++c) {
      centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
    }
  }

  av1_calc_indices(data, centroids, color_map, rows * cols,
                   pmi->palette_size[1], 2);
  extend_palette_color_map(color_map, cols, rows, plane_block_width,
                           plane_block_height);
}

static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
                                      const MACROBLOCKD *xd, int mi_row,
                                      int mi_col, const uint8_t *above,
                                      int above_stride, const uint8_t *left,
                                      int left_stride);

static const int ref_frame_flag_list[REF_FRAMES] = { 0,
                                                     AOM_LAST_FLAG,
                                                     AOM_LAST2_FLAG,
                                                     AOM_LAST3_FLAG,
                                                     AOM_GOLD_FLAG,
                                                     AOM_BWD_FLAG,
                                                     AOM_ALT2_FLAG,
                                                     AOM_ALT_FLAG };

static void rd_pick_skip_mode(RD_STATS *rd_cost,
                              InterModeSearchState *search_state,
                              const AV1_COMP *const cpi, MACROBLOCK *const x,
                              BLOCK_SIZE bsize, int mi_row, int mi_col,
                              struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];

  x->compound_idx = 1;  // COMPOUND_AVERAGE
  RD_STATS skip_mode_rd_stats;
  av1_invalid_rd_stats(&skip_mode_rd_stats);

  if (cm->ref_frame_idx_0 == INVALID_IDX ||
      cm->ref_frame_idx_1 == INVALID_IDX) {
    return;
  }

  const MV_REFERENCE_FRAME ref_frame = LAST_FRAME + cm->ref_frame_idx_0;
  const MV_REFERENCE_FRAME second_ref_frame = LAST_FRAME + cm->ref_frame_idx_1;
  const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
  const int mode_index =
      get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);

  if (mode_index == -1) {
    return;
  }

  mbmi->mode = this_mode;
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->ref_frame[0] = ref_frame;
  mbmi->ref_frame[1] = second_ref_frame;

  assert(this_mode == NEAREST_NEARESTMV);
  if (!build_cur_mv(mbmi->mv, this_mode, cm, x)) {
    return;
  }

  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
  mbmi->comp_group_idx = 0;
  mbmi->compound_idx = x->compound_idx;
  mbmi->interinter_comp.type = COMPOUND_AVERAGE;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->ref_mv_idx = 0;
  mbmi->skip_mode = mbmi->skip = 1;

  set_default_interp_filters(mbmi, cm->interp_filter);

  set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
  for (int i = 0; i < num_planes; i++) {
    xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
    xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
  }

  BUFFER_SET orig_dst;
  for (int i = 0; i < num_planes; i++) {
    orig_dst.plane[i] = xd->plane[i].dst.buf;
    orig_dst.stride[i] = xd->plane[i].dst.stride;
  }

  // Obtain the rdcost for skip_mode.
  skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, mi_row, mi_col, &orig_dst);

  // Compare the use of skip_mode with the best intra/inter mode obtained.
  const int skip_mode_ctx = av1_get_skip_mode_context(xd);
  const int64_t best_intra_inter_mode_cost =
      (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX)
          ? RDCOST(x->rdmult,
                   rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0],
                   rd_cost->dist)
          : INT64_MAX;

  if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost) {
    assert(mode_index != -1);
    search_state->best_mbmode.skip_mode = 1;
    search_state->best_mbmode = *mbmi;

    search_state->best_mbmode.skip_mode = search_state->best_mbmode.skip = 1;
    search_state->best_mbmode.mode = NEAREST_NEARESTMV;
    search_state->best_mbmode.ref_frame[0] = mbmi->ref_frame[0];
    search_state->best_mbmode.ref_frame[1] = mbmi->ref_frame[1];
    search_state->best_mbmode.mv[0].as_int = mbmi->mv[0].as_int;
    search_state->best_mbmode.mv[1].as_int = mbmi->mv[1].as_int;
    search_state->best_mbmode.ref_mv_idx = 0;

    // Set up tx_size related variables for skip-specific loop filtering.
    search_state->best_mbmode.tx_size =
        block_signals_txsize(bsize) ? tx_size_from_tx_mode(bsize, cm->tx_mode)
                                    : max_txsize_rect_lookup[bsize];
    memset(search_state->best_mbmode.inter_tx_size,
           search_state->best_mbmode.tx_size,
           sizeof(search_state->best_mbmode.inter_tx_size));
    set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->n8_w, xd->n8_h,
                  search_state->best_mbmode.skip && is_inter_block(mbmi), xd);

    // Set up color-related variables for skip mode.
    search_state->best_mbmode.uv_mode = UV_DC_PRED;
    search_state->best_mbmode.palette_mode_info.palette_size[0] = 0;
    search_state->best_mbmode.palette_mode_info.palette_size[1] = 0;

    search_state->best_mbmode.comp_group_idx = 0;
    search_state->best_mbmode.compound_idx = x->compound_idx;
    search_state->best_mbmode.interinter_comp.type = COMPOUND_AVERAGE;
    search_state->best_mbmode.motion_mode = SIMPLE_TRANSLATION;

    search_state->best_mbmode.interintra_mode =
        (INTERINTRA_MODE)(II_DC_PRED - 1);
    search_state->best_mbmode.filter_intra_mode_info.use_filter_intra = 0;

    set_default_interp_filters(&search_state->best_mbmode, cm->interp_filter);

    search_state->best_mode_index = mode_index;

    // Update rd_cost
    rd_cost->rate = skip_mode_rd_stats.rate;
    rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
    rd_cost->rdcost = skip_mode_rd_stats.rdcost;

    search_state->best_rd = rd_cost->rdcost;
    search_state->best_skip2 = 1;
    search_state->best_mode_skippable = (skip_mode_rd_stats.sse == 0);

    x->skip = 1;
  }
}

// speed feature: fast intra/inter transform type search
// Used for speed >= 2
// When this speed feature is on, in rd mode search, only DCT is used.
// After the mode is determined, this function is called, to select
// transform types and get accurate rdcost.
static void sf_refine_fast_tx_type_search(
    const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col,
    RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
    int best_mode_index, MB_MODE_INFO *best_mbmode,
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y,
    int best_rate_uv, int *best_skip2) {
  const AV1_COMMON *const cm = &cpi->common;
  const SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int num_planes = av1_num_planes(cm);

  if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 &&
      ((sf->tx_type_search.fast_inter_tx_type_search == 1 &&
        is_inter_mode(best_mbmode->mode)) ||
       (sf->tx_type_search.fast_intra_tx_type_search == 1 &&
        !is_inter_mode(best_mbmode->mode)))) {
    int skip_blk = 0;
    RD_STATS rd_stats_y, rd_stats_uv;

    x->use_default_inter_tx_type = 0;
    x->use_default_intra_tx_type = 0;

    *mbmi = *best_mbmode;

    set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);

    // Select prediction reference frames.
    for (int i = 0; i < num_planes; i++) {
      xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
      if (has_second_ref(mbmi))
        xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
    }

    if (is_inter_mode(mbmi->mode)) {
      av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
      if (mbmi->motion_mode == OBMC_CAUSAL)
        av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);

      av1_subtract_plane(x, bsize, 0);
      if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
        // av1_rd_pick_inter_mode_sb
        select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col,
                           INT64_MAX);
        assert(rd_stats_y.rate != INT_MAX);
      } else {
        super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
        memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
        memset(x->blk_skip, rd_stats_y.skip,
               sizeof(x->blk_skip[0]) * xd->n8_h * xd->n8_w);
      }
      if (num_planes > 1) {
        inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX, FTXS_NONE);
      } else {
        av1_init_rd_stats(&rd_stats_uv);
      }
    } else {
      super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
      if (num_planes > 1) {
        super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
      } else {
        av1_init_rd_stats(&rd_stats_uv);
      }
    }

    if (RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate,
               (rd_stats_y.dist + rd_stats_uv.dist)) >
        RDCOST(x->rdmult, 0, (rd_stats_y.sse + rd_stats_uv.sse))) {
      skip_blk = 1;
      rd_stats_y.rate = x->skip_cost[av1_get_skip_context(xd)][1];
      rd_stats_uv.rate = 0;
      rd_stats_y.dist = rd_stats_y.sse;
      rd_stats_uv.dist = rd_stats_uv.sse;
    } else {
      skip_blk = 0;
      rd_stats_y.rate += x->skip_cost[av1_get_skip_context(xd)][0];
    }

    if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) >
        RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate,
               (rd_stats_y.dist + rd_stats_uv.dist))) {
      best_mbmode->tx_size = mbmi->tx_size;
      av1_copy(best_mbmode->inter_tx_size, mbmi->inter_tx_size);
      memcpy(ctx->blk_skip, x->blk_skip,
             sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
      av1_copy(best_mbmode->txk_type, mbmi->txk_type);
      rd_cost->rate +=
          (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv);
      rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
      rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
      *best_skip2 = skip_blk;
    }
  }
}

// Please add/modify parameter setting in this function, making it consistent
// and easy to read and maintain.
static void set_params_rd_pick_inter_mode(
    const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
    BLOCK_SIZE bsize, int mi_row, int mi_col, uint16_t ref_frame_skip_mask[2],
    uint32_t mode_skip_mask[REF_FRAMES],
    unsigned int ref_costs_single[REF_FRAMES],
    unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES],
    struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
  const struct segmentation *const seg = &cm->seg;
  const SPEED_FEATURES *const sf = &cpi->sf;
  unsigned char segment_id = mbmi->segment_id;
  int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
  int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
                                   MAX_SB_SIZE >> 1 };
  int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
                                    MAX_SB_SIZE >> 1 };
  int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };

  for (int i = 0; i < MB_MODE_COUNT; ++i)
    for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE;

  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
    int len = sizeof(uint16_t);
    args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf);
    args->above_pred_buf[1] =
        CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len);
    args->above_pred_buf[2] =
        CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len);
    args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf);
    args->left_pred_buf[1] =
        CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len);
    args->left_pred_buf[2] =
        CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len);
  } else {
    args->above_pred_buf[0] = x->above_pred_buf;
    args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1);
    args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE;
    args->left_pred_buf[0] = x->left_pred_buf;
    args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1);
    args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE;
  }

  av1_collect_neighbors_ref_counts(xd);

  estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single,
                           ref_costs_comp);

  MV_REFERENCE_FRAME ref_frame;
  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    x->pred_mv_sad[ref_frame] = INT_MAX;
    x->mbmi_ext->mode_context[ref_frame] = 0;
    x->mbmi_ext->compound_mode_context[ref_frame] = 0;
    if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) {
      assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
      setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
                                 yv12_mb);
    }
  }

  // TODO(zoeliu@google.com): To further optimize the obtaining of motion vector
  // references for compound prediction, as not every pair of reference frames
  // woud be examined for the RD evaluation.
  for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
    x->mbmi_ext->mode_context[ref_frame] = 0;
    av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
                     mbmi_ext->ref_mv_stack, NULL, mbmi_ext->global_mvs, mi_row,
                     mi_col, mbmi_ext->mode_context);
  }

  av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col);

  if (check_num_overlappable_neighbors(mbmi) &&
      is_motion_variation_allowed_bsize(bsize)) {
    av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col,
                                        args->above_pred_buf, dst_width1,
                                        dst_height1, args->above_pred_stride);
    av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col,
                                       args->left_pred_buf, dst_width2,
                                       dst_height2, args->left_pred_stride);
    av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
                         mi_col, 0, num_planes);
    calc_target_weighted_pred(
        cm, x, xd, mi_row, mi_col, args->above_pred_buf[0],
        args->above_pred_stride[0], args->left_pred_buf[0],
        args->left_pred_stride[0]);
  }

  int min_pred_mv_sad = INT_MAX;
  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
    min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);

  for (int i = 0; i < 2; ++i) {
    ref_frame_skip_mask[i] = 0;
  }
  memset(mode_skip_mask, 0, REF_FRAMES * sizeof(*mode_skip_mask));
  for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
    if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame])) {
      // Skip checking missing references in both single and compound reference
      // modes. Note that a mode will be skipped iff both reference frames
      // are masked out.
      ref_frame_skip_mask[0] |= (1 << ref_frame);
      ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
    } else {
      // Skip fixed mv modes for poor references
      if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
        mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
      }
    }
    // If the segment reference frame feature is enabled....
    // then do nothing if the current ref frame is not allowed..
    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
        get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
      ref_frame_skip_mask[0] |= (1 << ref_frame);
      ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
    }
  }

  // Disable this drop out case if the ref frame
  // segment level feature is enabled for this segment. This is to
  // prevent the possibility that we end up unable to pick any mode.
  if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
    // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
    // unless ARNR filtering is enabled in which case we want
    // an unfiltered alternative. We allow near/nearest as well
    // because they may result in zero-zero MVs but be cheaper.
    if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
      ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
                               (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) |
                               (1 << ALTREF2_FRAME) | (1 << GOLDEN_FRAME);
      ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
      // TODO(zoeliu): To further explore whether following needs to be done for
      //               BWDREF_FRAME as well.
      mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
      const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
      int_mv near_mv, nearest_mv, global_mv;
      get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
      get_this_mv(&near_mv, NEARMV, 0, 0, tmp_ref_frames, x->mbmi_ext);
      get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext);

      if (near_mv.as_int != global_mv.as_int)
        mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
      if (nearest_mv.as_int != global_mv.as_int)
        mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
    }
  }

  if (cpi->rc.is_src_frame_alt_ref) {
    if (sf->alt_ref_search_fp) {
      assert(cpi->ref_frame_flags & ref_frame_flag_list[ALTREF_FRAME]);
      mode_skip_mask[ALTREF_FRAME] = 0;
      ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
      ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
    }
  }

  if (sf->alt_ref_search_fp)
    if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
      if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
        mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;

  if (sf->adaptive_mode_search) {
    if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
        cpi->rc.frames_since_golden >= 3)
      if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME])
        mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
  }

  if (bsize > sf->max_intra_bsize) {
    ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
    ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
  }

  mode_skip_mask[INTRA_FRAME] |=
      ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);

  if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
    x->use_default_intra_tx_type = 1;
  else
    x->use_default_intra_tx_type = 0;

  if (cpi->sf.tx_type_search.fast_inter_tx_type_search)
    x->use_default_inter_tx_type = 1;
  else
    x->use_default_inter_tx_type = 0;
  if (cpi->sf.skip_repeat_interpolation_filter_search) {
    x->interp_filter_stats_idx[0] = 0;
    x->interp_filter_stats_idx[1] = 0;
  }
}

static void search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x,
                                RD_STATS *rd_cost, PICK_MODE_CONTEXT *ctx,
                                BLOCK_SIZE bsize, MB_MODE_INFO *const mbmi,
                                PALETTE_MODE_INFO *const pmi,
                                unsigned int *ref_costs_single,
                                InterModeSearchState *search_state) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  MACROBLOCKD *const xd = &x->e_mbd;
  int rate2 = 0;
  int64_t distortion2 = 0, best_rd_palette = search_state->best_rd, this_rd,
          best_model_rd_palette = INT64_MAX;
  int skippable = 0, rate_overhead_palette = 0;
  RD_STATS rd_stats_y;
  TX_SIZE uv_tx = TX_4X4;
  uint8_t *const best_palette_color_map =
      x->palette_buffer->best_palette_color_map;
  uint8_t *const color_map = xd->plane[0].color_index_map;
  MB_MODE_INFO best_mbmi_palette = *mbmi;
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]];
  const int rows = block_size_high[bsize];
  const int cols = block_size_wide[bsize];

  mbmi->mode = DC_PRED;
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->ref_frame[0] = INTRA_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  rate_overhead_palette = rd_pick_palette_intra_sby(
      cpi, x, bsize, intra_mode_cost[DC_PRED], &best_mbmi_palette,
      best_palette_color_map, &best_rd_palette, &best_model_rd_palette, NULL,
      NULL, NULL, NULL, ctx, best_blk_skip);
  if (pmi->palette_size[0] == 0) return;

  memcpy(x->blk_skip, best_blk_skip,
         sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));

  memcpy(color_map, best_palette_color_map,
         rows * cols * sizeof(best_palette_color_map[0]));
  super_block_yrd(cpi, x, &rd_stats_y, bsize, search_state->best_rd);
  if (rd_stats_y.rate == INT_MAX) return;

  skippable = rd_stats_y.skip;
  distortion2 = rd_stats_y.dist;
  rate2 = rd_stats_y.rate + rate_overhead_palette;
  rate2 += ref_costs_single[INTRA_FRAME];
  if (num_planes > 1) {
    uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
    if (search_state->rate_uv_intra[uv_tx] == INT_MAX) {
      choose_intra_uv_mode(
          cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx],
          &search_state->rate_uv_tokenonly[uv_tx],
          &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx],
          &search_state->mode_uv[uv_tx]);
      search_state->pmi_uv[uv_tx] = *pmi;
      search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV];
    }
    mbmi->uv_mode = search_state->mode_uv[uv_tx];
    pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1];
    if (pmi->palette_size[1] > 0) {
      memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
             search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
             2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
    }
    mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx];
    skippable = skippable && search_state->skip_uvs[uv_tx];
    distortion2 += search_state->dist_uvs[uv_tx];
    rate2 += search_state->rate_uv_intra[uv_tx];
  }

  if (skippable) {
    rate2 -= rd_stats_y.rate;
    if (num_planes > 1) rate2 -= search_state->rate_uv_tokenonly[uv_tx];
    rate2 += x->skip_cost[av1_get_skip_context(xd)][1];
  } else {
    rate2 += x->skip_cost[av1_get_skip_context(xd)][0];
  }
  this_rd = RDCOST(x->rdmult, rate2, distortion2);
  if (this_rd < search_state->best_rd) {
    search_state->best_mode_index = 3;
    mbmi->mv[0].as_int = 0;
    rd_cost->rate = rate2;
    rd_cost->dist = distortion2;
    rd_cost->rdcost = this_rd;
    search_state->best_rd = this_rd;
    search_state->best_mbmode = *mbmi;
    search_state->best_skip2 = 0;
    search_state->best_mode_skippable = skippable;
    memcpy(ctx->blk_skip, x->blk_skip,
           sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
  }
}

static void init_inter_mode_search_state(InterModeSearchState *search_state,
                                         const AV1_COMP *cpi,
                                         const TileDataEnc *tile_data,
                                         const MACROBLOCK *x, BLOCK_SIZE bsize,
                                         int64_t best_rd_so_far) {
  search_state->best_rd = best_rd_so_far;

  av1_zero(search_state->best_mbmode);

  search_state->best_rate_y = INT_MAX;

  search_state->best_rate_uv = INT_MAX;

  search_state->best_mode_skippable = 0;

  search_state->best_skip2 = 0;

  search_state->best_mode_index = -1;

  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const unsigned char segment_id = mbmi->segment_id;

  search_state->skip_intra_modes = 0;

  search_state->num_available_refs = 0;
  memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
  memset(search_state->dist_order_refs, -1,
         sizeof(search_state->dist_order_refs));

  for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
    search_state->mode_threshold[i] = 0;
  const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
  for (int i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
    search_state->mode_threshold[i] =
        ((int64_t)rd_threshes[i] * tile_data->thresh_freq_fact[bsize][i]) >> 5;

  search_state->best_intra_mode = DC_PRED;
  search_state->best_intra_rd = INT64_MAX;

  search_state->angle_stats_ready = 0;

  search_state->best_pred_sse = UINT_MAX;

  for (int i = 0; i < TX_SIZES_ALL; i++)
    search_state->rate_uv_intra[i] = INT_MAX;

  av1_zero(search_state->pmi_uv);

  for (int i = 0; i < REFERENCE_MODES; ++i)
    search_state->best_pred_rd[i] = INT64_MAX;

  av1_zero(search_state->single_newmv);
  av1_zero(search_state->single_newmv_rate);
  av1_zero(search_state->single_newmv_valid);
  for (int i = 0; i < MB_MODE_COUNT; ++i)
    for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
      search_state->modelled_rd[i][ref_frame] = INT64_MAX;
}

static int inter_mode_search_order_independent_skip(
    const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize, int mode_index,
    int mi_row, int mi_col, uint32_t *mode_skip_mask,
    uint16_t *ref_frame_skip_mask) {
  const SPEED_FEATURES *const sf = &cpi->sf;
  const AV1_COMMON *const cm = &cpi->common;
  const struct segmentation *const seg = &cm->seg;
  const MACROBLOCKD *const xd = &x->e_mbd;
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const unsigned char segment_id = mbmi->segment_id;
  const MV_REFERENCE_FRAME *ref_frame = av1_mode_order[mode_index].ref_frame;
  const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode;

  if (cpi->sf.mode_pruning_based_on_two_pass_partition_search &&
      !x->cb_partition_scan) {
    const int mi_width = mi_size_wide[bsize];
    const int mi_height = mi_size_high[bsize];
    int found = 0;
    // Search in the stats table to see if the ref frames have been used in the
    // first pass of partition search.
    for (int row = mi_row; row < mi_row + mi_width && !found;
         row += FIRST_PARTITION_PASS_SAMPLE_REGION) {
      for (int col = mi_col; col < mi_col + mi_height && !found;
           col += FIRST_PARTITION_PASS_SAMPLE_REGION) {
        const int index = av1_first_partition_pass_stats_index(row, col);
        const FIRST_PARTITION_PASS_STATS *const stats =
            &x->first_partition_pass_stats[index];
        if (stats->ref0_counts[ref_frame[0]] &&
            (ref_frame[1] < 0 || stats->ref1_counts[ref_frame[1]])) {
          found = 1;
          break;
        }
      }
    }
    if (!found) return 1;
  }

  if (ref_frame[0] > INTRA_FRAME && ref_frame[1] == INTRA_FRAME) {
    // Mode must by compatible
    if (!is_interintra_allowed_mode(this_mode)) return 1;
    if (!is_interintra_allowed_bsize(bsize)) return 1;
  }

  // This is only used in motion vector unit test.
  if (cpi->oxcf.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME)
    return 1;

  if (ref_frame[0] == INTRA_FRAME) {
    if (this_mode != DC_PRED) {
      // Disable intra modes other than DC_PRED for blocks with low variance
      // Threshold for intra skipping based on source variance
      // TODO(debargha): Specialize the threshold for super block sizes
      const unsigned int skip_intra_var_thresh = 64;
      if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
          x->source_variance < skip_intra_var_thresh)
        return 1;
    }
  } else {
    if (!is_comp_ref_allowed(bsize) && ref_frame[1] > INTRA_FRAME) return 1;
  }

  const int comp_pred = ref_frame[1] > INTRA_FRAME;
  if (comp_pred) {
    if (!cpi->allow_comp_inter_inter) return 1;

    if (cm->reference_mode == SINGLE_REFERENCE) return 1;

    // Skip compound inter modes if ARF is not available.
    if (!(cpi->ref_frame_flags & ref_frame_flag_list[ref_frame[1]])) return 1;

    // Do not allow compound prediction if the segment level reference frame
    // feature is in use as in this case there can only be one reference.
    if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
  }

  if (sf->selective_ref_frame) {
    if (sf->selective_ref_frame >= 2 || x->cb_partition_scan) {
      if (ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME)
        if (get_relative_dist(
                cm, cm->cur_frame->ref_frame_offset[ALTREF2_FRAME - LAST_FRAME],
                cm->frame_offset) < 0)
          return 1;
      if (ref_frame[0] == BWDREF_FRAME || ref_frame[1] == BWDREF_FRAME)
        if (get_relative_dist(
                cm, cm->cur_frame->ref_frame_offset[BWDREF_FRAME - LAST_FRAME],
                cm->frame_offset) < 0)
          return 1;
    }
    if (ref_frame[0] == LAST3_FRAME || ref_frame[1] == LAST3_FRAME)
      if (get_relative_dist(
              cm, cm->cur_frame->ref_frame_offset[LAST3_FRAME - LAST_FRAME],
              cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0)
        return 1;
    if (ref_frame[0] == LAST2_FRAME || ref_frame[1] == LAST2_FRAME)
      if (get_relative_dist(
              cm, cm->cur_frame->ref_frame_offset[LAST2_FRAME - LAST_FRAME],
              cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0)
        return 1;
  }

  // One-sided compound is used only when all reference frames are one-sided.
  if (sf->selective_ref_frame && comp_pred && !cpi->all_one_sided_refs) {
    unsigned int ref_offsets[2];
    for (int i = 0; i < 2; ++i) {
      const int buf_idx = cm->frame_refs[ref_frame[i] - LAST_FRAME].idx;
      assert(buf_idx >= 0);
      ref_offsets[i] = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset;
    }
    if ((get_relative_dist(cm, ref_offsets[0], cm->frame_offset) <= 0 &&
         get_relative_dist(cm, ref_offsets[1], cm->frame_offset) <= 0) ||
        (get_relative_dist(cm, ref_offsets[0], cm->frame_offset) > 0 &&
         get_relative_dist(cm, ref_offsets[1], cm->frame_offset) > 0))
      return 1;
  }

  if (mode_skip_mask[ref_frame[0]] & (1 << this_mode)) {
    return 1;
  }

  if ((ref_frame_skip_mask[0] & (1 << ref_frame[0])) &&
      (ref_frame_skip_mask[1] & (1 << AOMMAX(0, ref_frame[1])))) {
    return 1;
  }

  if (skip_repeated_mv(cm, x, this_mode, ref_frame)) {
    return 1;
  }
  return 0;
}

static INLINE void init_mbmi(MB_MODE_INFO *mbmi, int mode_index,
                             const AV1_COMMON *cm) {
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode;
  mbmi->ref_mv_idx = 0;
  mbmi->mode = this_mode;
  mbmi->uv_mode = UV_DC_PRED;
  mbmi->ref_frame[0] = av1_mode_order[mode_index].ref_frame[0];
  mbmi->ref_frame[1] = av1_mode_order[mode_index].ref_frame[1];
  pmi->palette_size[0] = 0;
  pmi->palette_size[1] = 0;
  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
  set_default_interp_filters(mbmi, cm->interp_filter);
}

static int handle_intra_mode(InterModeSearchState *search_state,
                             const AV1_COMP *cpi, MACROBLOCK *x,
                             BLOCK_SIZE bsize, int ref_frame_cost,
                             const PICK_MODE_CONTEXT *ctx, int disable_skip,
                             RD_STATS *rd_stats, RD_STATS *rd_stats_y,
                             RD_STATS *rd_stats_uv) {
  const AV1_COMMON *cm = &cpi->common;
  const SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  assert(mbmi->ref_frame[0] == INTRA_FRAME);
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const int try_palette =
      av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type);
  const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]];
  const int intra_cost_penalty = av1_get_intra_cost_penalty(
      cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth);
  const int rows = block_size_high[bsize];
  const int cols = block_size_wide[bsize];
  const int num_planes = av1_num_planes(cm);
  av1_init_rd_stats(rd_stats);
  av1_init_rd_stats(rd_stats_y);
  av1_init_rd_stats(rd_stats_uv);
  TX_SIZE uv_tx;
  int is_directional_mode = av1_is_directional_mode(mbmi->mode);
  if (is_directional_mode && av1_use_angle_delta(bsize)) {
    int rate_dummy;
    int64_t model_rd = INT64_MAX;
    if (!search_state->angle_stats_ready) {
      const int src_stride = x->plane[0].src.stride;
      const uint8_t *src = x->plane[0].src.buf;
      if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
        highbd_angle_estimation(src, src_stride, rows, cols, bsize,
                                search_state->directional_mode_skip_mask);
      else
        angle_estimation(src, src_stride, rows, cols, bsize,
                         search_state->directional_mode_skip_mask);
      search_state->angle_stats_ready = 1;
    }
    if (search_state->directional_mode_skip_mask[mbmi->mode]) return 0;
    rd_stats_y->rate = INT_MAX;
    rd_pick_intra_angle_sby(cpi, x, &rate_dummy, rd_stats_y, bsize,
                            intra_mode_cost[mbmi->mode], search_state->best_rd,
                            &model_rd);
  } else {
    mbmi->angle_delta[PLANE_TYPE_Y] = 0;
    super_block_yrd(cpi, x, rd_stats_y, bsize, search_state->best_rd);
  }
  uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
  memcpy(best_blk_skip, x->blk_skip,
         sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);

  if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
    RD_STATS rd_stats_y_fi;
    int filter_intra_selected_flag = 0;
    TX_SIZE best_tx_size = mbmi->tx_size;
    TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN];
    memcpy(best_txk_type, mbmi->txk_type,
           sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
    FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED;
    int64_t best_rd_tmp = INT64_MAX;
    if (rd_stats_y->rate != INT_MAX) {
      best_rd_tmp = RDCOST(x->rdmult,
                           rd_stats_y->rate + x->filter_intra_cost[bsize][0] +
                               intra_mode_cost[mbmi->mode],
                           rd_stats_y->dist);
    }

    mbmi->filter_intra_mode_info.use_filter_intra = 1;
    for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED;
         fi_mode < FILTER_INTRA_MODES; ++fi_mode) {
      int64_t this_rd_tmp;
      mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode;

      super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, search_state->best_rd);
      if (rd_stats_y_fi.rate == INT_MAX) {
        continue;
      }
      const int this_rate_tmp =
          rd_stats_y_fi.rate +
          intra_mode_info_cost_y(cpi, x, mbmi, bsize,
                                 intra_mode_cost[mbmi->mode]);
      this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist);

      if (this_rd_tmp < best_rd_tmp) {
        best_tx_size = mbmi->tx_size;
        memcpy(best_txk_type, mbmi->txk_type,
               sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
        memcpy(best_blk_skip, x->blk_skip,
               sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
        best_fi_mode = fi_mode;
        *rd_stats_y = rd_stats_y_fi;
        filter_intra_selected_flag = 1;
        best_rd_tmp = this_rd_tmp;
      }
    }

    mbmi->tx_size = best_tx_size;
    memcpy(mbmi->txk_type, best_txk_type,
           sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN);
    memcpy(x->blk_skip, best_blk_skip,
           sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);

    if (filter_intra_selected_flag) {
      mbmi->filter_intra_mode_info.use_filter_intra = 1;
      mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode;
    } else {
      mbmi->filter_intra_mode_info.use_filter_intra = 0;
    }
  }

  if (rd_stats_y->rate == INT_MAX) return 0;

  if (num_planes > 1) {
    uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
    if (search_state->rate_uv_intra[uv_tx] == INT_MAX) {
      choose_intra_uv_mode(
          cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx],
          &search_state->rate_uv_tokenonly[uv_tx],
          &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx],
          &search_state->mode_uv[uv_tx]);
      if (try_palette) search_state->pmi_uv[uv_tx] = *pmi;
      search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV];
    }

    rd_stats_uv->rate = search_state->rate_uv_tokenonly[uv_tx];
    rd_stats_uv->dist = search_state->dist_uvs[uv_tx];
    rd_stats_uv->skip = search_state->skip_uvs[uv_tx];
    rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip;
    mbmi->uv_mode = search_state->mode_uv[uv_tx];
    if (try_palette) {
      pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1];
      memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
             search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
             2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
    }
    mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx];
  }

  rd_stats->rate =
      rd_stats_y->rate +
      intra_mode_info_cost_y(cpi, x, mbmi, bsize, intra_mode_cost[mbmi->mode]);
  if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
    // super_block_yrd above includes the cost of the tx_size in the
    // tokenonly rate, but for intra blocks, tx_size is always coded
    // (prediction granularity), so we account for it in the full rate,
    // not the tokenonly rate.
    rd_stats_y->rate -= tx_size_cost(cm, x, bsize, mbmi->tx_size);
  }
  if (num_planes > 1 && !x->skip_chroma_rd) {
    const int uv_mode_cost =
        x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mbmi->uv_mode];
    rd_stats->rate +=
        rd_stats_uv->rate +
        intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
  }
  if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED)
    rd_stats->rate += intra_cost_penalty;
  rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist;

  // Estimate the reference frame signaling cost and add it
  // to the rolling cost variable.
  rd_stats->rate += ref_frame_cost;
  if (rd_stats->skip) {
    // Back out the coefficient coding costs
    rd_stats->rate -= (rd_stats_y->rate + rd_stats_uv->rate);
    rd_stats_y->rate = 0;
    rd_stats_uv->rate = 0;
    // Cost the skip mb case
    rd_stats->rate += x->skip_cost[av1_get_skip_context(xd)][1];
  } else {
    // Add in the cost of the no skip flag.
    rd_stats->rate += x->skip_cost[av1_get_skip_context(xd)][0];
  }
  // Calculate the final RD estimate for this mode.
  int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);

  // Keep record of best intra rd
  if (this_rd < search_state->best_intra_rd) {
    search_state->best_intra_rd = this_rd;
    search_state->best_intra_mode = mbmi->mode;
  }

  if (sf->skip_intra_in_interframe) {
    if (search_state->best_rd < (INT64_MAX / 2) &&
        this_rd > (search_state->best_rd + (search_state->best_rd >> 1)))
      search_state->skip_intra_modes = 1;
  }

  if (!disable_skip) {
    for (int i = 0; i < REFERENCE_MODES; ++i)
      search_state->best_pred_rd[i] =
          AOMMIN(search_state->best_pred_rd[i], this_rd);
  }
  return 1;
}

void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data,
                               MACROBLOCK *x, int mi_row, int mi_col,
                               RD_STATS *rd_cost, BLOCK_SIZE bsize,
                               PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) {
  const AV1_COMMON *const cm = &cpi->common;
  const int num_planes = av1_num_planes(cm);
  const SPEED_FEATURES *const sf = &cpi->sf;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  const int try_palette =
      av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type);
  PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
  const struct segmentation *const seg = &cm->seg;
  PREDICTION_MODE this_mode;
  MV_REFERENCE_FRAME ref_frame, second_ref_frame;
  unsigned char segment_id = mbmi->segment_id;
  int i, k;
  struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
  unsigned int ref_costs_single[REF_FRAMES];
  unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
  int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)];
  int *mode_map = tile_data->mode_map[bsize];
  uint32_t mode_skip_mask[REF_FRAMES];
  uint16_t ref_frame_skip_mask[2];

  InterModeSearchState search_state;
  init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize,
                               best_rd_so_far);

  HandleInterModeArgs args = {
    { NULL },  { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
    { NULL },  { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 },
    NULL,      NULL,
    NULL,      NULL,
    { { 0 } }, INT_MAX,
    INT_MAX
  };
  for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;

  av1_invalid_rd_stats(rd_cost);

  // init params, set frame modes, speed features
  set_params_rd_pick_inter_mode(cpi, x, &args, bsize, mi_row, mi_col,
                                ref_frame_skip_mask, mode_skip_mask,
                                ref_costs_single, ref_costs_comp, yv12_mb);

#if CONFIG_COLLECT_INTER_MODE_RD_STATS
  int64_t best_est_rd = INT64_MAX;
#endif

  for (int midx = 0; midx < MAX_MODES; ++midx) {
    int mode_index = mode_map[midx];
    int64_t this_rd = INT64_MAX;
    int disable_skip = 0;
    int rate2 = 0, rate_y = 0, rate_uv = 0;
    int64_t distortion2 = 0;
    int skippable = 0;
    int this_skip2 = 0;

    this_mode = av1_mode_order[mode_index].mode;
    ref_frame = av1_mode_order[mode_index].ref_frame[0];
    second_ref_frame = av1_mode_order[mode_index].ref_frame[1];

    init_mbmi(mbmi, mode_index, cm);

    x->skip = 0;
    set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);

    if (inter_mode_search_order_independent_skip(cpi, x, bsize, mode_index,
                                                 mi_row, mi_col, mode_skip_mask,
                                                 ref_frame_skip_mask))
      continue;

    if (ref_frame == INTRA_FRAME) {
      if (sf->skip_intra_in_interframe && search_state.skip_intra_modes)
        continue;
    }

    if (sf->drop_ref) {
      if (ref_frame > INTRA_FRAME && second_ref_frame > INTRA_FRAME) {
        if (search_state.num_available_refs > 2) {
          if ((ref_frame == search_state.dist_order_refs[0] &&
               second_ref_frame == search_state.dist_order_refs[1]) ||
              (ref_frame == search_state.dist_order_refs[1] &&
               second_ref_frame == search_state.dist_order_refs[0]))
            continue;
        }
      }
    }

    if (search_state.best_rd < search_state.mode_threshold[mode_index])
      continue;

    const int comp_pred = second_ref_frame > INTRA_FRAME;
    const int ref_frame_cost = comp_pred
                                   ? ref_costs_comp[ref_frame][second_ref_frame]
                                   : ref_costs_single[ref_frame];
    const int compmode_cost =
        is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0;
    const int real_compmode_cost =
        cm->reference_mode == REFERENCE_MODE_SELECT ? compmode_cost : 0;

    if (comp_pred) {
      if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
          search_state.best_mode_index >= 0 &&
          search_state.best_mbmode.ref_frame[0] == INTRA_FRAME)
        continue;
    }

    if (ref_frame == INTRA_FRAME) {
      if (sf->adaptive_mode_search)
        if ((x->source_variance << num_pels_log2_lookup[bsize]) >
            search_state.best_pred_sse)
          continue;

      if (this_mode != DC_PRED) {
        // Only search the oblique modes if the best so far is
        // one of the neighboring directional modes
        if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
            (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
          if (search_state.best_mode_index >= 0 &&
              search_state.best_mbmode.ref_frame[0] > INTRA_FRAME)
            continue;
        }
        if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
          if (conditional_skipintra(this_mode, search_state.best_intra_mode))
            continue;
        }
      }
    }

    // Select prediction reference frames.
    for (i = 0; i < num_planes; i++) {
      xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
      if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
    }

    if (ref_frame == INTRA_FRAME) {
      RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv;
      const int ret = handle_intra_mode(
          &search_state, cpi, x, bsize, ref_frame_cost, ctx, disable_skip,
          &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv);
      if (!ret) {
        continue;
      }
      rate2 = intra_rd_stats.rate;
      distortion2 = intra_rd_stats.dist;
      this_rd = RDCOST(x->rdmult, rate2, distortion2);
      skippable = intra_rd_stats.skip;
      rate_y = intra_rd_stats_y.rate;
    } else {
      mbmi->angle_delta[PLANE_TYPE_Y] = 0;
      mbmi->angle_delta[PLANE_TYPE_UV] = 0;
      mbmi->filter_intra_mode_info.use_filter_intra = 0;
      mbmi->ref_mv_idx = 0;
      int64_t ref_best_rd = search_state.best_rd;
      {
        RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
        av1_init_rd_stats(&rd_stats);
        rd_stats.rate = rate2;

        // Point to variables that are maintained between loop iterations
        args.single_newmv = search_state.single_newmv;
        args.single_newmv_rate = search_state.single_newmv_rate;
        args.single_newmv_valid = search_state.single_newmv_valid;
        args.modelled_rd = search_state.modelled_rd;
        args.single_comp_cost = real_compmode_cost;
        args.ref_frame_cost = ref_frame_cost;
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
        this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y,
                                    &rd_stats_uv, &disable_skip, mi_row, mi_col,
                                    &args, ref_best_rd, &best_est_rd);
#else
        this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y,
                                    &rd_stats_uv, &disable_skip, mi_row, mi_col,
                                    &args, ref_best_rd);
#endif
        rate2 = rd_stats.rate;
        skippable = rd_stats.skip;
        distortion2 = rd_stats.dist;
        rate_y = rd_stats_y.rate;
        rate_uv = rd_stats_uv.rate;
      }

      if (this_rd == INT64_MAX) continue;

      this_skip2 = mbmi->skip;
      this_rd = RDCOST(x->rdmult, rate2, distortion2);
      if (this_skip2) {
        rate_y = 0;
        rate_uv = 0;
      }
    }

    // Did this mode help.. i.e. is it the new best mode
    if (this_rd < search_state.best_rd || x->skip) {
      int mode_excluded = 0;
      if (comp_pred) {
        mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
      }
      if (!mode_excluded) {
        // Note index of best mode so far
        search_state.best_mode_index = mode_index;

        if (ref_frame == INTRA_FRAME) {
          /* required for left and above block mv */
          mbmi->mv[0].as_int = 0;
        } else {
          search_state.best_pred_sse = x->pred_sse[ref_frame];
        }

        rd_cost->rate = rate2;
        rd_cost->dist = distortion2;
        rd_cost->rdcost = this_rd;
        search_state.best_rd = this_rd;
        search_state.best_mbmode = *mbmi;
        search_state.best_skip2 = this_skip2;
        search_state.best_mode_skippable = skippable;
        search_state.best_rate_y =
            rate_y +
            x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable];
        search_state.best_rate_uv = rate_uv;
        memcpy(ctx->blk_skip, x->blk_skip,
               sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
      }
    }

    /* keep record of best compound/single-only prediction */
    if (!disable_skip && ref_frame != INTRA_FRAME) {
      int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;

      if (cm->reference_mode == REFERENCE_MODE_SELECT) {
        single_rate = rate2 - compmode_cost;
        hybrid_rate = rate2;
      } else {
        single_rate = rate2;
        hybrid_rate = rate2 + compmode_cost;
      }

      single_rd = RDCOST(x->rdmult, single_rate, distortion2);
      hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2);

      if (!comp_pred) {
        if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE])
          search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd;
      } else {
        if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE])
          search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd;
      }
      if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT])
        search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
    }

    if (sf->drop_ref) {
      if (second_ref_frame == NONE_FRAME) {
        const int idx = ref_frame - LAST_FRAME;
        if (idx && distortion2 > search_state.dist_refs[idx]) {
          search_state.dist_refs[idx] = distortion2;
          search_state.dist_order_refs[idx] = ref_frame;
        }

        // Reach the last single ref prediction mode
        if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) {
          // bubble sort dist_refs and the order index
          for (i = 0; i < REF_FRAMES; ++i) {
            for (k = i + 1; k < REF_FRAMES; ++k) {
              if (search_state.dist_refs[i] < search_state.dist_refs[k]) {
                int64_t tmp_dist = search_state.dist_refs[i];
                search_state.dist_refs[i] = search_state.dist_refs[k];
                search_state.dist_refs[k] = tmp_dist;

                int tmp_idx = search_state.dist_order_refs[i];
                search_state.dist_order_refs[i] =
                    search_state.dist_order_refs[k];
                search_state.dist_order_refs[k] = tmp_idx;
              }
            }
          }

          for (i = 0; i < REF_FRAMES; ++i) {
            if (search_state.dist_refs[i] == -1) break;
            search_state.num_available_refs = i;
          }
          search_state.num_available_refs++;
        }
      }
    }

    if (x->skip && !comp_pred) break;
  }

  // In effect only when speed >= 2.
  sf_refine_fast_tx_type_search(
      cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, search_state.best_mode_index,
      &search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
      search_state.best_rate_uv, &search_state.best_skip2);

  // Only try palette mode when the best mode so far is an intra mode.
  if (try_palette && !is_inter_mode(search_state.best_mbmode.mode)) {
    search_palette_mode(cpi, x, rd_cost, ctx, bsize, mbmi, pmi,
                        ref_costs_single, &search_state);
  }

  search_state.best_mbmode.skip_mode = 0;
  if (cm->skip_mode_flag &&
      !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
      is_comp_ref_allowed(bsize)) {
    rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col,
                      yv12_mb);
  }

  // Make sure that the ref_mv_idx is only nonzero when we're
  // using a mode which can support ref_mv_idx
  if (search_state.best_mbmode.ref_mv_idx != 0 &&
      !(search_state.best_mbmode.mode == NEWMV ||
        search_state.best_mbmode.mode == NEW_NEWMV ||
        have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
    search_state.best_mbmode.ref_mv_idx = 0;
  }

  if (search_state.best_mode_index < 0 ||
      search_state.best_rd >= best_rd_so_far) {
    rd_cost->rate = INT_MAX;
    rd_cost->rdcost = INT64_MAX;
    return;
  }

  assert(
      (cm->interp_filter == SWITCHABLE) ||
      (cm->interp_filter ==
       av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) ||
      !is_inter_block(&search_state.best_mbmode));
  assert(
      (cm->interp_filter == SWITCHABLE) ||
      (cm->interp_filter ==
       av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) ||
      !is_inter_block(&search_state.best_mbmode));

  if (!cpi->rc.is_src_frame_alt_ref)
    av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
                              sf->adaptive_rd_thresh, bsize,
                              search_state.best_mode_index);

  // macroblock modes
  *mbmi = search_state.best_mbmode;
  x->skip |= search_state.best_skip2;

  // Note: this section is needed since the mode may have been forced to
  // GLOBALMV by the all-zero mode handling of ref-mv.
  if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
    // Correct the interp filters for GLOBALMV
    if (is_nontrans_global_motion(xd, xd->mi[0])) {
      assert(mbmi->interp_filters ==
             av1_broadcast_interp_filter(
                 av1_unswitchable_filter(cm->interp_filter)));
    }
  }

  for (i = 0; i < REFERENCE_MODES; ++i) {
    if (search_state.best_pred_rd[i] == INT64_MAX)
      search_state.best_pred_diff[i] = INT_MIN;
    else
      search_state.best_pred_diff[i] =
          search_state.best_rd - search_state.best_pred_rd[i];
  }

  x->skip |= search_state.best_mode_skippable;

  assert(search_state.best_mode_index >= 0);

  store_coding_context(x, ctx, search_state.best_mode_index,
                       search_state.best_pred_diff,
                       search_state.best_mode_skippable);

  if (pmi->palette_size[1] > 0) {
    assert(try_palette);
    restore_uv_color_map(cpi, x);
  }
}

void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
                                        TileDataEnc *tile_data, MACROBLOCK *x,
                                        int mi_row, int mi_col,
                                        RD_STATS *rd_cost, BLOCK_SIZE bsize,
                                        PICK_MODE_CONTEXT *ctx,
                                        int64_t best_rd_so_far) {
  const AV1_COMMON *const cm = &cpi->common;
  MACROBLOCKD *const xd = &x->e_mbd;
  MB_MODE_INFO *const mbmi = xd->mi[0];
  unsigned char segment_id = mbmi->segment_id;
  const int comp_pred = 0;
  int i;
  int64_t best_pred_diff[REFERENCE_MODES];
  unsigned int ref_costs_single[REF_FRAMES];
  unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
  int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)];
  InterpFilter best_filter = SWITCHABLE;
  int64_t this_rd = INT64_MAX;
  int rate2 = 0;
  const int64_t distortion2 = 0;
  (void)mi_row;
  (void)mi_col;

  av1_collect_neighbors_ref_counts(xd);

  estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single,
                           ref_costs_comp);

  for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
  for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;

  rd_cost->rate = INT_MAX;

  assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));

  mbmi->palette_mode_info.palette_size[0] = 0;
  mbmi->palette_mode_info.palette_size[1] = 0;
  mbmi->filter_intra_mode_info.use_filter_intra = 0;
  mbmi->mode = GLOBALMV;
  mbmi->motion_mode = SIMPLE_TRANSLATION;
  mbmi->uv_mode = UV_DC_PRED;
  if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
    mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
  else
    mbmi->ref_frame[0] = LAST_FRAME;
  mbmi->ref_frame[1] = NONE_FRAME;
  mbmi->mv[0].as_int =
      gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
                           cm->allow_high_precision_mv, bsize, mi_col, mi_row,
                           cm->cur_frame_force_integer_mv)
          .as_int;
  mbmi->tx_size = max_txsize_lookup[bsize];
  x->skip = 1;

  mbmi->ref_mv_idx = 0;

  mbmi->motion_mode = SIMPLE_TRANSLATION;
  av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col);
  if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
    int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
    mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref);
    // Select the samples according to motion vector difference
    if (mbmi->num_proj_ref[0] > 1)
      mbmi->num_proj_ref[0] = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
                                            mbmi->num_proj_ref[0], bsize);
  }

  set_default_interp_filters(mbmi, cm->interp_filter);

  if (cm->interp_filter != SWITCHABLE) {
    best_filter = cm->interp_filter;
  } else {
    best_filter = EIGHTTAP_REGULAR;
    if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) &&
        x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
      int rs;
      int best_rs = INT_MAX;
      for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
        mbmi->interp_filters = av1_broadcast_interp_filter(i);
        rs = av1_get_switchable_rate(cm, x, xd);
        if (rs < best_rs) {
          best_rs = rs;
          best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0);
        }
      }
    }
  }
  // Set the appropriate filter
  mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
  rate2 += av1_get_switchable_rate(cm, x, xd);

  if (cm->reference_mode == REFERENCE_MODE_SELECT)
    rate2 += comp_inter_cost[comp_pred];

  // Estimate the reference frame signaling cost and add it
  // to the rolling cost variable.
  rate2 += ref_costs_single[LAST_FRAME];
  this_rd = RDCOST(x->rdmult, rate2, distortion2);

  rd_cost->rate = rate2;
  rd_cost->dist = distortion2;
  rd_cost->rdcost = this_rd;

  if (this_rd >= best_rd_so_far) {
    rd_cost->rate = INT_MAX;
    rd_cost->rdcost = INT64_MAX;
    return;
  }

  assert((cm->interp_filter == SWITCHABLE) ||
         (cm->interp_filter ==
          av1_extract_interp_filter(mbmi->interp_filters, 0)));

  av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
                            cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV);

  av1_zero(best_pred_diff);

  store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0);
}

struct calc_target_weighted_pred_ctxt {
  const MACROBLOCK *x;
  const uint8_t *tmp;
  int tmp_stride;
  int overlap;
};

static INLINE void calc_target_weighted_pred_above(
    MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MB_MODE_INFO *nb_mi,
    void *fun_ctxt, const int num_planes) {
  (void)nb_mi;
  (void)num_planes;

  struct calc_target_weighted_pred_ctxt *ctxt =
      (struct calc_target_weighted_pred_ctxt *)fun_ctxt;

  const int bw = xd->n8_w << MI_SIZE_LOG2;
  const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);

  int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE);
  int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE);
  const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
  const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;

  if (!is_hbd) {
    for (int row = 0; row < ctxt->overlap; ++row) {
      const uint8_t m0 = mask1d[row];
      const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
      for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) {
        wsrc[col] = m1 * tmp[col];
        mask[col] = m0;
      }
      wsrc += bw;
      mask += bw;
      tmp += ctxt->tmp_stride;
    }
  } else {
    const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);

    for (int row = 0; row < ctxt->overlap; ++row) {
      const uint8_t m0 = mask1d[row];
      const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
      for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) {
        wsrc[col] = m1 * tmp16[col];
        mask[col] = m0;
      }
      wsrc += bw;
      mask += bw;
      tmp16 += ctxt->tmp_stride;
    }
  }
}

static INLINE void calc_target_weighted_pred_left(
    MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MB_MODE_INFO *nb_mi,
    void *fun_ctxt, const int num_planes) {
  (void)nb_mi;
  (void)num_planes;

  struct calc_target_weighted_pred_ctxt *ctxt =
      (struct calc_target_weighted_pred_ctxt *)fun_ctxt;

  const int bw = xd->n8_w << MI_SIZE_LOG2;
  const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);

  int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw);
  int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw);
  const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
  const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;

  if (!is_hbd) {
    for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) {
      for (int col = 0; col < ctxt->overlap; ++col) {
        const uint8_t m0 = mask1d[col];
        const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
        wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
                    (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
        mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
      }
      wsrc += bw;
      mask += bw;
      tmp += ctxt->tmp_stride;
    }
  } else {
    const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);

    for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) {
      for (int col = 0; col < ctxt->overlap; ++col) {
        const uint8_t m0 = mask1d[col];
        const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
        wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
                    (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
        mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
      }
      wsrc += bw;
      mask += bw;
      tmp16 += ctxt->tmp_stride;
    }
  }
}

// This function has a structure similar to av1_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
//  PObmc(x,y) =
//    AOM_BLEND_A64(Mh(x),
//                  AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
//                  PLeft(x, y))
//
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
//  AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
//    Mh(x) * Mv(y) * P(x,y) +
//      Mh(x) * Cv(y) * Pabove(x,y) +
//      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
//  Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
//  Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
//  wsrc(x, y) =
//    AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
//      Mh(x) * Cv(y) * Pabove(x,y) +
//      AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
//  mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
//  error(x, y) =
//    wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
//
static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
                                      const MACROBLOCKD *xd, int mi_row,
                                      int mi_col, const uint8_t *above,
                                      int above_stride, const uint8_t *left,
                                      int left_stride) {
  const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
  const int bw = xd->n8_w << MI_SIZE_LOG2;
  const int bh = xd->n8_h << MI_SIZE_LOG2;
  int32_t *mask_buf = x->mask_buf;
  int32_t *wsrc_buf = x->wsrc_buf;

  const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
  const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;

  // plane 0 should not be subsampled
  assert(xd->plane[0].subsampling_x == 0);
  assert(xd->plane[0].subsampling_y == 0);

  av1_zero_array(wsrc_buf, bw * bh);
  for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;

  // handle above row
  if (xd->up_available) {
    const int overlap =
        AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
    struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride,
                                                   overlap };
    foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col,
                                  max_neighbor_obmc[mi_size_wide_log2[bsize]],
                                  calc_target_weighted_pred_above, &ctxt);
  }

  for (int i = 0; i < bw * bh; ++i) {
    wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
    mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
  }

  // handle left column
  if (xd->left_available) {
    const int overlap =
        AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
    struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride,
                                                   overlap };
    foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row,
                                 max_neighbor_obmc[mi_size_high_log2[bsize]],
                                 calc_target_weighted_pred_left, &ctxt);
  }

  if (!is_hbd) {
    const uint8_t *src = x->plane[0].src.buf;

    for (int row = 0; row < bh; ++row) {
      for (int col = 0; col < bw; ++col) {
        wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
      }
      wsrc_buf += bw;
      src += x->plane[0].src.stride;
    }
  } else {
    const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);

    for (int row = 0; row < bh; ++row) {
      for (int col = 0; col < bw; ++col) {
        wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
      }
      wsrc_buf += bw;
      src += x->plane[0].src.stride;
    }
  }
}