1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
// Copyright (c) the JPEG XL Project Authors. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "lib/jxl/ans_common.h"
#include <numeric>
#include "lib/jxl/ans_params.h"
#include "lib/jxl/base/status.h"
namespace jxl {
std::vector<int> CreateFlatHistogram(int length, int total_count) {
JXL_ASSERT(length > 0);
JXL_ASSERT(length <= total_count);
const int count = total_count / length;
std::vector<int> result(length, count);
const int rem_counts = total_count % length;
for (int i = 0; i < rem_counts; ++i) {
++result[i];
}
return result;
}
// First, all trailing non-occuring symbols are removed from the distribution;
// if this leaves the distribution empty, a dummy symbol with max weight is
// added. This ensures that the resulting distribution sums to total table size.
// Then, `entry_size` is chosen to be the largest power of two so that
// `table_size` = ANS_TAB_SIZE/`entry_size` is at least as big as the
// distribution size.
// Note that each entry will only ever contain two different symbols, and
// consecutive ranges of offsets, which allows us to use a compact
// representation.
// Each entry is initialized with only the (symbol=i, offset) pairs; then
// positions for which the entry overflows (i.e. distribution[i] > entry_size)
// or is not full are computed, and put into a stack in increasing order.
// Missing symbols in the distribution are padded with 0 (because `table_size`
// >= number of symbols). The `cutoff` value for each entry is initialized to
// the number of occupied slots in that entry (i.e. `distributions[i]`). While
// the overflowing-symbol stack is not empty (which implies that the
// underflowing-symbol stack also is not), the top overfull and underfull
// positions are popped from the stack; the empty slots in the underfull entry
// are then filled with as many slots as needed from the overfull entry; such
// slots are placed after the slots in the overfull entry, and `offsets[1]` is
// computed accordingly. The formerly underfull entry is thus now neither
// underfull nor overfull, and represents exactly two symbols. The overfull
// entry might be either overfull or underfull, and is pushed into the
// corresponding stack.
void InitAliasTable(std::vector<int> distribution, uint32_t range,
size_t log_alpha_size, AliasTable::Entry* JXL_RESTRICT a) {
while (!distribution.empty() && distribution.back() == 0) {
distribution.pop_back();
}
// Ensure that a valid table is always returned, even for an empty
// alphabet. Otherwise, a specially-crafted stream might crash the
// decoder.
if (distribution.empty()) {
distribution.emplace_back(range);
}
const size_t table_size = 1 << log_alpha_size;
#if JXL_ENABLE_ASSERT
int sum = std::accumulate(distribution.begin(), distribution.end(), 0);
#endif // JXL_ENABLE_ASSERT
JXL_ASSERT(static_cast<uint32_t>(sum) == range);
// range must be a power of two
JXL_ASSERT((range & (range - 1)) == 0);
JXL_ASSERT(distribution.size() <= table_size);
JXL_ASSERT(table_size <= range);
const uint32_t entry_size = range >> log_alpha_size; // this is exact
// Special case for single-symbol distributions, that ensures that the state
// does not change when decoding from such a distribution. Note that, since we
// hardcode offset0 == 0, it is not straightforward (if at all possible) to
// fix the general case to produce this result.
for (size_t sym = 0; sym < distribution.size(); sym++) {
if (distribution[sym] == ANS_TAB_SIZE) {
for (size_t i = 0; i < table_size; i++) {
a[i].right_value = sym;
a[i].cutoff = 0;
a[i].offsets1 = entry_size * i;
a[i].freq0 = 0;
a[i].freq1_xor_freq0 = ANS_TAB_SIZE;
}
return;
}
}
std::vector<uint32_t> underfull_posn;
std::vector<uint32_t> overfull_posn;
std::vector<uint32_t> cutoffs(1 << log_alpha_size);
// Initialize entries.
for (size_t i = 0; i < distribution.size(); i++) {
cutoffs[i] = distribution[i];
if (cutoffs[i] > entry_size) {
overfull_posn.push_back(i);
} else if (cutoffs[i] < entry_size) {
underfull_posn.push_back(i);
}
}
for (uint32_t i = distribution.size(); i < table_size; i++) {
cutoffs[i] = 0;
underfull_posn.push_back(i);
}
// Reassign overflow/underflow values.
while (!overfull_posn.empty()) {
uint32_t overfull_i = overfull_posn.back();
overfull_posn.pop_back();
JXL_ASSERT(!underfull_posn.empty());
uint32_t underfull_i = underfull_posn.back();
underfull_posn.pop_back();
uint32_t underfull_by = entry_size - cutoffs[underfull_i];
cutoffs[overfull_i] -= underfull_by;
// overfull positions have their original symbols
a[underfull_i].right_value = overfull_i;
a[underfull_i].offsets1 = cutoffs[overfull_i];
// Slots in the right part of entry underfull_i were taken from the end
// of the symbols in entry overfull_i.
if (cutoffs[overfull_i] < entry_size) {
underfull_posn.push_back(overfull_i);
} else if (cutoffs[overfull_i] > entry_size) {
overfull_posn.push_back(overfull_i);
}
}
for (uint32_t i = 0; i < table_size; i++) {
// cutoffs[i] is properly initialized but the clang-analyzer doesn't infer
// it since it is partially initialized across two for-loops.
// NOLINTNEXTLINE(clang-analyzer-core.UndefinedBinaryOperatorResult)
if (cutoffs[i] == entry_size) {
a[i].right_value = i;
a[i].offsets1 = 0;
a[i].cutoff = 0;
} else {
// Note that, if cutoff is not equal to entry_size,
// a[i].offsets1 was initialized with (overfull cutoff) -
// (entry_size - a[i].cutoff). Thus, subtracting
// a[i].cutoff cannot make it negative.
a[i].offsets1 -= cutoffs[i];
a[i].cutoff = cutoffs[i];
}
const size_t freq0 = i < distribution.size() ? distribution[i] : 0;
const size_t i1 = a[i].right_value;
const size_t freq1 = i1 < distribution.size() ? distribution[i1] : 0;
a[i].freq0 = static_cast<uint16_t>(freq0);
a[i].freq1_xor_freq0 = static_cast<uint16_t>(freq1 ^ freq0);
}
}
} // namespace jxl
|