summaryrefslogtreecommitdiff
path: root/netwerk/ipc/ChannelEventQueue.h
blob: 8c526baab0e8673d71e0c95b10c9a30f3df470ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

#ifndef mozilla_net_ChannelEventQueue_h
#define mozilla_net_ChannelEventQueue_h

#include "nsTArray.h"
#include "nsAutoPtr.h"
#include "mozilla/Mutex.h"
#include "mozilla/UniquePtr.h"

class nsISupports;
class nsIEventTarget;

namespace mozilla {
namespace net {

class ChannelEvent
{
 public:
  ChannelEvent() { MOZ_COUNT_CTOR(ChannelEvent); }
  virtual ~ChannelEvent() { MOZ_COUNT_DTOR(ChannelEvent); }
  virtual void Run() = 0;
};

// Workaround for Necko re-entrancy dangers. We buffer IPDL messages in a
// queue if still dispatching previous one(s) to listeners/observers.
// Otherwise synchronous XMLHttpRequests and/or other code that spins the
// event loop (ex: IPDL rpc) could cause listener->OnDataAvailable (for
// instance) to be dispatched and called before mListener->OnStartRequest has
// completed.

class ChannelEventQueue final
{
  NS_INLINE_DECL_THREADSAFE_REFCOUNTING(ChannelEventQueue)

 public:
  explicit ChannelEventQueue(nsISupports *owner)
    : mSuspendCount(0)
    , mSuspended(false)
    , mForced(false)
    , mFlushing(false)
    , mOwner(owner)
    , mMutex("ChannelEventQueue::mMutex")
  {}

  // Puts IPDL-generated channel event into queue, to be run later
  // automatically when EndForcedQueueing and/or Resume is called.
  //
  // @param aCallback - the ChannelEvent
  // @param aAssertionWhenNotQueued - this optional param will be used in an
  //   assertion when the event is executed directly.
  inline void RunOrEnqueue(ChannelEvent* aCallback,
                           bool aAssertionWhenNotQueued = false);
  inline nsresult PrependEvents(nsTArray<UniquePtr<ChannelEvent>>& aEvents);

  // After StartForcedQueueing is called, RunOrEnqueue() will start enqueuing
  // events that will be run/flushed when EndForcedQueueing is called.
  // - Note: queueing may still be required after EndForcedQueueing() (if the
  //   queue is suspended, etc):  always call RunOrEnqueue() to avoid race
  //   conditions.
  inline void StartForcedQueueing();
  inline void EndForcedQueueing();

  // Suspend/resume event queue.  RunOrEnqueue() will start enqueuing
  // events and they will be run/flushed when resume is called.  These should be
  // called when the channel owning the event queue is suspended/resumed.
  inline void Suspend();
  // Resume flushes the queue asynchronously, i.e. items in queue will be
  // dispatched in a new event on the current thread.
  void Resume();

  // Retargets delivery of events to the target thread specified.
  nsresult RetargetDeliveryTo(nsIEventTarget* aTargetThread);

 private:
  // Private destructor, to discourage deletion outside of Release():
  ~ChannelEventQueue()
  {
  }

  inline void MaybeFlushQueue();
  void FlushQueue();
  inline void CompleteResume();

  ChannelEvent* TakeEvent();

  nsTArray<UniquePtr<ChannelEvent>> mEventQueue;

  uint32_t mSuspendCount;
  bool     mSuspended;
  bool mForced;
  bool mFlushing;

  // Keep ptr to avoid refcount cycle: only grab ref during flushing.
  nsISupports *mOwner;

  Mutex mMutex;

  // EventTarget for delivery of events to the correct thread.
  nsCOMPtr<nsIEventTarget> mTargetThread;

  friend class AutoEventEnqueuer;
};

inline void
ChannelEventQueue::RunOrEnqueue(ChannelEvent* aCallback,
                                bool aAssertionWhenNotQueued)
{
  MOZ_ASSERT(aCallback);

  // To avoid leaks.
  UniquePtr<ChannelEvent> event(aCallback);

  {
    MutexAutoLock lock(mMutex);

    bool enqueue =  mForced || mSuspended || mFlushing;
    MOZ_ASSERT(enqueue == true || mEventQueue.IsEmpty(),
               "Should always enqueue if ChannelEventQueue not empty");

    if (enqueue) {
      mEventQueue.AppendElement(Move(event));
      return;
    }
  }

  MOZ_RELEASE_ASSERT(!aAssertionWhenNotQueued);
  event->Run();
}

inline void
ChannelEventQueue::StartForcedQueueing()
{
  MutexAutoLock lock(mMutex);
  mForced = true;
}

inline void
ChannelEventQueue::EndForcedQueueing()
{
  {
    MutexAutoLock lock(mMutex);
    mForced = false;
  }

  MaybeFlushQueue();
}

inline nsresult
ChannelEventQueue::PrependEvents(nsTArray<UniquePtr<ChannelEvent>>& aEvents)
{
  MutexAutoLock lock(mMutex);

  UniquePtr<ChannelEvent>* newEvents =
    mEventQueue.InsertElementsAt(0, aEvents.Length());
  if (!newEvents) {
    return NS_ERROR_OUT_OF_MEMORY;
  }

  for (uint32_t i = 0; i < aEvents.Length(); i++) {
    newEvents[i] = Move(aEvents[i]);
  }

  return NS_OK;
}

inline void
ChannelEventQueue::Suspend()
{
  MutexAutoLock lock(mMutex);

  mSuspended = true;
  mSuspendCount++;
}

inline void
ChannelEventQueue::CompleteResume()
{
  {
    MutexAutoLock lock(mMutex);

    // channel may have been suspended again since Resume fired event to call
    // this.
    if (!mSuspendCount) {
      // we need to remain logically suspended (for purposes of queuing incoming
      // messages) until this point, else new incoming messages could run before
      // queued ones.
      mSuspended = false;
    }
  }

  MaybeFlushQueue();
}

inline void
ChannelEventQueue::MaybeFlushQueue()
{
  // Don't flush if forced queuing on, we're already being flushed, or
  // suspended, or there's nothing to flush
  bool flushQueue = false;

  {
    MutexAutoLock lock(mMutex);
    flushQueue = !mForced && !mFlushing && !mSuspended &&
                 !mEventQueue.IsEmpty();
  }

  if (flushQueue) {
    FlushQueue();
  }
}

// Ensures that RunOrEnqueue() will be collecting events during its lifetime
// (letting caller know incoming IPDL msgs should be queued). Flushes the queue
// when it goes out of scope.
class MOZ_STACK_CLASS AutoEventEnqueuer
{
 public:
  explicit AutoEventEnqueuer(ChannelEventQueue *queue) : mEventQueue(queue) {
    mEventQueue->StartForcedQueueing();
  }
  ~AutoEventEnqueuer() {
    mEventQueue->EndForcedQueueing();
  }
 private:
  RefPtr<ChannelEventQueue> mEventQueue;
};

} // namespace net
} // namespace mozilla

#endif