summaryrefslogtreecommitdiff
path: root/third_party/aom/av1/common/cfl.c
blob: ccc59b4eb7bc3ec6cf4c342d35d3eece21ba3519 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include "av1/common/cfl.h"
#include "av1/common/common_data.h"
#include "av1/common/onyxc_int.h"

#include "config/av1_rtcd.h"

void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) {
  assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
  assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);

  memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3));
  memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3));
  cfl->subsampling_x = seq_params->subsampling_x;
  cfl->subsampling_y = seq_params->subsampling_y;
  cfl->are_parameters_computed = 0;
  cfl->store_y = 0;
  // The DC_PRED cache is disabled by default and is only enabled in
  // cfl_rd_pick_alpha
  cfl->use_dc_pred_cache = 0;
  cfl->dc_pred_is_cached[CFL_PRED_U] = 0;
  cfl->dc_pred_is_cached[CFL_PRED_V] = 0;
}

void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input,
                       CFL_PRED_TYPE pred_plane, int width) {
  assert(pred_plane < CFL_PRED_PLANES);
  assert(width <= CFL_BUF_LINE);

  if (get_bitdepth_data_path_index(xd)) {
    uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input);
    memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1);
    return;
  }

  memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width);
}

static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst,
                                 int dst_stride, int width, int height) {
  for (int j = 0; j < height; j++) {
    memcpy(dst, dc_pred_cache, width);
    dst += dst_stride;
  }
}

static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst,
                                 int dst_stride, int width, int height) {
  const size_t num_bytes = width << 1;
  for (int j = 0; j < height; j++) {
    memcpy(dst, dc_pred_cache, num_bytes);
    dst += dst_stride;
  }
}
void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
                      TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) {
  const int width = tx_size_wide[tx_size];
  const int height = tx_size_high[tx_size];
  assert(pred_plane < CFL_PRED_PLANES);
  assert(width <= CFL_BUF_LINE);
  assert(height <= CFL_BUF_LINE);
  if (get_bitdepth_data_path_index(xd)) {
    uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
    cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride,
                         width, height);
    return;
  }
  cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride,
                       width, height);
}

// Due to frame boundary issues, it is possible that the total area covered by
// chroma exceeds that of luma. When this happens, we fill the missing pixels by
// repeating the last columns and/or rows.
static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
  const int diff_width = width - cfl->buf_width;
  const int diff_height = height - cfl->buf_height;

  if (diff_width > 0) {
    const int min_height = height - diff_height;
    uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width);
    for (int j = 0; j < min_height; j++) {
      const uint16_t last_pixel = recon_buf_q3[-1];
      assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
      for (int i = 0; i < diff_width; i++) {
        recon_buf_q3[i] = last_pixel;
      }
      recon_buf_q3 += CFL_BUF_LINE;
    }
    cfl->buf_width = width;
  }
  if (diff_height > 0) {
    uint16_t *recon_buf_q3 =
        cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE);
    for (int j = 0; j < diff_height; j++) {
      const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE;
      assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
      for (int i = 0; i < width; i++) {
        recon_buf_q3[i] = last_row_q3[i];
      }
      recon_buf_q3 += CFL_BUF_LINE;
    }
    cfl->buf_height = height;
  }
}

static void subtract_average_c(const uint16_t *src, int16_t *dst, int width,
                               int height, int round_offset, int num_pel_log2) {
  int sum = round_offset;
  const uint16_t *recon = src;
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      sum += recon[i];
    }
    recon += CFL_BUF_LINE;
  }
  const int avg = sum >> num_pel_log2;
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      dst[i] = src[i] - avg;
    }
    src += CFL_BUF_LINE;
    dst += CFL_BUF_LINE;
  }
}

CFL_SUB_AVG_FN(c)

static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign,
                                   CFL_PRED_TYPE pred_type) {
  const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
                                                   : CFL_SIGN_V(joint_sign);
  if (alpha_sign == CFL_SIGN_ZERO) return 0;
  const int abs_alpha_q3 =
      (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
  return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
}

static INLINE void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst,
                                     int dst_stride, int alpha_q3, int width,
                                     int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]);
    }
    dst += dst_stride;
    ac_buf_q3 += CFL_BUF_LINE;
  }
}

// Null function used for invalid tx_sizes
void cfl_predict_lbd_null(const int16_t *ac_buf_q3, uint8_t *dst,
                          int dst_stride, int alpha_q3) {
  (void)ac_buf_q3;
  (void)dst;
  (void)dst_stride;
  (void)alpha_q3;
  assert(0);
}

CFL_PREDICT_FN(c, lbd)

void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride,
                       int alpha_q3, int bit_depth, int width, int height) {
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      dst[i] = clip_pixel_highbd(
          get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth);
    }
    dst += dst_stride;
    ac_buf_q3 += CFL_BUF_LINE;
  }
}

// Null function used for invalid tx_sizes
void cfl_predict_hbd_null(const int16_t *ac_buf_q3, uint16_t *dst,
                          int dst_stride, int alpha_q3, int bd) {
  (void)ac_buf_q3;
  (void)dst;
  (void)dst_stride;
  (void)alpha_q3;
  (void)bd;
  assert(0);
}

CFL_PREDICT_FN(c, hbd)

static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
  CFL_CTX *const cfl = &xd->cfl;
  // Do not call cfl_compute_parameters multiple time on the same values.
  assert(cfl->are_parameters_computed == 0);

  cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
  get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3);
  cfl->are_parameters_computed = 1;
}

void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
                       TX_SIZE tx_size, int plane) {
  CFL_CTX *const cfl = &xd->cfl;
  MB_MODE_INFO *mbmi = xd->mi[0];
  assert(is_cfl_allowed(xd));

  if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size);

  const int alpha_q3 =
      cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
  assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <=
         CFL_BUF_SQUARE);
  if (get_bitdepth_data_path_index(xd)) {
    uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
    get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride, alpha_q3,
                                xd->bd);
    return;
  }
  get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3);
}

// Null function used for invalid tx_sizes
void cfl_subsample_lbd_null(const uint8_t *input, int input_stride,
                            uint16_t *output_q3) {
  (void)input;
  (void)input_stride;
  (void)output_q3;
  assert(0);
}

// Null function used for invalid tx_sizes
void cfl_subsample_hbd_null(const uint16_t *input, int input_stride,
                            uint16_t *output_q3) {
  (void)input;
  (void)input_stride;
  (void)output_q3;
  assert(0);
}

static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  for (int j = 0; j < height; j += 2) {
    for (int i = 0; i < width; i += 2) {
      const int bot = i + input_stride;
      output_q3[i >> 1] =
          (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
    }
    input += input_stride << 1;
    output_q3 += CFL_BUF_LINE;
  }
}

static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i += 2) {
      output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
    }
    input += input_stride;
    output_q3 += CFL_BUF_LINE;
  }
}

static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      output_q3[i] = input[i] << 3;
    }
    input += input_stride;
    output_q3 += CFL_BUF_LINE;
  }
}

static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  for (int j = 0; j < height; j += 2) {
    for (int i = 0; i < width; i += 2) {
      const int bot = i + input_stride;
      output_q3[i >> 1] =
          (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
    }
    input += input_stride << 1;
    output_q3 += CFL_BUF_LINE;
  }
}

static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i += 2) {
      output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
    }
    input += input_stride;
    output_q3 += CFL_BUF_LINE;
  }
}

static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input,
                                           int input_stride,
                                           uint16_t *output_q3, int width,
                                           int height) {
  assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
  for (int j = 0; j < height; j++) {
    for (int i = 0; i < width; i++) {
      output_q3[i] = input[i] << 3;
    }
    input += input_stride;
    output_q3 += CFL_BUF_LINE;
  }
}

CFL_GET_SUBSAMPLE_FUNCTION(c)

static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size,
                                                       int sub_x, int sub_y) {
  if (sub_x == 1) {
    if (sub_y == 1) {
      return cfl_get_luma_subsampling_420_hbd(tx_size);
    }
    return cfl_get_luma_subsampling_422_hbd(tx_size);
  }
  return cfl_get_luma_subsampling_444_hbd(tx_size);
}

static INLINE cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size,
                                                       int sub_x, int sub_y) {
  if (sub_x == 1) {
    if (sub_y == 1) {
      return cfl_get_luma_subsampling_420_lbd(tx_size);
    }
    return cfl_get_luma_subsampling_422_lbd(tx_size);
  }
  return cfl_get_luma_subsampling_444_lbd(tx_size);
}

static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride,
                      int row, int col, TX_SIZE tx_size, int use_hbd) {
  const int width = tx_size_wide[tx_size];
  const int height = tx_size_high[tx_size];
  const int tx_off_log2 = tx_size_wide_log2[0];
  const int sub_x = cfl->subsampling_x;
  const int sub_y = cfl->subsampling_y;
  const int store_row = row << (tx_off_log2 - sub_y);
  const int store_col = col << (tx_off_log2 - sub_x);
  const int store_height = height >> sub_y;
  const int store_width = width >> sub_x;

  // Invalidate current parameters
  cfl->are_parameters_computed = 0;

  // Store the surface of the pixel buffer that was written to, this way we
  // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
  // frame boundary)
  if (col == 0 && row == 0) {
    cfl->buf_width = store_width;
    cfl->buf_height = store_height;
  } else {
    cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
    cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
  }

  // Check that we will remain inside the pixel buffer.
  assert(store_row + store_height <= CFL_BUF_LINE);
  assert(store_col + store_width <= CFL_BUF_LINE);

  // Store the input into the CfL pixel buffer
  uint16_t *recon_buf_q3 =
      cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col);

  if (use_hbd) {
    cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input),
                                               input_stride, recon_buf_q3);
  } else {
    cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride,
                                               recon_buf_q3);
  }
}

// Adjust the row and column of blocks smaller than 8X8, as chroma-referenced
// and non-chroma-referenced blocks are stored together in the CfL buffer.
static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out,
                                        int *col_out) {
  // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s.
  if ((cfl->mi_row & 0x01) && cfl->subsampling_y) {
    assert(*row_out == 0);
    (*row_out)++;
  }

  // Increment col index for right: 4x8, 4x16 or both right 4x4s.
  if ((cfl->mi_col & 0x01) && cfl->subsampling_x) {
    assert(*col_out == 0);
    (*col_out)++;
  }
}

void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
                  BLOCK_SIZE bsize) {
  CFL_CTX *const cfl = &xd->cfl;
  struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
  uint8_t *dst =
      &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];

  if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    // Only dimensions of size 4 can have an odd offset.
    assert(!((col & 1) && tx_size_wide[tx_size] != 4));
    assert(!((row & 1) && tx_size_high[tx_size] != 4));
    sub8x8_adjust_offset(cfl, &row, &col);
  }
  cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size,
            get_bitdepth_data_path_index(xd));
}

void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) {
  CFL_CTX *const cfl = &xd->cfl;
  struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
  int row = 0;
  int col = 0;

  if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    sub8x8_adjust_offset(cfl, &row, &col);
  }
  const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
  const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
  tx_size = get_tx_size(width, height);
  cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size,
            get_bitdepth_data_path_index(xd));
}