summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/pred_common.c
blob: d77739d85634d4eafacfe0078f4e93b1a54a771f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"

// Returns a context number for the given MB prediction signal
static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
                                        const MACROBLOCKD *xd, int dir,
                                        MV_REFERENCE_FRAME ref_frame) {
  (void)xd;

  return ((ref_mbmi->ref_frame[0] == ref_frame ||
           ref_mbmi->ref_frame[1] == ref_frame)
              ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
              : SWITCHABLE_FILTERS);
}

int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const int ctx_offset =
      (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
  MV_REFERENCE_FRAME ref_frame =
      (dir < 2) ? mbmi->ref_frame[0] : mbmi->ref_frame[1];
  // Note:
  // The mode info data structure has a one element border above and to the
  // left of the entries corresponding to real macroblocks.
  // The prediction flags in these dummy entries are initialized to 0.
  int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
  int left_type = SWITCHABLE_FILTERS;
  int above_type = SWITCHABLE_FILTERS;

  if (xd->left_available)
    left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);

  if (xd->up_available)
    above_type =
        get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);

  if (left_type == above_type) {
    filter_type_ctx += left_type;
  } else if (left_type == SWITCHABLE_FILTERS) {
    assert(above_type != SWITCHABLE_FILTERS);
    filter_type_ctx += above_type;
  } else if (above_type == SWITCHABLE_FILTERS) {
    assert(left_type != SWITCHABLE_FILTERS);
    filter_type_ctx += left_type;
  } else {
    filter_type_ctx += SWITCHABLE_FILTERS;
  }

  return filter_type_ctx;
}

static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
  // Do not add an already existing value
  if (*n > 0 && val == cache[*n - 1]) return;

  cache[(*n)++] = val;
}

int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
                          uint16_t *cache) {
  const int row = -xd->mb_to_top_edge >> 3;
  // Do not refer to above SB row when on SB boundary.
  const MB_MODE_INFO *const above_mi =
      (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
  const MB_MODE_INFO *const left_mi = xd->left_mbmi;
  int above_n = 0, left_n = 0;
  if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
  if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
  if (above_n == 0 && left_n == 0) return 0;
  int above_idx = plane * PALETTE_MAX_SIZE;
  int left_idx = plane * PALETTE_MAX_SIZE;
  int n = 0;
  const uint16_t *above_colors =
      above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
  const uint16_t *left_colors =
      left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
  // Merge the sorted lists of base colors from above and left to get
  // combined sorted color cache.
  while (above_n > 0 && left_n > 0) {
    uint16_t v_above = above_colors[above_idx];
    uint16_t v_left = left_colors[left_idx];
    if (v_left < v_above) {
      palette_add_to_cache(cache, &n, v_left);
      ++left_idx, --left_n;
    } else {
      palette_add_to_cache(cache, &n, v_above);
      ++above_idx, --above_n;
      if (v_left == v_above) ++left_idx, --left_n;
    }
  }
  while (above_n-- > 0) {
    uint16_t val = above_colors[above_idx++];
    palette_add_to_cache(cache, &n, val);
  }
  while (left_n-- > 0) {
    uint16_t val = left_colors[left_idx++];
    palette_add_to_cache(cache, &n, val);
  }
  assert(n <= 2 * PALETTE_MAX_SIZE);
  return n;
}

// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
// 0 - inter/inter, inter/--, --/inter, --/--
// 1 - intra/inter, inter/intra
// 2 - intra/--, --/intra
// 3 - intra/intra
int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
  const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
  const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
  const int has_above = xd->up_available;
  const int has_left = xd->left_available;

  if (has_above && has_left) {  // both edges available
    const int above_intra = !is_inter_block(above_mbmi);
    const int left_intra = !is_inter_block(left_mbmi);
    return left_intra && above_intra ? 3 : left_intra || above_intra;
  } else if (has_above || has_left) {  // one edge available
    return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
  } else {
    return 0;
  }
}

#define CHECK_BACKWARD_REFS(ref_frame) \
  (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
#define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)

int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
  int ctx;
  const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
  const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
  const int has_above = xd->up_available;
  const int has_left = xd->left_available;

  // Note:
  // The mode info data structure has a one element border above and to the
  // left of the entries corresponding to real macroblocks.
  // The prediction flags in these dummy entries are initialized to 0.
  if (has_above && has_left) {  // both edges available
    if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
      // neither edge uses comp pred (0/1)
      ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
            IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
    else if (!has_second_ref(above_mbmi))
      // one of two edges uses comp pred (2/3)
      ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
                 !is_inter_block(above_mbmi));
    else if (!has_second_ref(left_mbmi))
      // one of two edges uses comp pred (2/3)
      ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
                 !is_inter_block(left_mbmi));
    else  // both edges use comp pred (4)
      ctx = 4;
  } else if (has_above || has_left) {  // one edge available
    const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;

    if (!has_second_ref(edge_mbmi))
      // edge does not use comp pred (0/1)
      ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
    else
      // edge uses comp pred (3)
      ctx = 3;
  } else {  // no edges available (1)
    ctx = 1;
  }
  assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
  return ctx;
}

int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
  int pred_context;
  const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
  const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
  const int above_in_image = xd->up_available;
  const int left_in_image = xd->left_available;

  if (above_in_image && left_in_image) {  // both edges available
    const int above_intra = !is_inter_block(above_mbmi);
    const int left_intra = !is_inter_block(left_mbmi);

    if (above_intra && left_intra) {  // intra/intra
      pred_context = 2;
    } else if (above_intra || left_intra) {  // intra/inter
      const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;

      if (!has_second_ref(inter_mbmi))  // single pred
        pred_context = 2;
      else  // comp pred
        pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
    } else {  // inter/inter
      const int a_sg = !has_second_ref(above_mbmi);
      const int l_sg = !has_second_ref(left_mbmi);
      const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
      const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];

      if (a_sg && l_sg) {  // single/single
        pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
                                  IS_BACKWARD_REF_FRAME(frfl)));
      } else if (l_sg || a_sg) {  // single/comp
        const int uni_rfc =
            a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);

        if (!uni_rfc)  // comp bidir
          pred_context = 1;
        else  // comp unidir
          pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
                                IS_BACKWARD_REF_FRAME(frfl)));
      } else {  // comp/comp
        const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
        const int l_uni_rfc = has_uni_comp_refs(left_mbmi);

        if (!a_uni_rfc && !l_uni_rfc)  // bidir/bidir
          pred_context = 0;
        else if (!a_uni_rfc || !l_uni_rfc)  // unidir/bidir
          pred_context = 2;
        else  // unidir/unidir
          pred_context =
              3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
      }
    }
  } else if (above_in_image || left_in_image) {  // one edge available
    const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;

    if (!is_inter_block(edge_mbmi)) {  // intra
      pred_context = 2;
    } else {                           // inter
      if (!has_second_ref(edge_mbmi))  // single pred
        pred_context = 2;
      else  // comp pred
        pred_context = 4 * has_uni_comp_refs(edge_mbmi);
    }
  } else {  // no edges available
    pred_context = 2;
  }

  assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
  return pred_context;
}

// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as either
// (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as uni-directional.
//
// 3 contexts: Voting is used to compare the count of forward references with
//             that of backward references from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of forward references (L, L2, L3, or G)
  const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
                        ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
  // Count of backward references (B or A)
  const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
                        ref_counts[ALTREF_FRAME];

  const int pred_context =
      (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
  return pred_context;
}

// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as one of the above three.
//
// 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
//             total count of LAST3/GOLDEN from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of LAST2
  const int last2_count = ref_counts[LAST2_FRAME];
  // Count of LAST3 or GOLDEN
  const int last3_or_gld_count =
      ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];

  const int pred_context = (last2_count == last3_or_gld_count)
                               ? 1
                               : ((last2_count < last3_or_gld_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
  return pred_context;
}

// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST3) or (LAST, GOLDEN),
// conditioning on the pair is known as one of the above two.
//
// 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
//             total count of GOLDEN_FRAME from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of LAST3
  const int last3_count = ref_counts[LAST3_FRAME];
  // Count of GOLDEN
  const int gld_count = ref_counts[GOLDEN_FRAME];

  const int pred_context =
      (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
  return pred_context;
}

// == Common context functions for both comp and single ref ==
//
// Obtain contexts to signal a reference frame to be either LAST/LAST2 or
// LAST3/GOLDEN.
static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of LAST + LAST2
  const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
  // Count of LAST3 + GOLDEN
  const int last3_gld_count =
      ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];

  const int pred_context = (last_last2_count == last3_gld_count)
                               ? 1
                               : ((last_last2_count < last3_gld_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// Obtain contexts to signal a reference frame to be either LAST or LAST2.
static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of LAST
  const int last_count = ref_counts[LAST_FRAME];
  // Count of LAST2
  const int last2_count = ref_counts[LAST2_FRAME];

  const int pred_context =
      (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of LAST3
  const int last3_count = ref_counts[LAST3_FRAME];
  // Count of GOLDEN
  const int gld_count = ref_counts[GOLDEN_FRAME];

  const int pred_context =
      (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
// ALTREF.
static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
  const int brfarf2_count =
      ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
  const int arf_count = ref_counts[ALTREF_FRAME];

  const int pred_context =
      (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of BWDREF frames (B)
  const int brf_count = ref_counts[BWDREF_FRAME];
  // Count of ALTREF2 frames (A2)
  const int arf2_count = ref_counts[ALTREF2_FRAME];

  const int pred_context =
      (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// == Context functions for comp ref ==
//
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be either
// GOLDEN/LAST3, or LAST/LAST2.
int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
  return get_pred_context_ll2_or_l3gld(xd);
}

// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be LAST,
// conditioning on that it is known either LAST/LAST2.
int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
  return get_pred_context_last_or_last2(xd);
}

// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be GOLDEN,
// conditioning on that it is known either GOLDEN or LAST3.
int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
  return get_pred_context_last3_or_gld(xd);
}

// Signal the 2nd reference frame for a compound mode be either
// ALTREF, or ALTREF2/BWDREF.
int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
  return get_pred_context_brfarf2_or_arf(xd);
}

// Signal the 2nd reference frame for a compound mode be either
// ALTREF2 or BWDREF.
int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
  return get_pred_context_brf_or_arf2(xd);
}

// == Context functions for single ref ==
//
// For the bit to signal whether the single reference is a forward reference
// frame or a backward reference frame.
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
  const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];

  // Count of forward reference frames
  const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
                        ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
  // Count of backward reference frames
  const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
                        ref_counts[ALTREF_FRAME];

  const int pred_context =
      (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);

  assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
  return pred_context;
}

// For the bit to signal whether the single reference is ALTREF_FRAME or
// non-ALTREF backward reference frame, knowing that it shall be either of
// these 2 choices.
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
  return get_pred_context_brfarf2_or_arf(xd);
}

// For the bit to signal whether the single reference is LAST3/GOLDEN or
// LAST2/LAST, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
  return get_pred_context_ll2_or_l3gld(xd);
}

// For the bit to signal whether the single reference is LAST2_FRAME or
// LAST_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
  return get_pred_context_last_or_last2(xd);
}

// For the bit to signal whether the single reference is GOLDEN_FRAME or
// LAST3_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
  return get_pred_context_last3_or_gld(xd);
}

// For the bit to signal whether the single reference is ALTREF2_FRAME or
// BWDREF_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
  return get_pred_context_brf_or_arf2(xd);
}