1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
|
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/encint.h"
#include "av1/common/partition.h"
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
// Check if one needs to use c version subtraction.
static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }
static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint8_t *src8, ptrdiff_t src_stride,
const uint8_t *pred8, ptrdiff_t pred_stride) {
#if !CONFIG_HIGHBITDEPTH
(void)xd;
#endif
if (check_subtract_block_size(rows, cols)) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
src_stride, pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
return;
}
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
#if CONFIG_EC_ADAPT
{ 10, 7 }, { 8, 5 },
#else
{ 10, 6 }, { 8, 6 },
#endif
};
#define UPDATE_RD_COST() \
{ \
rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0); \
rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1); \
}
static INLINE unsigned int get_token_bit_costs(
unsigned int token_costs[2][COEFF_CONTEXTS][ENTROPY_TOKENS], int skip_eob,
int ctx, int token) {
(void)skip_eob;
return token_costs[token == ZERO_TOKEN || token == EOB_TOKEN][ctx][token];
}
#if !CONFIG_LV_MAP
#define USE_GREEDY_OPTIMIZE_B 0
#if USE_GREEDY_OPTIMIZE_B
typedef struct av1_token_state_greedy {
int16_t token;
tran_low_t qc;
tran_low_t dqc;
} av1_token_state_greedy;
static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state_greedy tokens[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = pd->plane_type;
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int dqv;
const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#endif // CONFIG_NEW_QUANT
int sz = 0;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int16_t t0, t1;
int i, final_eob;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const int default_eob = tx_size_2d[tx_size];
assert(mb->qindex > 0);
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
int64_t rate0, rate1;
for (i = 0; i < eob; i++) {
const int rc = scan[i];
int x = qcoeff[rc];
t0 = av1_get_token(x);
tokens[i][0].qc = x;
tokens[i][0].token = t0;
tokens[i][0].dqc = dqcoeff[rc];
token_cache[rc] = av1_pt_energy_class[t0];
}
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][0].dqc = 0;
tokens[eob][1] = tokens[eob][0];
unsigned int(*token_costs_ptr)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
token_costs;
final_eob = 0;
int64_t eob_cost0, eob_cost1;
const int ctx0 = ctx;
/* Record the r-d cost */
int64_t accu_rate = 0;
int64_t accu_error = 0;
rate0 = get_token_bit_costs(*(token_costs_ptr + band_translate[0]), 0, ctx0,
EOB_TOKEN);
int64_t best_block_rd_cost = RDCOST(rdmult, rddiv, rate0, accu_error);
// int64_t best_block_rd_cost_all0 = best_block_rd_cost;
int x_prev = 1;
for (i = 0; i < eob; i++) {
const int rc = scan[i];
int x = qcoeff[rc];
sz = -(x < 0);
int band_cur = band_translate[i];
int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
int token_tree_sel_cur = (x_prev == 0);
if (x == 0) {
// no need to search when x == 0
rate0 =
get_token_bit_costs(*(token_costs_ptr + band_cur), token_tree_sel_cur,
ctx_cur, tokens[i][0].token);
accu_rate += rate0;
x_prev = 0;
// accu_error does not change when x==0
} else {
/* Computing distortion
*/
// compute the distortion for the first candidate
// and the distortion for quantizing to 0.
int dx0 = (-coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx0 >>= xd->bd - 8;
}
#endif
int64_t d0 = (int64_t)dx0 * dx0;
int x_a = x - 2 * sz - 1;
int64_t d2, d2_a;
int dx;
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
dqv = dequant_ptr[rc != 0];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
dqv = dequant_ptr[rc != 0];
#endif
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
/* compute the distortion for the second candidate
* x_a = x - 2 * sz + 1;
*/
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2_a = (int64_t)dx * dx;
} else {
d2_a = d0;
}
/* Computing rates and r-d cost
*/
int best_x, best_eob_x;
int64_t base_bits, next_bits0, next_bits1;
int64_t next_eob_bits0, next_eob_bits1;
// rate cost of x
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
rate0 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
token_tree_sel_cur, ctx_cur, t0);
base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
rate1 = base_bits + get_token_bit_costs(*(token_costs_ptr + band_cur),
token_tree_sel_cur, ctx_cur, t1);
next_bits0 = 0;
next_bits1 = 0;
next_eob_bits0 = 0;
next_eob_bits1 = 0;
if (i < default_eob - 1) {
int ctx_next, token_tree_sel_next;
int band_next = band_translate[i + 1];
token_cache[rc] = av1_pt_energy_class[t0];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x == 0);
next_bits0 = get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next,
tokens[i + 1][0].token);
next_eob_bits0 =
get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next, EOB_TOKEN);
token_cache[rc] = av1_pt_energy_class[t1];
ctx_next = get_coef_context(nb, token_cache, i + 1);
token_tree_sel_next = (x_a == 0);
next_bits1 = get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next,
tokens[i + 1][0].token);
if (x_a != 0) {
next_eob_bits1 =
get_token_bit_costs(*(token_costs_ptr + band_next),
token_tree_sel_next, ctx_next, EOB_TOKEN);
}
}
rd_cost0 = RDCOST(rdmult, rddiv, (rate0 + next_bits0), d2);
rd_cost1 = RDCOST(rdmult, rddiv, (rate1 + next_bits1), d2_a);
best_x = (rd_cost1 < rd_cost0);
eob_cost0 = RDCOST(rdmult, rddiv, (accu_rate + rate0 + next_eob_bits0),
(accu_error + d2 - d0));
eob_cost1 = eob_cost0;
if (x_a != 0) {
eob_cost1 = RDCOST(rdmult, rddiv, (accu_rate + rate1 + next_eob_bits1),
(accu_error + d2_a - d0));
best_eob_x = (eob_cost1 < eob_cost0);
} else {
best_eob_x = 0;
}
int dqc, dqc_a = 0;
dqc = dqcoeff[rc];
if (best_x + best_eob_x) {
if (x_a != 0) {
#if CONFIG_NEW_QUANT
dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv,
dequant_val[band_translate[i]]);
dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
if (sz) dqc_a = -dqc_a;
#else
if (x_a < 0)
dqc_a = -((-x_a * dqv) >> shift);
else
dqc_a = (x_a * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
} else {
dqc_a = 0;
} // if (x_a != 0)
}
// record the better quantized value
if (best_x) {
qcoeff[rc] = x_a;
dqcoeff[rc] = dqc_a;
accu_rate += rate1;
accu_error += d2_a - d0;
assert(d2_a <= d0);
token_cache[rc] = av1_pt_energy_class[t1];
} else {
accu_rate += rate0;
accu_error += d2 - d0;
assert(d2 <= d0);
token_cache[rc] = av1_pt_energy_class[t0];
}
x_prev = qcoeff[rc];
// determine whether to move the eob position to i+1
int64_t best_eob_cost_i = eob_cost0;
tokens[i][1].token = t0;
tokens[i][1].qc = x;
tokens[i][1].dqc = dqc;
if ((x_a != 0) && (best_eob_x)) {
best_eob_cost_i = eob_cost1;
tokens[i][1].token = t1;
tokens[i][1].qc = x_a;
tokens[i][1].dqc = dqc_a;
}
if (best_eob_cost_i < best_block_rd_cost) {
best_block_rd_cost = best_eob_cost_i;
final_eob = i + 1;
}
} // if (x==0)
} // for (i)
assert(final_eob <= eob);
if (final_eob > 0) {
assert(tokens[final_eob - 1][1].qc != 0);
i = final_eob - 1;
int rc = scan[i];
qcoeff[rc] = tokens[i][1].qc;
dqcoeff[rc] = tokens[i][1].dqc;
}
for (i = final_eob; i < eob; i++) {
int rc = scan[i];
qcoeff[rc] = 0;
dqcoeff[rc] = 0;
}
mb->plane[plane].eobs[block] = final_eob;
return final_eob;
}
#else // USE_GREEDY_OPTIMIZE_B
typedef struct av1_token_state_org {
int64_t error;
int rate;
int16_t next;
int16_t token;
tran_low_t qc;
tran_low_t dqc;
uint8_t best_index;
} av1_token_state_org;
static int optimize_b_org(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int block, TX_SIZE tx_size, int ctx) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
av1_token_state_org tokens[MAX_TX_SQUARE + 1][2];
uint8_t token_cache[MAX_TX_SQUARE];
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int eob = p->eobs[block];
const PLANE_TYPE plane_type = pd->plane_type;
const int default_eob = tx_size_2d[tx_size];
const int16_t *const dequant_ptr = pd->dequant;
const uint8_t *const band_translate = get_band_translate(tx_size);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
int dqv;
const int shift = av1_get_tx_scale(tx_size);
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!ref][tx_size];
#endif
#if CONFIG_NEW_QUANT
int dq = get_dq_profile_from_ctx(mb->qindex, ctx, ref, plane_type);
const dequant_val_type_nuq *dequant_val = pd->dequant_val_nuq[dq];
#endif // CONFIG_NEW_QUANT
int next = eob, sz = 0;
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
const int64_t rddiv = mb->rddiv;
int64_t rd_cost0, rd_cost1;
int rate0, rate1;
int64_t error0, error1;
int16_t t0, t1;
int best, band = (eob < default_eob) ? band_translate[eob]
: band_translate[eob - 1];
int pt, i, final_eob;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
mb->token_costs[txsize_sqr_map[tx_size]][plane_type][ref];
const uint16_t *band_counts = &band_count_table[tx_size][band];
uint16_t band_left = eob - band_cum_count_table[tx_size][band] + 1;
int shortcut = 0;
int next_shortcut = 0;
#if CONFIG_EXT_DELTA_Q
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, xd->mi[0]->mbmi.segment_id,
cm->base_qindex)
: cm->base_qindex;
assert(qindex > 0);
(void)qindex;
#else
assert(mb->qindex > 0);
#endif
token_costs += band;
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= default_eob);
/* Now set up a Viterbi trellis to evaluate alternative roundings. */
/* Initialize the sentinel node of the trellis. */
tokens[eob][0].rate = 0;
tokens[eob][0].error = 0;
tokens[eob][0].next = default_eob;
tokens[eob][0].token = EOB_TOKEN;
tokens[eob][0].qc = 0;
tokens[eob][1] = tokens[eob][0];
for (i = 0; i < eob; i++) {
const int rc = scan[i];
tokens[i][0].rate = av1_get_token_cost(qcoeff[rc], &t0, cat6_bits);
tokens[i][0].token = t0;
token_cache[rc] = av1_pt_energy_class[t0];
}
for (i = eob; i-- > 0;) {
int base_bits, dx;
int64_t d2;
const int rc = scan[i];
int x = qcoeff[rc];
#if CONFIG_AOM_QM
int iwt = iqmatrix[rc];
dqv = dequant_ptr[rc != 0];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
#else
dqv = dequant_ptr[rc != 0];
#endif
next_shortcut = shortcut;
/* Only add a trellis state for non-zero coefficients. */
if (UNLIKELY(x)) {
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
/* Evaluate the first possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
if (next_shortcut) {
/* Consider both possible successor states. */
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
rate1 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][1].token);
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
if (next < default_eob) {
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, 0, pt, tokens[next][0].token);
}
best = 0;
}
dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
d2 = (int64_t)dx * dx;
tokens[i][0].rate += (best ? rate1 : rate0);
tokens[i][0].error = d2 + (best ? error1 : error0);
tokens[i][0].next = next;
tokens[i][0].qc = x;
tokens[i][0].dqc = dqcoeff[rc];
tokens[i][0].best_index = best;
/* Evaluate the second possibility for this state. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
// The threshold of 3 is empirically obtained.
if (UNLIKELY(abs(x) > 3)) {
shortcut = 0;
} else {
#if CONFIG_NEW_QUANT
shortcut = ((av1_dequant_abscoeff_nuq(abs(x), dqv,
dequant_val[band_translate[i]]) >
(abs(coeff[rc]) << shift)) &&
(av1_dequant_abscoeff_nuq(abs(x) - 1, dqv,
dequant_val[band_translate[i]]) <
(abs(coeff[rc]) << shift)));
#else // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
if ((abs(x) * dequant_ptr[rc != 0] * iwt >
((abs(coeff[rc]) << shift) << AOM_QM_BITS)) &&
(abs(x) * dequant_ptr[rc != 0] * iwt <
(((abs(coeff[rc]) << shift) + dequant_ptr[rc != 0])
<< AOM_QM_BITS)))
#else
if ((abs(x) * dequant_ptr[rc != 0] > (abs(coeff[rc]) << shift)) &&
(abs(x) * dequant_ptr[rc != 0] <
(abs(coeff[rc]) << shift) + dequant_ptr[rc != 0]))
#endif // CONFIG_AOM_QM
shortcut = 1;
else
shortcut = 0;
#endif // CONFIG_NEW_QUANT
}
if (shortcut) {
sz = -(x < 0);
x -= 2 * sz + 1;
} else {
tokens[i][1] = tokens[i][0];
next = i;
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
continue;
}
/* Consider both possible successor states. */
if (!x) {
/* If we reduced this coefficient to zero, check to see if
* we need to move the EOB back here.
*/
t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN;
base_bits = 0;
} else {
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
t1 = t0;
}
if (next_shortcut) {
if (LIKELY(next < default_eob)) {
if (t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 += get_token_bit_costs(*token_costs, !x, pt,
tokens[next][0].token);
}
if (t1 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t1];
pt = get_coef_context(nb, token_cache, i + 1);
rate1 += get_token_bit_costs(*token_costs, !x, pt,
tokens[next][1].token);
}
}
UPDATE_RD_COST();
/* And pick the best. */
best = rd_cost1 < rd_cost0;
} else {
// The two states in next stage are identical.
if (next < default_eob && t0 != EOB_TOKEN) {
token_cache[rc] = av1_pt_energy_class[t0];
pt = get_coef_context(nb, token_cache, i + 1);
rate0 +=
get_token_bit_costs(*token_costs, !x, pt, tokens[next][0].token);
}
best = 0;
}
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x, dqv, dequant_val[band_translate[i]]) -
(coeff[rc] << shift);
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx >>= xd->bd - 8;
}
#endif // CONFIG_HIGHBITDEPTH
#else // CONFIG_NEW_QUANT
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
} else {
dx -= (dqv + sz) ^ sz;
}
#else
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_NEW_QUANT
d2 = (int64_t)dx * dx;
tokens[i][1].rate = base_bits + (best ? rate1 : rate0);
tokens[i][1].error = d2 + (best ? error1 : error0);
tokens[i][1].next = next;
tokens[i][1].token = best ? t1 : t0;
tokens[i][1].qc = x;
if (x) {
#if CONFIG_NEW_QUANT
tokens[i][1].dqc = av1_dequant_abscoeff_nuq(
abs(x), dqv, dequant_val[band_translate[i]]);
tokens[i][1].dqc = shift ? ROUND_POWER_OF_TWO(tokens[i][1].dqc, shift)
: tokens[i][1].dqc;
if (sz) tokens[i][1].dqc = -tokens[i][1].dqc;
#else
if (x < 0)
tokens[i][1].dqc = -((-x * dqv) >> shift);
else
tokens[i][1].dqc = (x * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
} else {
tokens[i][1].dqc = 0;
}
tokens[i][1].best_index = best;
/* Finally, make this the new head of the trellis. */
next = i;
} else {
/* There's no choice to make for a zero coefficient, so we don't
* add a new trellis node, but we do need to update the costs.
*/
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
pt = get_coef_context(nb, token_cache, i + 1);
/* Update the cost of each path if we're past the EOB token. */
if (t0 != EOB_TOKEN) {
tokens[next][0].rate += get_token_bit_costs(*token_costs, 1, pt, t0);
tokens[next][0].token = ZERO_TOKEN;
}
if (t1 != EOB_TOKEN) {
tokens[next][1].rate += get_token_bit_costs(*token_costs, 1, pt, t1);
tokens[next][1].token = ZERO_TOKEN;
}
tokens[i][0].best_index = tokens[i][1].best_index = 0;
shortcut = (tokens[next][0].rate != tokens[next][1].rate);
/* Don't update next, because we didn't add a new node. */
}
if (UNLIKELY(!(--band_left))) {
--band_counts;
band_left = *band_counts;
--token_costs;
}
}
/* Now pick the best path through the whole trellis. */
rate0 = tokens[next][0].rate;
rate1 = tokens[next][1].rate;
error0 = tokens[next][0].error;
error1 = tokens[next][1].error;
t0 = tokens[next][0].token;
t1 = tokens[next][1].token;
rate0 += get_token_bit_costs(*token_costs, 0, ctx, t0);
rate1 += get_token_bit_costs(*token_costs, 0, ctx, t1);
UPDATE_RD_COST();
best = rd_cost1 < rd_cost0;
final_eob = -1;
for (i = next; i < eob; i = next) {
const int x = tokens[i][best].qc;
const int rc = scan[i];
if (x) final_eob = i;
qcoeff[rc] = x;
dqcoeff[rc] = tokens[i][best].dqc;
next = tokens[i][best].next;
best = tokens[i][best].best_index;
}
final_eob++;
mb->plane[plane].eobs[block] = final_eob;
assert(final_eob <= default_eob);
return final_eob;
}
#endif // USE_GREEDY_OPTIMIZE_B
#endif // !CONFIG_LV_MAP
int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int block,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
const int eob = p->eobs[block];
assert((mb->qindex == 0) ^ (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0));
if (eob == 0) return eob;
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) return eob;
#if CONFIG_PVQ
(void)cm;
(void)tx_size;
(void)a;
(void)l;
return eob;
#endif
#if !CONFIG_LV_MAP
(void)plane_bsize;
#if CONFIG_VAR_TX
int ctx = get_entropy_context(tx_size, a, l);
#else
int ctx = combine_entropy_contexts(*a, *l);
#endif
#if USE_GREEDY_OPTIMIZE_B
return optimize_b_greedy(cm, mb, plane, block, tx_size, ctx);
#else // USE_GREEDY_OPTIMIZE_B
return optimize_b_org(cm, mb, plane, block, tx_size, ctx);
#endif // USE_GREEDY_OPTIMIZE_B
#else // !CONFIG_LV_MAP
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
return av1_optimize_txb(cm, mb, plane, block, tx_size, &txb_ctx);
#endif // !CONFIG_LV_MAP
}
#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} QUANT_FUNC;
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL, NULL }
};
#else
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_TYPES = 1
} QUANT_FUNC;
static AV1_QUANT_FACADE quant_func_list[AV1_XFORM_QUANT_TYPES]
[QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade },
{ av1_quantize_b_facade },
{ av1_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL }
};
#endif // CONFIG_HIGHBITDEPTH
#endif // CONFIG_PVQ
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, int ctx,
AV1_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !(CONFIG_PVQ || CONFIG_DAALA_DIST)
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, is_inter);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = block_size_wide[plane_bsize];
#if CONFIG_AOM_QM
int seg_id = mbmi->segment_id;
const qm_val_t *qmatrix = pd->seg_qmatrix[seg_id][!is_inter][tx_size];
const qm_val_t *iqmatrix = pd->seg_iqmatrix[seg_id][!is_inter][tx_size];
#endif
FWD_TXFM_PARAM fwd_txfm_param;
#if CONFIG_PVQ || CONFIG_DAALA_DIST
uint8_t *dst;
int16_t *pred;
const int dst_stride = pd->dst.stride;
int tx_blk_size;
int i, j;
#endif
#if !CONFIG_PVQ
const int tx2d_size = tx_size_2d[tx_size];
QUANT_PARAM qparam;
const int16_t *src_diff;
src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
qparam.log_scale = av1_get_tx_scale(tx_size);
#if CONFIG_NEW_QUANT
qparam.tx_size = tx_size;
qparam.dq = get_dq_profile_from_ctx(x->qindex, ctx, is_inter, plane_type);
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
qparam.qmatrix = qmatrix;
qparam.iqmatrix = iqmatrix;
#endif // CONFIG_AOM_QM
#else
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
int skip = 1;
PVQ_INFO *pvq_info = NULL;
uint8_t *src;
int16_t *src_int16;
const int src_stride = p->src.stride;
(void)ctx;
(void)scan_order;
(void)qcoeff;
if (x->pvq_coded) {
assert(block < MAX_PVQ_BLOCKS_IN_SB);
pvq_info = &x->pvq[block][plane];
}
src = &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
src_int16 =
&p->src_int16[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
src_int16[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(src)[src_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
src_int16[diff_stride * j + i] = src[src_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif
#if CONFIG_PVQ || CONFIG_DAALA_DIST
dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
pred[diff_stride * j + i] = dst[dst_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
#endif
(void)ctx;
fwd_txfm_param.tx_type = tx_type;
fwd_txfm_param.tx_size = tx_size;
fwd_txfm_param.lossless = xd->lossless[mbmi->segment_id];
#if !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
return;
}
#endif // CONFIG_HIGHBITDEPTH
av1_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param);
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
if (LIKELY(!x->skip_block)) {
quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD](
coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order, &qparam);
} else {
av1_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
#else // #if !CONFIG_PVQ
(void)xform_quant_idx;
#if CONFIG_HIGHBITDEPTH
fwd_txfm_param.bd = xd->bd;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
av1_highbd_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
av1_highbd_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
} else {
#endif
av1_fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
av1_fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
#if CONFIG_HIGHBITDEPTH
}
#endif
// PVQ for inter mode block
if (!x->skip_block) {
PVQ_SKIP_TYPE ac_dc_coded =
av1_pvq_encode_helper(x,
coeff, // target original vector
ref_coeff, // reference vector
dqcoeff, // de-quantized vector
eob, // End of Block marker
pd->dequant, // aom's quantizers
plane, // image plane
tx_size, // block size in log_2 - 2
tx_type,
&x->rate, // rate measured
x->pvq_speed,
pvq_info); // PVQ info for a block
skip = ac_dc_coded == PVQ_SKIP;
}
x->pvq_skip[plane] = skip;
if (!skip) mbmi->skip = 0;
#endif // #if !CONFIG_PVQ
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
int ctx;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
#if !CONFIG_PVQ
ENTROPY_CONTEXT *a, *l;
#endif
#if CONFIG_VAR_TX
int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
#endif
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
#if !CONFIG_PVQ
a = &args->ta[blk_col];
l = &args->tl[blk_row];
#if CONFIG_VAR_TX
ctx = get_entropy_context(tx_size, a, l);
#else
ctx = combine_entropy_contexts(*a, *l);
#endif
#else
ctx = 0;
#endif // CONFIG_PVQ
#if CONFIG_VAR_TX
// Assert not magic number (uninitialized).
assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);
if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
#else
{
#endif
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
}
#if CONFIG_VAR_TX
else {
p->eobs[block] = 0;
}
#endif
#if !CONFIG_PVQ
av1_optimize_b(cm, x, plane, block, plane_bsize, tx_size, a, l);
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] == 0) return;
#else
(void)ctx;
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif
TX_TYPE tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block]);
}
#if CONFIG_VAR_TX
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg);
} else {
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
assert(sub_txs < tx_size);
// This is the square transform block partition entry point.
int bsl = tx_size_wide_unit[sub_txs];
int i;
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
const int offsetr = blk_row + ((i >> 1) * bsl);
const int offsetc = blk_col + ((i & 0x01) * bsl);
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg);
block += step;
}
}
}
#endif
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
int ctx = 0;
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
#if !CONFIG_PVQ
if (p->eobs[block] > 0) {
#else
if (!x->pvq_skip[plane]) {
{
int tx_blk_size;
int i, j;
// transform block size in pixels
tx_blk_size = tx_size_wide[tx_size];
// Since av1 does not have separate function which does inverse transform
// but av1_inv_txfm_add_*x*() also does addition of predicted image to
// inverse transformed image,
// pass blank dummy image to av1_inv_txfm_add_*x*(), i.e. set dst as zeros
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++)
CONVERT_TO_SHORTPTR(dst)[j * pd->dst.stride + i] = 0;
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < tx_blk_size; j++)
for (i = 0; i < tx_blk_size; i++) dst[j * pd->dst.stride + i] = 0;
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#endif // !CONFIG_PVQ
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
} else {
av1_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block],
xd->bd);
}
return;
}
#endif // CONFIG_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]);
}
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
int mi_col) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_CB4X4 && !CONFIG_CHROMA_2X2
const int subsampling_x = xd->plane[plane].subsampling_x;
const int subsampling_y = xd->plane[plane].subsampling_y;
if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
subsampling_y))
continue;
bsize = scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
#else
(void)mi_row;
(void)mi_col;
#endif
#if CONFIG_VAR_TX
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
const TX_SIZE max_tx_size = get_vartx_max_txsize(mbmi, plane_bsize);
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
int idx, idy;
int block = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(bsize, 0, pd, ctx.ta[plane], ctx.tl[plane]);
#else
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
#endif
#if !CONFIG_PVQ
av1_subtract_plane(x, bsize, plane);
#endif
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
#if CONFIG_VAR_TX
for (idy = 0; idy < mi_height; idy += bh) {
for (idx = 0; idx < mi_width; idx += bw) {
encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size,
&arg);
block += step;
}
}
#else
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
#endif
}
}
#if CONFIG_SUPERTX
void av1_encode_sb_supertx(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_VAR_TX
const TX_SIZE tx_size = TX_4X4;
#else
const TX_SIZE tx_size = get_tx_size(plane, xd);
#endif
av1_subtract_plane(x, bsize, plane);
av1_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
av1_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block,
&arg);
}
}
#endif // CONFIG_SUPERTX
#if !CONFIG_PVQ
void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
(void)tx_size;
struct macroblock_plane *p = &x->plane[plane];
#if !CONFIG_LV_MAP
*a = *l = p->eobs[block] > 0;
#else // !CONFIG_LV_MAP
*a = *l = p->txb_entropy_ctx[block];
#endif // !CONFIG_LV_MAP
#if CONFIG_VAR_TX || CONFIG_LV_MAP
int i;
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
#endif
}
#endif
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
#if !CONFIG_PVQ
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
#endif
}
#if CONFIG_DPCM_INTRA
static int get_eob(const tran_low_t *qcoeff, intptr_t n_coeffs,
const int16_t *scan) {
int eob = -1;
for (int i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff[rc]) {
eob = i;
break;
}
}
return eob + 1;
}
static void quantize_scaler(int coeff, int16_t zbin, int16_t round_value,
int16_t quant, int16_t quant_shift, int16_t dequant,
int log_scale, tran_low_t *const qcoeff,
tran_low_t *const dqcoeff) {
zbin = ROUND_POWER_OF_TWO(zbin, log_scale);
round_value = ROUND_POWER_OF_TWO(round_value, log_scale);
const int coeff_sign = (coeff >> 31);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
if (abs_coeff >= zbin) {
int tmp = clamp(abs_coeff + round_value, INT16_MIN, INT16_MAX);
tmp = ((((tmp * quant) >> 16) + tmp) * quant_shift) >> (16 - log_scale);
*qcoeff = (tmp ^ coeff_sign) - coeff_sign;
*dqcoeff = (*qcoeff * dequant) / (1 << log_scale);
}
}
typedef void (*dpcm_fwd_tx_func)(const int16_t *input, int stride,
TX_TYPE_1D tx_type, tran_low_t *output);
static dpcm_fwd_tx_func get_dpcm_fwd_tx_func(int tx_length) {
switch (tx_length) {
case 4: return av1_dpcm_ft4_c;
case 8: return av1_dpcm_ft8_c;
case 16: return av1_dpcm_ft16_c;
case 32:
return av1_dpcm_ft32_c;
// TODO(huisu): add support for TX_64X64.
default: assert(0); return NULL;
}
}
static void process_block_dpcm_vert(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
struct macroblockd_plane *const pd,
struct macroblock_plane *const p,
uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int16_t *src_diff,
int diff_stride, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff) {
const int tx1d_width = tx_size_wide[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width);
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_width);
const int tx1d_height = tx_size_high[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
// Subtraction.
for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c];
// Forward transform.
forward_tx(src_diff, 1, tx_type_1d, coeff);
// Quantization.
for (int c = 0; c < tx1d_width; ++c) {
quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]);
q_idx = 1;
}
// Inverse transform.
inverse_tx(dqcoeff, 1, tx_type_1d, dst);
// Move to the next row.
coeff += tx1d_width;
qcoeff += tx1d_width;
dqcoeff += tx1d_width;
src_diff += diff_stride;
dst += dst_stride;
src += src_stride;
}
}
static void process_block_dpcm_horz(TX_SIZE tx_size, TX_TYPE_1D tx_type_1d,
struct macroblockd_plane *const pd,
struct macroblock_plane *const p,
uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int16_t *src_diff,
int diff_stride, tran_low_t *coeff,
tran_low_t *qcoeff, tran_low_t *dqcoeff) {
const int tx1d_height = tx_size_high[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height);
dpcm_inv_txfm_add_func inverse_tx =
av1_get_dpcm_inv_txfm_add_func(tx1d_height);
const int tx1d_width = tx_size_wide[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int c = 0; c < tx1d_width; ++c) {
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
// Subtraction.
src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride];
}
// Forward transform.
tran_low_t tx_buff[64];
forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff);
for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r];
// Quantization.
for (int r = 0; r < tx1d_height; ++r) {
quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width],
&dqcoeff[r * tx1d_width]);
q_idx = 1;
}
// Inverse transform.
for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width];
inverse_tx(tx_buff, dst_stride, tx_type_1d, dst);
// Move to the next column.
++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src;
}
}
#if CONFIG_HIGHBITDEPTH
static void hbd_process_block_dpcm_vert(
TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd,
struct macroblockd_plane *const pd, struct macroblock_plane *const p,
uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride,
int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff,
tran_low_t *dqcoeff) {
const int tx1d_width = tx_size_wide[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_width);
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_width);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_height = tx_size_high[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (r > 0) memcpy(dst, dst - dst_stride, tx1d_width * sizeof(dst[0]));
// Subtraction.
for (int c = 0; c < tx1d_width; ++c) src_diff[c] = src[c] - dst[c];
// Forward transform.
forward_tx(src_diff, 1, tx_type_1d, coeff);
// Quantization.
for (int c = 0; c < tx1d_width; ++c) {
quantize_scaler(coeff[c], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[c], &dqcoeff[c]);
q_idx = 1;
}
// Inverse transform.
inverse_tx(dqcoeff, 1, tx_type_1d, bd, dst);
// Move to the next row.
coeff += tx1d_width;
qcoeff += tx1d_width;
dqcoeff += tx1d_width;
src_diff += diff_stride;
dst += dst_stride;
src += src_stride;
}
}
static void hbd_process_block_dpcm_horz(
TX_SIZE tx_size, TX_TYPE_1D tx_type_1d, int bd,
struct macroblockd_plane *const pd, struct macroblock_plane *const p,
uint8_t *src8, int src_stride, uint8_t *dst8, int dst_stride,
int16_t *src_diff, int diff_stride, tran_low_t *coeff, tran_low_t *qcoeff,
tran_low_t *dqcoeff) {
const int tx1d_height = tx_size_high[tx_size];
dpcm_fwd_tx_func forward_tx = get_dpcm_fwd_tx_func(tx1d_height);
hbd_dpcm_inv_txfm_add_func inverse_tx =
av1_get_hbd_dpcm_inv_txfm_add_func(tx1d_height);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
const int tx1d_width = tx_size_wide[tx_size];
const int log_scale = av1_get_tx_scale(tx_size);
int q_idx = 0;
for (int c = 0; c < tx1d_width; ++c) {
for (int r = 0; r < tx1d_height; ++r) {
// Update prediction.
if (c > 0) dst[r * dst_stride] = dst[r * dst_stride - 1];
// Subtraction.
src_diff[r * diff_stride] = src[r * src_stride] - dst[r * dst_stride];
}
// Forward transform.
tran_low_t tx_buff[64];
forward_tx(src_diff, diff_stride, tx_type_1d, tx_buff);
for (int r = 0; r < tx1d_height; ++r) coeff[r * tx1d_width] = tx_buff[r];
// Quantization.
for (int r = 0; r < tx1d_height; ++r) {
quantize_scaler(coeff[r * tx1d_width], p->zbin[q_idx], p->round[q_idx],
p->quant[q_idx], p->quant_shift[q_idx],
pd->dequant[q_idx], log_scale, &qcoeff[r * tx1d_width],
&dqcoeff[r * tx1d_width]);
q_idx = 1;
}
// Inverse transform.
for (int r = 0; r < tx1d_height; ++r) tx_buff[r] = dqcoeff[r * tx1d_width];
inverse_tx(tx_buff, dst_stride, tx_type_1d, bd, dst);
// Move to the next column.
++coeff, ++qcoeff, ++dqcoeff, ++src_diff, ++dst, ++src;
}
}
#endif // CONFIG_HIGHBITDEPTH
void av1_encode_block_intra_dpcm(const AV1_COMMON *cm, MACROBLOCK *x,
PREDICTION_MODE mode, int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
TX_TYPE tx_type, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl, int8_t *skip) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, 0);
tran_low_t *coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
uint16_t *eob = &p->eobs[block];
*eob = 0;
memset(qcoeff, 0, tx1d_height * tx1d_width * sizeof(*qcoeff));
memset(dqcoeff, 0, tx1d_height * tx1d_width * sizeof(*dqcoeff));
if (LIKELY(!x->skip_block)) {
TX_TYPE_1D tx_type_1d = DCT_1D;
switch (tx_type) {
case IDTX: tx_type_1d = IDTX_1D; break;
case V_DCT:
assert(mode == H_PRED);
tx_type_1d = DCT_1D;
break;
case H_DCT:
assert(mode == V_PRED);
tx_type_1d = DCT_1D;
break;
default: assert(0);
}
switch (mode) {
case V_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_vert(tx_size, tx_type_1d, xd->bd, pd, p, src,
src_stride, dst, dst_stride, src_diff,
diff_stride, coeff, qcoeff, dqcoeff);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_vert(tx_size, tx_type_1d, pd, p, src, src_stride,
dst, dst_stride, src_diff, diff_stride, coeff,
qcoeff, dqcoeff);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
case H_PRED:
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
hbd_process_block_dpcm_horz(tx_size, tx_type_1d, xd->bd, pd, p, src,
src_stride, dst, dst_stride, src_diff,
diff_stride, coeff, qcoeff, dqcoeff);
} else {
#endif // CONFIG_HIGHBITDEPTH
process_block_dpcm_horz(tx_size, tx_type_1d, pd, p, src, src_stride,
dst, dst_stride, src_diff, diff_stride, coeff,
qcoeff, dqcoeff);
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
break;
default: assert(0);
}
*eob = get_eob(qcoeff, tx1d_height * tx1d_width, scan_order->scan);
}
ta[blk_col] = tl[blk_row] = *eob > 0;
if (*eob) *skip = 0;
}
#endif // CONFIG_DPCM_INTRA
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_CFL
#if CONFIG_EC_ADAPT
FRAME_CONTEXT *const ec_ctx = xd->tile_ctx;
#else
FRAME_CONTEXT *const ec_ctx = cm->fc;
#endif // CONFIG_EC_ADAPT
av1_predict_intra_block_encoder_facade(x, ec_ctx, plane, block, blk_col,
blk_row, tx_size, plane_bsize);
#else
av1_predict_intra_block_facade(xd, plane, block, blk_col, blk_row, tx_size);
#endif
#if CONFIG_DPCM_INTRA
const int block_raster_idx = av1_block_index_to_raster_order(tx_size, block);
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const PREDICTION_MODE mode =
(plane == 0) ? get_y_mode(xd->mi[0], block_raster_idx) : mbmi->uv_mode;
if (av1_use_dpcm_intra(plane, mode, tx_type, mbmi)) {
av1_encode_block_intra_dpcm(cm, x, mode, plane, block, blk_row, blk_col,
plane_bsize, tx_size, tx_type, args->ta,
args->tl, args->skip);
return;
}
#endif // CONFIG_DPCM_INTRA
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
int ctx = combine_entropy_contexts(*a, *l);
if (args->enable_optimize_b) {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, block, plane_bsize, tx_size, a, l);
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
ctx, AV1_XFORM_QUANT_B);
}
#if CONFIG_PVQ
// *(args->skip) == mbmi->skip
if (!x->pvq_skip[plane]) *(args->skip) = 0;
if (x->pvq_skip[plane]) return;
#endif // CONFIG_PVQ
av1_inverse_transform_block(xd, dqcoeff, tx_type, tx_size, dst, dst_stride,
*eob);
#if !CONFIG_PVQ
if (*eob) *(args->skip) = 0;
#else
// Note : *(args->skip) == mbmi->skip
#endif
#if CONFIG_CFL
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
if (plane == AOM_PLANE_Y && x->cfl_store_y) {
cfl_store(xd->cfl, dst, dst_stride, blk_row, blk_col, tx_size);
}
if (mbmi->uv_mode == DC_PRED) {
// TODO(ltrudeau) find a cleaner way to detect last transform block
if (plane == AOM_PLANE_U) {
xd->cfl->num_tx_blk[CFL_PRED_U] =
(blk_row == 0 && blk_col == 0) ? 1
: xd->cfl->num_tx_blk[CFL_PRED_U] + 1;
}
if (plane == AOM_PLANE_V) {
xd->cfl->num_tx_blk[CFL_PRED_V] =
(blk_row == 0 && blk_col == 0) ? 1
: xd->cfl->num_tx_blk[CFL_PRED_V] + 1;
if (mbmi->skip &&
xd->cfl->num_tx_blk[CFL_PRED_U] == xd->cfl->num_tx_blk[CFL_PRED_V]) {
assert(plane_bsize != BLOCK_INVALID);
const int block_width = block_size_wide[plane_bsize];
const int block_height = block_size_high[plane_bsize];
// if SKIP is chosen at the block level, and ind != 0, we must change
// the prediction
if (mbmi->cfl_alpha_idx != 0) {
const struct macroblockd_plane *const pd_cb = &xd->plane[AOM_PLANE_U];
uint8_t *const dst_cb = pd_cb->dst.buf;
const int dst_stride_cb = pd_cb->dst.stride;
uint8_t *const dst_cr = pd->dst.buf;
const int dst_stride_cr = pd->dst.stride;
for (int j = 0; j < block_height; j++) {
for (int i = 0; i < block_width; i++) {
dst_cb[dst_stride_cb * j + i] =
(uint8_t)(xd->cfl->dc_pred[CFL_PRED_U] + 0.5);
dst_cr[dst_stride_cr * j + i] =
(uint8_t)(xd->cfl->dc_pred[CFL_PRED_V] + 0.5);
}
}
mbmi->cfl_alpha_idx = 0;
mbmi->cfl_alpha_signs[CFL_PRED_U] = CFL_SIGN_POS;
mbmi->cfl_alpha_signs[CFL_PRED_V] = CFL_SIGN_POS;
}
}
}
}
#endif
}
#if CONFIG_CFL
static int cfl_alpha_dist(const uint8_t *y_pix, int y_stride, double y_avg,
const uint8_t *src, int src_stride, int blk_width,
int blk_height, double dc_pred, double alpha,
int *dist_neg_out) {
const double dc_pred_bias = dc_pred + 0.5;
int dist = 0;
int diff;
if (alpha == 0.0) {
const int dc_pred_i = (int)dc_pred_bias;
for (int j = 0; j < blk_height; j++) {
for (int i = 0; i < blk_width; i++) {
diff = src[i] - dc_pred_i;
dist += diff * diff;
}
src += src_stride;
}
if (dist_neg_out) *dist_neg_out = dist;
return dist;
}
int dist_neg = 0;
for (int j = 0; j < blk_height; j++) {
for (int i = 0; i < blk_width; i++) {
const double scaled_luma = alpha * (y_pix[i] - y_avg);
const int uv = src[i];
diff = uv - (int)(scaled_luma + dc_pred_bias);
dist += diff * diff;
diff = uv + (int)(scaled_luma - dc_pred_bias);
dist_neg += diff * diff;
}
y_pix += y_stride;
src += src_stride;
}
if (dist_neg_out) *dist_neg_out = dist_neg;
return dist;
}
static int cfl_compute_alpha_ind(MACROBLOCK *const x, const CFL_CTX *const cfl,
BLOCK_SIZE bsize,
CFL_SIGN_TYPE signs_out[CFL_SIGNS]) {
const struct macroblock_plane *const p_u = &x->plane[AOM_PLANE_U];
const struct macroblock_plane *const p_v = &x->plane[AOM_PLANE_V];
const uint8_t *const src_u = p_u->src.buf;
const uint8_t *const src_v = p_v->src.buf;
const int src_stride_u = p_u->src.stride;
const int src_stride_v = p_v->src.stride;
const int block_width = block_size_wide[bsize];
const int block_height = block_size_high[bsize];
const double dc_pred_u = cfl->dc_pred[CFL_PRED_U];
const double dc_pred_v = cfl->dc_pred[CFL_PRED_V];
// Temporary pixel buffer used to store the CfL prediction when we compute the
// alpha index.
uint8_t tmp_pix[MAX_SB_SQUARE];
// Load CfL Prediction over the entire block
const double y_avg =
cfl_load(cfl, tmp_pix, MAX_SB_SIZE, 0, 0, block_width, block_height);
int sse[CFL_PRED_PLANES][CFL_MAGS_SIZE];
sse[CFL_PRED_U][0] =
cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u,
block_width, block_height, dc_pred_u, 0, NULL);
sse[CFL_PRED_V][0] =
cfl_alpha_dist(tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v,
block_width, block_height, dc_pred_v, 0, NULL);
for (int m = 1; m < CFL_MAGS_SIZE; m += 2) {
assert(cfl_alpha_mags[m + 1] == -cfl_alpha_mags[m]);
sse[CFL_PRED_U][m] = cfl_alpha_dist(
tmp_pix, MAX_SB_SIZE, y_avg, src_u, src_stride_u, block_width,
block_height, dc_pred_u, cfl_alpha_mags[m], &sse[CFL_PRED_U][m + 1]);
sse[CFL_PRED_V][m] = cfl_alpha_dist(
tmp_pix, MAX_SB_SIZE, y_avg, src_v, src_stride_v, block_width,
block_height, dc_pred_v, cfl_alpha_mags[m], &sse[CFL_PRED_V][m + 1]);
}
int dist;
int64_t cost;
int64_t best_cost;
// Compute least squares parameter of the entire block
// IMPORTANT: We assume that the first code is 0,0
int ind = 0;
signs_out[CFL_PRED_U] = CFL_SIGN_POS;
signs_out[CFL_PRED_V] = CFL_SIGN_POS;
dist = sse[CFL_PRED_U][0] + sse[CFL_PRED_V][0];
dist *= 16;
best_cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[0], dist);
for (int c = 1; c < CFL_ALPHABET_SIZE; c++) {
const int idx_u = cfl_alpha_codes[c][CFL_PRED_U];
const int idx_v = cfl_alpha_codes[c][CFL_PRED_V];
for (CFL_SIGN_TYPE sign_u = idx_u == 0; sign_u < CFL_SIGNS; sign_u++) {
for (CFL_SIGN_TYPE sign_v = idx_v == 0; sign_v < CFL_SIGNS; sign_v++) {
dist = sse[CFL_PRED_U][idx_u + (sign_u == CFL_SIGN_NEG)] +
sse[CFL_PRED_V][idx_v + (sign_v == CFL_SIGN_NEG)];
dist *= 16;
cost = RDCOST(x->rdmult, x->rddiv, cfl->costs[c], dist);
if (cost < best_cost) {
best_cost = cost;
ind = c;
signs_out[CFL_PRED_U] = sign_u;
signs_out[CFL_PRED_V] = sign_v;
}
}
}
}
return ind;
}
static inline void cfl_update_costs(CFL_CTX *cfl, FRAME_CONTEXT *ec_ctx) {
assert(ec_ctx->cfl_alpha_cdf[CFL_ALPHABET_SIZE - 1] ==
AOM_ICDF(CDF_PROB_TOP));
const int prob_den = CDF_PROB_TOP;
int prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[0]);
cfl->costs[0] = av1_cost_zero(get_prob(prob_num, prob_den));
for (int c = 1; c < CFL_ALPHABET_SIZE; c++) {
int sign_bit_cost = (cfl_alpha_codes[c][CFL_PRED_U] != 0) +
(cfl_alpha_codes[c][CFL_PRED_V] != 0);
prob_num = AOM_ICDF(ec_ctx->cfl_alpha_cdf[c]) -
AOM_ICDF(ec_ctx->cfl_alpha_cdf[c - 1]);
cfl->costs[c] = av1_cost_zero(get_prob(prob_num, prob_den)) +
av1_cost_literal(sign_bit_cost);
}
}
void av1_predict_intra_block_encoder_facade(MACROBLOCK *x,
FRAME_CONTEXT *ec_ctx, int plane,
int block_idx, int blk_col,
int blk_row, TX_SIZE tx_size,
BLOCK_SIZE plane_bsize) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
if (plane != AOM_PLANE_Y && mbmi->uv_mode == DC_PRED) {
if (blk_col == 0 && blk_row == 0 && plane == AOM_PLANE_U) {
CFL_CTX *const cfl = xd->cfl;
cfl_update_costs(cfl, ec_ctx);
cfl_dc_pred(xd, plane_bsize, tx_size);
mbmi->cfl_alpha_idx =
cfl_compute_alpha_ind(x, cfl, plane_bsize, mbmi->cfl_alpha_signs);
}
}
av1_predict_intra_block_facade(xd, plane, block_idx, blk_col, blk_row,
tx_size);
}
#endif
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane,
int enable_optimize_b, int mi_row,
int mi_col) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = {
cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
};
#if CONFIG_CB4X4
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
return;
#else
(void)mi_row;
(void)mi_col;
#endif
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, bsize, plane, encode_block_intra_and_set_context, &arg);
}
#if CONFIG_PVQ
PVQ_SKIP_TYPE av1_pvq_encode_helper(MACROBLOCK *x, tran_low_t *const coeff,
tran_low_t *ref_coeff,
tran_low_t *const dqcoeff, uint16_t *eob,
const int16_t *quant, int plane,
int tx_size, TX_TYPE tx_type, int *rate,
int speed, PVQ_INFO *pvq_info) {
const int tx_blk_size = tx_size_wide[tx_size];
daala_enc_ctx *daala_enc = &x->daala_enc;
PVQ_SKIP_TYPE ac_dc_coded;
int coeff_shift = 3 - av1_get_tx_scale(tx_size);
int hbd_downshift = 0;
int rounding_mask;
int pvq_dc_quant;
int use_activity_masking = daala_enc->use_activity_masking;
int tell;
int has_dc_skip = 1;
int i;
int off = od_qm_offset(tx_size, plane ? 1 : 0);
DECLARE_ALIGNED(16, tran_low_t, coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, ref_coeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, tran_low_t, dqcoeff_pvq[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, in_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, ref_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
DECLARE_ALIGNED(16, int32_t, out_int32[OD_TXSIZE_MAX * OD_TXSIZE_MAX]);
hbd_downshift = x->e_mbd.bd - 8;
assert(OD_COEFF_SHIFT >= 4);
// DC quantizer for PVQ
if (use_activity_masking)
pvq_dc_quant =
OD_MAXI(1, (quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift) *
daala_enc->state
.pvq_qm_q4[plane][od_qm_get_index(tx_size, 0)] >>
4);
else
pvq_dc_quant =
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >> hbd_downshift);
*eob = 0;
#if !CONFIG_ANS
tell = od_ec_enc_tell_frac(&daala_enc->w.ec);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
// Change coefficient ordering for pvq encoding.
od_raster_to_coding_order(coeff_pvq, tx_blk_size, tx_type, coeff,
tx_blk_size);
od_raster_to_coding_order(ref_coeff_pvq, tx_blk_size, tx_type, ref_coeff,
tx_blk_size);
// copy int16 inputs to int32
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
ref_int32[i] =
AOM_SIGNED_SHL(ref_coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
in_int32[i] = AOM_SIGNED_SHL(coeff_pvq[i], OD_COEFF_SHIFT - coeff_shift) >>
hbd_downshift;
}
if (abs(in_int32[0] - ref_int32[0]) < pvq_dc_quant * 141 / 256) { /* 0.55 */
out_int32[0] = 0;
} else {
out_int32[0] = OD_DIV_R0(in_int32[0] - ref_int32[0], pvq_dc_quant);
}
ac_dc_coded =
od_pvq_encode(daala_enc, ref_int32, in_int32, out_int32,
OD_MAXI(1, quant[0] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
OD_MAXI(1, quant[1] << (OD_COEFF_SHIFT - 3) >>
hbd_downshift), // scale/quantizer
plane,
tx_size, OD_PVQ_BETA[use_activity_masking][plane][tx_size],
0, // is_keyframe,
daala_enc->state.qm + off, daala_enc->state.qm_inv + off,
speed, // speed
pvq_info);
// Encode residue of DC coeff, if required.
if (!has_dc_skip || out_int32[0]) {
generic_encode(&daala_enc->w, &daala_enc->state.adapt->model_dc[plane],
abs(out_int32[0]) - has_dc_skip,
&daala_enc->state.adapt->ex_dc[plane][tx_size][0], 2);
}
if (out_int32[0]) {
aom_write_bit(&daala_enc->w, out_int32[0] < 0);
}
// need to save quantized residue of DC coeff
// so that final pvq bitstream writing can know whether DC is coded.
if (pvq_info) pvq_info->dq_dc_residue = out_int32[0];
out_int32[0] = out_int32[0] * pvq_dc_quant;
out_int32[0] += ref_int32[0];
// copy int32 result back to int16
assert(OD_COEFF_SHIFT > coeff_shift);
rounding_mask = (1 << (OD_COEFF_SHIFT - coeff_shift - 1)) - 1;
for (i = 0; i < tx_blk_size * tx_blk_size; i++) {
out_int32[i] = AOM_SIGNED_SHL(out_int32[i], hbd_downshift);
dqcoeff_pvq[i] = (out_int32[i] + (out_int32[i] < 0) + rounding_mask) >>
(OD_COEFF_SHIFT - coeff_shift);
}
// Back to original coefficient order
od_coding_order_to_raster(dqcoeff, tx_blk_size, tx_type, dqcoeff_pvq,
tx_blk_size);
*eob = tx_blk_size * tx_blk_size;
#if !CONFIG_ANS
*rate = (od_ec_enc_tell_frac(&daala_enc->w.ec) - tell)
<< (AV1_PROB_COST_SHIFT - OD_BITRES);
#else
#error "CONFIG_PVQ currently requires !CONFIG_ANS."
#endif
assert(*rate >= 0);
return ac_dc_coded;
}
void av1_store_pvq_enc_info(PVQ_INFO *pvq_info, int *qg, int *theta, int *k,
od_coeff *y, int nb_bands, const int *off,
int *size, int skip_rest, int skip_dir,
int bs) { // block size in log_2 -2
int i;
const int tx_blk_size = tx_size_wide[bs];
for (i = 0; i < nb_bands; i++) {
pvq_info->qg[i] = qg[i];
pvq_info->theta[i] = theta[i];
pvq_info->k[i] = k[i];
pvq_info->off[i] = off[i];
pvq_info->size[i] = size[i];
}
memcpy(pvq_info->y, y, tx_blk_size * tx_blk_size * sizeof(od_coeff));
pvq_info->nb_bands = nb_bands;
pvq_info->skip_rest = skip_rest;
pvq_info->skip_dir = skip_dir;
pvq_info->bs = bs;
}
#endif
|