summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/common/warped_motion.c
blob: 4e9fab9bd872881f99b609e48a700c93dbbbc9af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <assert.h>

#include "config/av1_rtcd.h"

#include "av1/common/warped_motion.h"
#include "av1/common/scale.h"

// For warping, we really use a 6-tap filter, but we do blocks of 8 pixels
// at a time. The zoom/rotation/shear in the model are applied to the
// "fractional" position of each pixel, which therefore varies within
// [-1, 2) * WARPEDPIXEL_PREC_SHIFTS.
// We need an extra 2 taps to fit this in, for a total of 8 taps.
/* clang-format off */
const int16_t av1_warped_filter[WARPEDPIXEL_PREC_SHIFTS * 3 + 1][8] = {
#if WARPEDPIXEL_PREC_BITS == 6
  // [-1, 0)
  { 0,   0, 127,   1,   0, 0, 0, 0 }, { 0, - 1, 127,   2,   0, 0, 0, 0 },
  { 1, - 3, 127,   4, - 1, 0, 0, 0 }, { 1, - 4, 126,   6, - 2, 1, 0, 0 },
  { 1, - 5, 126,   8, - 3, 1, 0, 0 }, { 1, - 6, 125,  11, - 4, 1, 0, 0 },
  { 1, - 7, 124,  13, - 4, 1, 0, 0 }, { 2, - 8, 123,  15, - 5, 1, 0, 0 },
  { 2, - 9, 122,  18, - 6, 1, 0, 0 }, { 2, -10, 121,  20, - 6, 1, 0, 0 },
  { 2, -11, 120,  22, - 7, 2, 0, 0 }, { 2, -12, 119,  25, - 8, 2, 0, 0 },
  { 3, -13, 117,  27, - 8, 2, 0, 0 }, { 3, -13, 116,  29, - 9, 2, 0, 0 },
  { 3, -14, 114,  32, -10, 3, 0, 0 }, { 3, -15, 113,  35, -10, 2, 0, 0 },
  { 3, -15, 111,  37, -11, 3, 0, 0 }, { 3, -16, 109,  40, -11, 3, 0, 0 },
  { 3, -16, 108,  42, -12, 3, 0, 0 }, { 4, -17, 106,  45, -13, 3, 0, 0 },
  { 4, -17, 104,  47, -13, 3, 0, 0 }, { 4, -17, 102,  50, -14, 3, 0, 0 },
  { 4, -17, 100,  52, -14, 3, 0, 0 }, { 4, -18,  98,  55, -15, 4, 0, 0 },
  { 4, -18,  96,  58, -15, 3, 0, 0 }, { 4, -18,  94,  60, -16, 4, 0, 0 },
  { 4, -18,  91,  63, -16, 4, 0, 0 }, { 4, -18,  89,  65, -16, 4, 0, 0 },
  { 4, -18,  87,  68, -17, 4, 0, 0 }, { 4, -18,  85,  70, -17, 4, 0, 0 },
  { 4, -18,  82,  73, -17, 4, 0, 0 }, { 4, -18,  80,  75, -17, 4, 0, 0 },
  { 4, -18,  78,  78, -18, 4, 0, 0 }, { 4, -17,  75,  80, -18, 4, 0, 0 },
  { 4, -17,  73,  82, -18, 4, 0, 0 }, { 4, -17,  70,  85, -18, 4, 0, 0 },
  { 4, -17,  68,  87, -18, 4, 0, 0 }, { 4, -16,  65,  89, -18, 4, 0, 0 },
  { 4, -16,  63,  91, -18, 4, 0, 0 }, { 4, -16,  60,  94, -18, 4, 0, 0 },
  { 3, -15,  58,  96, -18, 4, 0, 0 }, { 4, -15,  55,  98, -18, 4, 0, 0 },
  { 3, -14,  52, 100, -17, 4, 0, 0 }, { 3, -14,  50, 102, -17, 4, 0, 0 },
  { 3, -13,  47, 104, -17, 4, 0, 0 }, { 3, -13,  45, 106, -17, 4, 0, 0 },
  { 3, -12,  42, 108, -16, 3, 0, 0 }, { 3, -11,  40, 109, -16, 3, 0, 0 },
  { 3, -11,  37, 111, -15, 3, 0, 0 }, { 2, -10,  35, 113, -15, 3, 0, 0 },
  { 3, -10,  32, 114, -14, 3, 0, 0 }, { 2, - 9,  29, 116, -13, 3, 0, 0 },
  { 2, - 8,  27, 117, -13, 3, 0, 0 }, { 2, - 8,  25, 119, -12, 2, 0, 0 },
  { 2, - 7,  22, 120, -11, 2, 0, 0 }, { 1, - 6,  20, 121, -10, 2, 0, 0 },
  { 1, - 6,  18, 122, - 9, 2, 0, 0 }, { 1, - 5,  15, 123, - 8, 2, 0, 0 },
  { 1, - 4,  13, 124, - 7, 1, 0, 0 }, { 1, - 4,  11, 125, - 6, 1, 0, 0 },
  { 1, - 3,   8, 126, - 5, 1, 0, 0 }, { 1, - 2,   6, 126, - 4, 1, 0, 0 },
  { 0, - 1,   4, 127, - 3, 1, 0, 0 }, { 0,   0,   2, 127, - 1, 0, 0, 0 },

  // [0, 1)
  { 0,  0,   0, 127,   1,   0,  0,  0}, { 0,  0,  -1, 127,   2,   0,  0,  0},
  { 0,  1,  -3, 127,   4,  -2,  1,  0}, { 0,  1,  -5, 127,   6,  -2,  1,  0},
  { 0,  2,  -6, 126,   8,  -3,  1,  0}, {-1,  2,  -7, 126,  11,  -4,  2, -1},
  {-1,  3,  -8, 125,  13,  -5,  2, -1}, {-1,  3, -10, 124,  16,  -6,  3, -1},
  {-1,  4, -11, 123,  18,  -7,  3, -1}, {-1,  4, -12, 122,  20,  -7,  3, -1},
  {-1,  4, -13, 121,  23,  -8,  3, -1}, {-2,  5, -14, 120,  25,  -9,  4, -1},
  {-1,  5, -15, 119,  27, -10,  4, -1}, {-1,  5, -16, 118,  30, -11,  4, -1},
  {-2,  6, -17, 116,  33, -12,  5, -1}, {-2,  6, -17, 114,  35, -12,  5, -1},
  {-2,  6, -18, 113,  38, -13,  5, -1}, {-2,  7, -19, 111,  41, -14,  6, -2},
  {-2,  7, -19, 110,  43, -15,  6, -2}, {-2,  7, -20, 108,  46, -15,  6, -2},
  {-2,  7, -20, 106,  49, -16,  6, -2}, {-2,  7, -21, 104,  51, -16,  7, -2},
  {-2,  7, -21, 102,  54, -17,  7, -2}, {-2,  8, -21, 100,  56, -18,  7, -2},
  {-2,  8, -22,  98,  59, -18,  7, -2}, {-2,  8, -22,  96,  62, -19,  7, -2},
  {-2,  8, -22,  94,  64, -19,  7, -2}, {-2,  8, -22,  91,  67, -20,  8, -2},
  {-2,  8, -22,  89,  69, -20,  8, -2}, {-2,  8, -22,  87,  72, -21,  8, -2},
  {-2,  8, -21,  84,  74, -21,  8, -2}, {-2,  8, -22,  82,  77, -21,  8, -2},
  {-2,  8, -21,  79,  79, -21,  8, -2}, {-2,  8, -21,  77,  82, -22,  8, -2},
  {-2,  8, -21,  74,  84, -21,  8, -2}, {-2,  8, -21,  72,  87, -22,  8, -2},
  {-2,  8, -20,  69,  89, -22,  8, -2}, {-2,  8, -20,  67,  91, -22,  8, -2},
  {-2,  7, -19,  64,  94, -22,  8, -2}, {-2,  7, -19,  62,  96, -22,  8, -2},
  {-2,  7, -18,  59,  98, -22,  8, -2}, {-2,  7, -18,  56, 100, -21,  8, -2},
  {-2,  7, -17,  54, 102, -21,  7, -2}, {-2,  7, -16,  51, 104, -21,  7, -2},
  {-2,  6, -16,  49, 106, -20,  7, -2}, {-2,  6, -15,  46, 108, -20,  7, -2},
  {-2,  6, -15,  43, 110, -19,  7, -2}, {-2,  6, -14,  41, 111, -19,  7, -2},
  {-1,  5, -13,  38, 113, -18,  6, -2}, {-1,  5, -12,  35, 114, -17,  6, -2},
  {-1,  5, -12,  33, 116, -17,  6, -2}, {-1,  4, -11,  30, 118, -16,  5, -1},
  {-1,  4, -10,  27, 119, -15,  5, -1}, {-1,  4,  -9,  25, 120, -14,  5, -2},
  {-1,  3,  -8,  23, 121, -13,  4, -1}, {-1,  3,  -7,  20, 122, -12,  4, -1},
  {-1,  3,  -7,  18, 123, -11,  4, -1}, {-1,  3,  -6,  16, 124, -10,  3, -1},
  {-1,  2,  -5,  13, 125,  -8,  3, -1}, {-1,  2,  -4,  11, 126,  -7,  2, -1},
  { 0,  1,  -3,   8, 126,  -6,  2,  0}, { 0,  1,  -2,   6, 127,  -5,  1,  0},
  { 0,  1,  -2,   4, 127,  -3,  1,  0}, { 0,  0,   0,   2, 127,  -1,  0,  0},

  // [1, 2)
  { 0, 0, 0,   1, 127,   0,   0, 0 }, { 0, 0, 0, - 1, 127,   2,   0, 0 },
  { 0, 0, 1, - 3, 127,   4, - 1, 0 }, { 0, 0, 1, - 4, 126,   6, - 2, 1 },
  { 0, 0, 1, - 5, 126,   8, - 3, 1 }, { 0, 0, 1, - 6, 125,  11, - 4, 1 },
  { 0, 0, 1, - 7, 124,  13, - 4, 1 }, { 0, 0, 2, - 8, 123,  15, - 5, 1 },
  { 0, 0, 2, - 9, 122,  18, - 6, 1 }, { 0, 0, 2, -10, 121,  20, - 6, 1 },
  { 0, 0, 2, -11, 120,  22, - 7, 2 }, { 0, 0, 2, -12, 119,  25, - 8, 2 },
  { 0, 0, 3, -13, 117,  27, - 8, 2 }, { 0, 0, 3, -13, 116,  29, - 9, 2 },
  { 0, 0, 3, -14, 114,  32, -10, 3 }, { 0, 0, 3, -15, 113,  35, -10, 2 },
  { 0, 0, 3, -15, 111,  37, -11, 3 }, { 0, 0, 3, -16, 109,  40, -11, 3 },
  { 0, 0, 3, -16, 108,  42, -12, 3 }, { 0, 0, 4, -17, 106,  45, -13, 3 },
  { 0, 0, 4, -17, 104,  47, -13, 3 }, { 0, 0, 4, -17, 102,  50, -14, 3 },
  { 0, 0, 4, -17, 100,  52, -14, 3 }, { 0, 0, 4, -18,  98,  55, -15, 4 },
  { 0, 0, 4, -18,  96,  58, -15, 3 }, { 0, 0, 4, -18,  94,  60, -16, 4 },
  { 0, 0, 4, -18,  91,  63, -16, 4 }, { 0, 0, 4, -18,  89,  65, -16, 4 },
  { 0, 0, 4, -18,  87,  68, -17, 4 }, { 0, 0, 4, -18,  85,  70, -17, 4 },
  { 0, 0, 4, -18,  82,  73, -17, 4 }, { 0, 0, 4, -18,  80,  75, -17, 4 },
  { 0, 0, 4, -18,  78,  78, -18, 4 }, { 0, 0, 4, -17,  75,  80, -18, 4 },
  { 0, 0, 4, -17,  73,  82, -18, 4 }, { 0, 0, 4, -17,  70,  85, -18, 4 },
  { 0, 0, 4, -17,  68,  87, -18, 4 }, { 0, 0, 4, -16,  65,  89, -18, 4 },
  { 0, 0, 4, -16,  63,  91, -18, 4 }, { 0, 0, 4, -16,  60,  94, -18, 4 },
  { 0, 0, 3, -15,  58,  96, -18, 4 }, { 0, 0, 4, -15,  55,  98, -18, 4 },
  { 0, 0, 3, -14,  52, 100, -17, 4 }, { 0, 0, 3, -14,  50, 102, -17, 4 },
  { 0, 0, 3, -13,  47, 104, -17, 4 }, { 0, 0, 3, -13,  45, 106, -17, 4 },
  { 0, 0, 3, -12,  42, 108, -16, 3 }, { 0, 0, 3, -11,  40, 109, -16, 3 },
  { 0, 0, 3, -11,  37, 111, -15, 3 }, { 0, 0, 2, -10,  35, 113, -15, 3 },
  { 0, 0, 3, -10,  32, 114, -14, 3 }, { 0, 0, 2, - 9,  29, 116, -13, 3 },
  { 0, 0, 2, - 8,  27, 117, -13, 3 }, { 0, 0, 2, - 8,  25, 119, -12, 2 },
  { 0, 0, 2, - 7,  22, 120, -11, 2 }, { 0, 0, 1, - 6,  20, 121, -10, 2 },
  { 0, 0, 1, - 6,  18, 122, - 9, 2 }, { 0, 0, 1, - 5,  15, 123, - 8, 2 },
  { 0, 0, 1, - 4,  13, 124, - 7, 1 }, { 0, 0, 1, - 4,  11, 125, - 6, 1 },
  { 0, 0, 1, - 3,   8, 126, - 5, 1 }, { 0, 0, 1, - 2,   6, 126, - 4, 1 },
  { 0, 0, 0, - 1,   4, 127, - 3, 1 }, { 0, 0, 0,   0,   2, 127, - 1, 0 },
  // dummy (replicate row index 191)
  { 0, 0, 0,   0,   2, 127, - 1, 0 },

#elif WARPEDPIXEL_PREC_BITS == 5
  // [-1, 0)
  {0,   0, 127,   1,   0, 0, 0, 0}, {1,  -3, 127,   4,  -1, 0, 0, 0},
  {1,  -5, 126,   8,  -3, 1, 0, 0}, {1,  -7, 124,  13,  -4, 1, 0, 0},
  {2,  -9, 122,  18,  -6, 1, 0, 0}, {2, -11, 120,  22,  -7, 2, 0, 0},
  {3, -13, 117,  27,  -8, 2, 0, 0}, {3, -14, 114,  32, -10, 3, 0, 0},
  {3, -15, 111,  37, -11, 3, 0, 0}, {3, -16, 108,  42, -12, 3, 0, 0},
  {4, -17, 104,  47, -13, 3, 0, 0}, {4, -17, 100,  52, -14, 3, 0, 0},
  {4, -18,  96,  58, -15, 3, 0, 0}, {4, -18,  91,  63, -16, 4, 0, 0},
  {4, -18,  87,  68, -17, 4, 0, 0}, {4, -18,  82,  73, -17, 4, 0, 0},
  {4, -18,  78,  78, -18, 4, 0, 0}, {4, -17,  73,  82, -18, 4, 0, 0},
  {4, -17,  68,  87, -18, 4, 0, 0}, {4, -16,  63,  91, -18, 4, 0, 0},
  {3, -15,  58,  96, -18, 4, 0, 0}, {3, -14,  52, 100, -17, 4, 0, 0},
  {3, -13,  47, 104, -17, 4, 0, 0}, {3, -12,  42, 108, -16, 3, 0, 0},
  {3, -11,  37, 111, -15, 3, 0, 0}, {3, -10,  32, 114, -14, 3, 0, 0},
  {2,  -8,  27, 117, -13, 3, 0, 0}, {2,  -7,  22, 120, -11, 2, 0, 0},
  {1,  -6,  18, 122,  -9, 2, 0, 0}, {1,  -4,  13, 124,  -7, 1, 0, 0},
  {1,  -3,   8, 126,  -5, 1, 0, 0}, {0,  -1,   4, 127,  -3, 1, 0, 0},
  // [0, 1)
  { 0,  0,   0, 127,   1,   0,   0,  0}, { 0,  1,  -3, 127,   4,  -2,   1,  0},
  { 0,  2,  -6, 126,   8,  -3,   1,  0}, {-1,  3,  -8, 125,  13,  -5,   2, -1},
  {-1,  4, -11, 123,  18,  -7,   3, -1}, {-1,  4, -13, 121,  23,  -8,   3, -1},
  {-1,  5, -15, 119,  27, -10,   4, -1}, {-2,  6, -17, 116,  33, -12,   5, -1},
  {-2,  6, -18, 113,  38, -13,   5, -1}, {-2,  7, -19, 110,  43, -15,   6, -2},
  {-2,  7, -20, 106,  49, -16,   6, -2}, {-2,  7, -21, 102,  54, -17,   7, -2},
  {-2,  8, -22,  98,  59, -18,   7, -2}, {-2,  8, -22,  94,  64, -19,   7, -2},
  {-2,  8, -22,  89,  69, -20,   8, -2}, {-2,  8, -21,  84,  74, -21,   8, -2},
  {-2,  8, -21,  79,  79, -21,   8, -2}, {-2,  8, -21,  74,  84, -21,   8, -2},
  {-2,  8, -20,  69,  89, -22,   8, -2}, {-2,  7, -19,  64,  94, -22,   8, -2},
  {-2,  7, -18,  59,  98, -22,   8, -2}, {-2,  7, -17,  54, 102, -21,   7, -2},
  {-2,  6, -16,  49, 106, -20,   7, -2}, {-2,  6, -15,  43, 110, -19,   7, -2},
  {-1,  5, -13,  38, 113, -18,   6, -2}, {-1,  5, -12,  33, 116, -17,   6, -2},
  {-1,  4, -10,  27, 119, -15,   5, -1}, {-1,  3,  -8,  23, 121, -13,   4, -1},
  {-1,  3,  -7,  18, 123, -11,   4, -1}, {-1,  2,  -5,  13, 125,  -8,   3, -1},
  { 0,  1,  -3,   8, 126,  -6,   2,  0}, { 0,  1,  -2,   4, 127,  -3,   1,  0},
  // [1, 2)
  {0, 0, 0,   1, 127,   0,   0, 0}, {0, 0, 1,  -3, 127,   4,  -1, 0},
  {0, 0, 1,  -5, 126,   8,  -3, 1}, {0, 0, 1,  -7, 124,  13,  -4, 1},
  {0, 0, 2,  -9, 122,  18,  -6, 1}, {0, 0, 2, -11, 120,  22,  -7, 2},
  {0, 0, 3, -13, 117,  27,  -8, 2}, {0, 0, 3, -14, 114,  32, -10, 3},
  {0, 0, 3, -15, 111,  37, -11, 3}, {0, 0, 3, -16, 108,  42, -12, 3},
  {0, 0, 4, -17, 104,  47, -13, 3}, {0, 0, 4, -17, 100,  52, -14, 3},
  {0, 0, 4, -18,  96,  58, -15, 3}, {0, 0, 4, -18,  91,  63, -16, 4},
  {0, 0, 4, -18,  87,  68, -17, 4}, {0, 0, 4, -18,  82,  73, -17, 4},
  {0, 0, 4, -18,  78,  78, -18, 4}, {0, 0, 4, -17,  73,  82, -18, 4},
  {0, 0, 4, -17,  68,  87, -18, 4}, {0, 0, 4, -16,  63,  91, -18, 4},
  {0, 0, 3, -15,  58,  96, -18, 4}, {0, 0, 3, -14,  52, 100, -17, 4},
  {0, 0, 3, -13,  47, 104, -17, 4}, {0, 0, 3, -12,  42, 108, -16, 3},
  {0, 0, 3, -11,  37, 111, -15, 3}, {0, 0, 3, -10,  32, 114, -14, 3},
  {0, 0, 2,  -8,  27, 117, -13, 3}, {0, 0, 2,  -7,  22, 120, -11, 2},
  {0, 0, 1,  -6,  18, 122,  -9, 2}, {0, 0, 1,  -4,  13, 124,  -7, 1},
  {0, 0, 1,  -3,   8, 126,  -5, 1}, {0, 0, 0,  -1,   4, 127,  -3, 1},
  // dummy (replicate row index 95)
  {0, 0, 0,  -1,   4, 127,  -3, 1},

#endif  // WARPEDPIXEL_PREC_BITS == 6
};

/* clang-format on */

#define DIV_LUT_PREC_BITS 14
#define DIV_LUT_BITS 8
#define DIV_LUT_NUM (1 << DIV_LUT_BITS)

static const uint16_t div_lut[DIV_LUT_NUM + 1] = {
  16384, 16320, 16257, 16194, 16132, 16070, 16009, 15948, 15888, 15828, 15768,
  15709, 15650, 15592, 15534, 15477, 15420, 15364, 15308, 15252, 15197, 15142,
  15087, 15033, 14980, 14926, 14873, 14821, 14769, 14717, 14665, 14614, 14564,
  14513, 14463, 14413, 14364, 14315, 14266, 14218, 14170, 14122, 14075, 14028,
  13981, 13935, 13888, 13843, 13797, 13752, 13707, 13662, 13618, 13574, 13530,
  13487, 13443, 13400, 13358, 13315, 13273, 13231, 13190, 13148, 13107, 13066,
  13026, 12985, 12945, 12906, 12866, 12827, 12788, 12749, 12710, 12672, 12633,
  12596, 12558, 12520, 12483, 12446, 12409, 12373, 12336, 12300, 12264, 12228,
  12193, 12157, 12122, 12087, 12053, 12018, 11984, 11950, 11916, 11882, 11848,
  11815, 11782, 11749, 11716, 11683, 11651, 11619, 11586, 11555, 11523, 11491,
  11460, 11429, 11398, 11367, 11336, 11305, 11275, 11245, 11215, 11185, 11155,
  11125, 11096, 11067, 11038, 11009, 10980, 10951, 10923, 10894, 10866, 10838,
  10810, 10782, 10755, 10727, 10700, 10673, 10645, 10618, 10592, 10565, 10538,
  10512, 10486, 10460, 10434, 10408, 10382, 10356, 10331, 10305, 10280, 10255,
  10230, 10205, 10180, 10156, 10131, 10107, 10082, 10058, 10034, 10010, 9986,
  9963,  9939,  9916,  9892,  9869,  9846,  9823,  9800,  9777,  9754,  9732,
  9709,  9687,  9664,  9642,  9620,  9598,  9576,  9554,  9533,  9511,  9489,
  9468,  9447,  9425,  9404,  9383,  9362,  9341,  9321,  9300,  9279,  9259,
  9239,  9218,  9198,  9178,  9158,  9138,  9118,  9098,  9079,  9059,  9039,
  9020,  9001,  8981,  8962,  8943,  8924,  8905,  8886,  8867,  8849,  8830,
  8812,  8793,  8775,  8756,  8738,  8720,  8702,  8684,  8666,  8648,  8630,
  8613,  8595,  8577,  8560,  8542,  8525,  8508,  8490,  8473,  8456,  8439,
  8422,  8405,  8389,  8372,  8355,  8339,  8322,  8306,  8289,  8273,  8257,
  8240,  8224,  8208,  8192,
};

// Decomposes a divisor D such that 1/D = y/2^shift, where y is returned
// at precision of DIV_LUT_PREC_BITS along with the shift.
static int16_t resolve_divisor_64(uint64_t D, int16_t *shift) {
  int64_t f;
  *shift = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
                               : get_msb((unsigned int)D));
  // e is obtained from D after resetting the most significant 1 bit.
  const int64_t e = D - ((uint64_t)1 << *shift);
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
  if (*shift > DIV_LUT_BITS)
    f = ROUND_POWER_OF_TWO_64(e, *shift - DIV_LUT_BITS);
  else
    f = e << (DIV_LUT_BITS - *shift);
  assert(f <= DIV_LUT_NUM);
  *shift += DIV_LUT_PREC_BITS;
  // Use f as lookup into the precomputed table of multipliers
  return div_lut[f];
}

static int16_t resolve_divisor_32(uint32_t D, int16_t *shift) {
  int32_t f;
  *shift = get_msb(D);
  // e is obtained from D after resetting the most significant 1 bit.
  const int32_t e = D - ((uint32_t)1 << *shift);
  // Get the most significant DIV_LUT_BITS (8) bits of e into f
  if (*shift > DIV_LUT_BITS)
    f = ROUND_POWER_OF_TWO(e, *shift - DIV_LUT_BITS);
  else
    f = e << (DIV_LUT_BITS - *shift);
  assert(f <= DIV_LUT_NUM);
  *shift += DIV_LUT_PREC_BITS;
  // Use f as lookup into the precomputed table of multipliers
  return div_lut[f];
}

static int is_affine_valid(const WarpedMotionParams *const wm) {
  const int32_t *mat = wm->wmmat;
  return (mat[2] > 0);
}

static int is_affine_shear_allowed(int16_t alpha, int16_t beta, int16_t gamma,
                                   int16_t delta) {
  if ((4 * abs(alpha) + 7 * abs(beta) >= (1 << WARPEDMODEL_PREC_BITS)) ||
      (4 * abs(gamma) + 4 * abs(delta) >= (1 << WARPEDMODEL_PREC_BITS)))
    return 0;
  else
    return 1;
}

// Returns 1 on success or 0 on an invalid affine set
int av1_get_shear_params(WarpedMotionParams *wm) {
  const int32_t *mat = wm->wmmat;
  if (!is_affine_valid(wm)) return 0;
  wm->alpha =
      clamp(mat[2] - (1 << WARPEDMODEL_PREC_BITS), INT16_MIN, INT16_MAX);
  wm->beta = clamp(mat[3], INT16_MIN, INT16_MAX);
  int16_t shift;
  int16_t y = resolve_divisor_32(abs(mat[2]), &shift) * (mat[2] < 0 ? -1 : 1);
  int64_t v = ((int64_t)mat[4] * (1 << WARPEDMODEL_PREC_BITS)) * y;
  wm->gamma =
      clamp((int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift), INT16_MIN, INT16_MAX);
  v = ((int64_t)mat[3] * mat[4]) * y;
  wm->delta = clamp(mat[5] - (int)ROUND_POWER_OF_TWO_SIGNED_64(v, shift) -
                        (1 << WARPEDMODEL_PREC_BITS),
                    INT16_MIN, INT16_MAX);

  wm->alpha = ROUND_POWER_OF_TWO_SIGNED(wm->alpha, WARP_PARAM_REDUCE_BITS) *
              (1 << WARP_PARAM_REDUCE_BITS);
  wm->beta = ROUND_POWER_OF_TWO_SIGNED(wm->beta, WARP_PARAM_REDUCE_BITS) *
             (1 << WARP_PARAM_REDUCE_BITS);
  wm->gamma = ROUND_POWER_OF_TWO_SIGNED(wm->gamma, WARP_PARAM_REDUCE_BITS) *
              (1 << WARP_PARAM_REDUCE_BITS);
  wm->delta = ROUND_POWER_OF_TWO_SIGNED(wm->delta, WARP_PARAM_REDUCE_BITS) *
              (1 << WARP_PARAM_REDUCE_BITS);

  if (!is_affine_shear_allowed(wm->alpha, wm->beta, wm->gamma, wm->delta))
    return 0;

  return 1;
}

#if CONFIG_AV1_HIGHBITDEPTH
static INLINE int highbd_error_measure(int err, int bd) {
  const int b = bd - 8;
  const int bmask = (1 << b) - 1;
  const int v = (1 << b);
  err = abs(err);
  const int e1 = err >> b;
  const int e2 = err & bmask;
  return error_measure_lut[255 + e1] * (v - e2) +
         error_measure_lut[256 + e1] * e2;
}

/* Note: For an explanation of the warp algorithm, and some notes on bit widths
    for hardware implementations, see the comments above av1_warp_affine_c
*/
void av1_highbd_warp_affine_c(const int32_t *mat, const uint16_t *ref,
                              int width, int height, int stride, uint16_t *pred,
                              int p_col, int p_row, int p_width, int p_height,
                              int p_stride, int subsampling_x,
                              int subsampling_y, int bd,
                              ConvolveParams *conv_params, int16_t alpha,
                              int16_t beta, int16_t gamma, int16_t delta) {
  int32_t tmp[15 * 8];
  const int reduce_bits_horiz =
      conv_params->round_0 +
      AOMMAX(bd + FILTER_BITS - conv_params->round_0 - 14, 0);
  const int reduce_bits_vert = conv_params->is_compound
                                   ? conv_params->round_1
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
  const int round_bits =
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
  (void)max_bits_horiz;
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));

  for (int i = p_row; i < p_row + p_height; i += 8) {
    for (int j = p_col; j < p_col + p_width; j += 8) {
      // Calculate the center of this 8x8 block,
      // project to luma coordinates (if in a subsampled chroma plane),
      // apply the affine transformation,
      // then convert back to the original coordinates (if necessary)
      const int32_t src_x = (j + 4) << subsampling_x;
      const int32_t src_y = (i + 4) << subsampling_y;
      const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
      const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
      const int32_t x4 = dst_x >> subsampling_x;
      const int32_t y4 = dst_y >> subsampling_y;

      const int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS;
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
      const int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS;
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);

      sx4 += alpha * (-4) + beta * (-4);
      sy4 += gamma * (-4) + delta * (-4);

      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);

      // Horizontal filter
      for (int k = -7; k < 8; ++k) {
        const int iy = clamp(iy4 + k, 0, height - 1);

        int sx = sx4 + beta * (k + 4);
        for (int l = -4; l < 4; ++l) {
          int ix = ix4 + l - 3;
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
                           WARPEDPIXEL_PREC_SHIFTS;
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
          const int16_t *coeffs = av1_warped_filter[offs];

          int32_t sum = 1 << offset_bits_horiz;
          for (int m = 0; m < 8; ++m) {
            const int sample_x = clamp(ix + m, 0, width - 1);
            sum += ref[iy * stride + sample_x] * coeffs[m];
          }
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
          assert(0 <= sum && sum < (1 << max_bits_horiz));
          tmp[(k + 7) * 8 + (l + 4)] = sum;
          sx += alpha;
        }
      }

      // Vertical filter
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
        int sy = sy4 + delta * (k + 4);
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
                           WARPEDPIXEL_PREC_SHIFTS;
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
          const int16_t *coeffs = av1_warped_filter[offs];

          int32_t sum = 1 << offset_bits_vert;
          for (int m = 0; m < 8; ++m) {
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
          }

          if (conv_params->is_compound) {
            CONV_BUF_TYPE *p =
                &conv_params
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
                           (j - p_col + l + 4)];
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
            if (conv_params->do_average) {
              uint16_t *dst16 =
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
              int32_t tmp32 = *p;
              if (conv_params->use_dist_wtd_comp_avg) {
                tmp32 = tmp32 * conv_params->fwd_offset +
                        sum * conv_params->bck_offset;
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
              } else {
                tmp32 += sum;
                tmp32 = tmp32 >> 1;
              }
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
                      (1 << (offset_bits - conv_params->round_1 - 1));
              *dst16 =
                  clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp32, round_bits), bd);
            } else {
              *p = sum;
            }
          } else {
            uint16_t *p =
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
            assert(0 <= sum && sum < (1 << (bd + 2)));
            *p = clip_pixel_highbd(sum - (1 << (bd - 1)) - (1 << bd), bd);
          }
          sy += gamma;
        }
      }
    }
  }
}

void highbd_warp_plane(WarpedMotionParams *wm, const uint16_t *const ref,
                       int width, int height, int stride, uint16_t *const pred,
                       int p_col, int p_row, int p_width, int p_height,
                       int p_stride, int subsampling_x, int subsampling_y,
                       int bd, ConvolveParams *conv_params) {
  assert(wm->wmtype <= AFFINE);
  if (wm->wmtype == ROTZOOM) {
    wm->wmmat[5] = wm->wmmat[2];
    wm->wmmat[4] = -wm->wmmat[3];
  }
  const int32_t *const mat = wm->wmmat;
  const int16_t alpha = wm->alpha;
  const int16_t beta = wm->beta;
  const int16_t gamma = wm->gamma;
  const int16_t delta = wm->delta;

  av1_highbd_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row,
                         p_width, p_height, p_stride, subsampling_x,
                         subsampling_y, bd, conv_params, alpha, beta, gamma,
                         delta);
}

int64_t av1_calc_highbd_frame_error(const uint16_t *const ref, int stride,
                                    const uint16_t *const dst, int p_width,
                                    int p_height, int p_stride, int bd) {
  int64_t sum_error = 0;
  for (int i = 0; i < p_height; ++i) {
    for (int j = 0; j < p_width; ++j) {
      sum_error +=
          highbd_error_measure(dst[j + i * p_stride] - ref[j + i * stride], bd);
    }
  }
  return sum_error;
}

static int64_t highbd_segmented_frame_error(
    const uint16_t *const ref, int stride, const uint16_t *const dst,
    int p_width, int p_height, int p_stride, int bd, uint8_t *segment_map,
    int segment_map_stride) {
  int patch_w, patch_h;
  const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
  const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
  int64_t sum_error = 0;
  for (int i = 0; i < p_height; i += WARP_ERROR_BLOCK) {
    for (int j = 0; j < p_width; j += WARP_ERROR_BLOCK) {
      int seg_x = j >> WARP_ERROR_BLOCK_LOG;
      int seg_y = i >> WARP_ERROR_BLOCK_LOG;
      // Only compute the error if this block contains inliers from the motion
      // model
      if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;

      // avoid computing error into the frame padding
      patch_w = AOMMIN(error_bsize_w, p_width - j);
      patch_h = AOMMIN(error_bsize_h, p_height - i);
      sum_error += av1_calc_highbd_frame_error(ref + j + i * stride, stride,
                                               dst + j + i * p_stride, patch_w,
                                               patch_h, p_stride, bd);
    }
  }
  return sum_error;
}
#endif  // CONFIG_AV1_HIGHBITDEPTH

/* The warp filter for ROTZOOM and AFFINE models works as follows:
   * Split the input into 8x8 blocks
   * For each block, project the point (4, 4) within the block, to get the
     overall block position. Split into integer and fractional coordinates,
     maintaining full WARPEDMODEL precision
   * Filter horizontally: Generate 15 rows of 8 pixels each. Each pixel gets a
     variable horizontal offset. This means that, while the rows of the
     intermediate buffer align with the rows of the *reference* image, the
     columns align with the columns of the *destination* image.
   * Filter vertically: Generate the output block (up to 8x8 pixels, but if the
     destination is too small we crop the output at this stage). Each pixel has
     a variable vertical offset, so that the resulting rows are aligned with
     the rows of the destination image.

   To accomplish these alignments, we factor the warp matrix as a
   product of two shear / asymmetric zoom matrices:
   / a b \  = /   1       0    \ * / 1+alpha  beta \
   \ c d /    \ gamma  1+delta /   \    0      1   /
   where a, b, c, d are wmmat[2], wmmat[3], wmmat[4], wmmat[5] respectively.
   The horizontal shear (with alpha and beta) is applied first,
   then the vertical shear (with gamma and delta) is applied second.

   The only limitation is that, to fit this in a fixed 8-tap filter size,
   the fractional pixel offsets must be at most +-1. Since the horizontal filter
   generates 15 rows of 8 columns, and the initial point we project is at (4, 4)
   within the block, the parameters must satisfy
   4 * |alpha| + 7 * |beta| <= 1   and   4 * |gamma| + 4 * |delta| <= 1
   for this filter to be applicable.

   Note: This function assumes that the caller has done all of the relevant
   checks, ie. that we have a ROTZOOM or AFFINE model, that wm[4] and wm[5]
   are set appropriately (if using a ROTZOOM model), and that alpha, beta,
   gamma, delta are all in range.

   TODO(david.barker): Maybe support scaled references?
*/
/* A note on hardware implementation:
    The warp filter is intended to be implementable using the same hardware as
    the high-precision convolve filters from the loop-restoration and
    convolve-round experiments.

    For a single filter stage, considering all of the coefficient sets for the
    warp filter and the regular convolution filter, an input in the range
    [0, 2^k - 1] is mapped into the range [-56 * (2^k - 1), 184 * (2^k - 1)]
    before rounding.

    Allowing for some changes to the filter coefficient sets, call the range
    [-64 * 2^k, 192 * 2^k]. Then, if we initialize the accumulator to 64 * 2^k,
    we can replace this by the range [0, 256 * 2^k], which can be stored in an
    unsigned value with 8 + k bits.

    This allows the derivation of the appropriate bit widths and offsets for
    the various intermediate values: If

    F := FILTER_BITS = 7 (or else the above ranges need adjusting)
         So a *single* filter stage maps a k-bit input to a (k + F + 1)-bit
         intermediate value.
    H := ROUND0_BITS
    V := VERSHEAR_REDUCE_PREC_BITS
    (and note that we must have H + V = 2*F for the output to have the same
     scale as the input)

    then we end up with the following offsets and ranges:
    Horizontal filter: Apply an offset of 1 << (bd + F - 1), sum fits into a
                       uint{bd + F + 1}
    After rounding: The values stored in 'tmp' fit into a uint{bd + F + 1 - H}.
    Vertical filter: Apply an offset of 1 << (bd + 2*F - H), sum fits into a
                     uint{bd + 2*F + 2 - H}
    After rounding: The final value, before undoing the offset, fits into a
                    uint{bd + 2}.

    Then we need to undo the offsets before clamping to a pixel. Note that,
    if we do this at the end, the amount to subtract is actually independent
    of H and V:

    offset to subtract = (1 << ((bd + F - 1) - H + F - V)) +
                         (1 << ((bd + 2*F - H) - V))
                      == (1 << (bd - 1)) + (1 << bd)

    This allows us to entirely avoid clamping in both the warp filter and
    the convolve-round experiment. As of the time of writing, the Wiener filter
    from loop-restoration can encode a central coefficient up to 216, which
    leads to a maximum value of about 282 * 2^k after applying the offset.
    So in that case we still need to clamp.
*/
void av1_warp_affine_c(const int32_t *mat, const uint8_t *ref, int width,
                       int height, int stride, uint8_t *pred, int p_col,
                       int p_row, int p_width, int p_height, int p_stride,
                       int subsampling_x, int subsampling_y,
                       ConvolveParams *conv_params, int16_t alpha, int16_t beta,
                       int16_t gamma, int16_t delta) {
  int32_t tmp[15 * 8];
  const int bd = 8;
  const int reduce_bits_horiz = conv_params->round_0;
  const int reduce_bits_vert = conv_params->is_compound
                                   ? conv_params->round_1
                                   : 2 * FILTER_BITS - reduce_bits_horiz;
  const int max_bits_horiz = bd + FILTER_BITS + 1 - reduce_bits_horiz;
  const int offset_bits_horiz = bd + FILTER_BITS - 1;
  const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
  const int round_bits =
      2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
  const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
  (void)max_bits_horiz;
  assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
  assert(IMPLIES(conv_params->do_average, conv_params->is_compound));

  for (int i = p_row; i < p_row + p_height; i += 8) {
    for (int j = p_col; j < p_col + p_width; j += 8) {
      // Calculate the center of this 8x8 block,
      // project to luma coordinates (if in a subsampled chroma plane),
      // apply the affine transformation,
      // then convert back to the original coordinates (if necessary)
      const int32_t src_x = (j + 4) << subsampling_x;
      const int32_t src_y = (i + 4) << subsampling_y;
      const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
      const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
      const int32_t x4 = dst_x >> subsampling_x;
      const int32_t y4 = dst_y >> subsampling_y;

      int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS;
      int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
      int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS;
      int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);

      sx4 += alpha * (-4) + beta * (-4);
      sy4 += gamma * (-4) + delta * (-4);

      sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);
      sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1);

      // Horizontal filter
      for (int k = -7; k < 8; ++k) {
        // Clamp to top/bottom edge of the frame
        const int iy = clamp(iy4 + k, 0, height - 1);

        int sx = sx4 + beta * (k + 4);

        for (int l = -4; l < 4; ++l) {
          int ix = ix4 + l - 3;
          // At this point, sx = sx4 + alpha * l + beta * k
          const int offs = ROUND_POWER_OF_TWO(sx, WARPEDDIFF_PREC_BITS) +
                           WARPEDPIXEL_PREC_SHIFTS;
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
          const int16_t *coeffs = av1_warped_filter[offs];

          int32_t sum = 1 << offset_bits_horiz;
          for (int m = 0; m < 8; ++m) {
            // Clamp to left/right edge of the frame
            const int sample_x = clamp(ix + m, 0, width - 1);

            sum += ref[iy * stride + sample_x] * coeffs[m];
          }
          sum = ROUND_POWER_OF_TWO(sum, reduce_bits_horiz);
          assert(0 <= sum && sum < (1 << max_bits_horiz));
          tmp[(k + 7) * 8 + (l + 4)] = sum;
          sx += alpha;
        }
      }

      // Vertical filter
      for (int k = -4; k < AOMMIN(4, p_row + p_height - i - 4); ++k) {
        int sy = sy4 + delta * (k + 4);
        for (int l = -4; l < AOMMIN(4, p_col + p_width - j - 4); ++l) {
          // At this point, sy = sy4 + gamma * l + delta * k
          const int offs = ROUND_POWER_OF_TWO(sy, WARPEDDIFF_PREC_BITS) +
                           WARPEDPIXEL_PREC_SHIFTS;
          assert(offs >= 0 && offs <= WARPEDPIXEL_PREC_SHIFTS * 3);
          const int16_t *coeffs = av1_warped_filter[offs];

          int32_t sum = 1 << offset_bits_vert;
          for (int m = 0; m < 8; ++m) {
            sum += tmp[(k + m + 4) * 8 + (l + 4)] * coeffs[m];
          }

          if (conv_params->is_compound) {
            CONV_BUF_TYPE *p =
                &conv_params
                     ->dst[(i - p_row + k + 4) * conv_params->dst_stride +
                           (j - p_col + l + 4)];
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
            if (conv_params->do_average) {
              uint8_t *dst8 =
                  &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
              int32_t tmp32 = *p;
              if (conv_params->use_dist_wtd_comp_avg) {
                tmp32 = tmp32 * conv_params->fwd_offset +
                        sum * conv_params->bck_offset;
                tmp32 = tmp32 >> DIST_PRECISION_BITS;
              } else {
                tmp32 += sum;
                tmp32 = tmp32 >> 1;
              }
              tmp32 = tmp32 - (1 << (offset_bits - conv_params->round_1)) -
                      (1 << (offset_bits - conv_params->round_1 - 1));
              *dst8 = clip_pixel(ROUND_POWER_OF_TWO(tmp32, round_bits));
            } else {
              *p = sum;
            }
          } else {
            uint8_t *p =
                &pred[(i - p_row + k + 4) * p_stride + (j - p_col + l + 4)];
            sum = ROUND_POWER_OF_TWO(sum, reduce_bits_vert);
            assert(0 <= sum && sum < (1 << (bd + 2)));
            *p = clip_pixel(sum - (1 << (bd - 1)) - (1 << bd));
          }
          sy += gamma;
        }
      }
    }
  }
}

void warp_plane(WarpedMotionParams *wm, const uint8_t *const ref, int width,
                int height, int stride, uint8_t *pred, int p_col, int p_row,
                int p_width, int p_height, int p_stride, int subsampling_x,
                int subsampling_y, ConvolveParams *conv_params) {
  assert(wm->wmtype <= AFFINE);
  if (wm->wmtype == ROTZOOM) {
    wm->wmmat[5] = wm->wmmat[2];
    wm->wmmat[4] = -wm->wmmat[3];
  }
  const int32_t *const mat = wm->wmmat;
  const int16_t alpha = wm->alpha;
  const int16_t beta = wm->beta;
  const int16_t gamma = wm->gamma;
  const int16_t delta = wm->delta;
  av1_warp_affine(mat, ref, width, height, stride, pred, p_col, p_row, p_width,
                  p_height, p_stride, subsampling_x, subsampling_y, conv_params,
                  alpha, beta, gamma, delta);
}

int64_t av1_calc_frame_error_c(const uint8_t *const ref, int stride,
                               const uint8_t *const dst, int p_width,
                               int p_height, int p_stride) {
  int64_t sum_error = 0;
  for (int i = 0; i < p_height; ++i) {
    for (int j = 0; j < p_width; ++j) {
      sum_error +=
          (int64_t)error_measure(dst[j + i * p_stride] - ref[j + i * stride]);
    }
  }
  return sum_error;
}

static int64_t segmented_frame_error(const uint8_t *const ref, int stride,
                                     const uint8_t *const dst, int p_width,
                                     int p_height, int p_stride,
                                     uint8_t *segment_map,
                                     int segment_map_stride) {
  int patch_w, patch_h;
  const int error_bsize_w = AOMMIN(p_width, WARP_ERROR_BLOCK);
  const int error_bsize_h = AOMMIN(p_height, WARP_ERROR_BLOCK);
  int64_t sum_error = 0;
  for (int i = 0; i < p_height; i += WARP_ERROR_BLOCK) {
    for (int j = 0; j < p_width; j += WARP_ERROR_BLOCK) {
      int seg_x = j >> WARP_ERROR_BLOCK_LOG;
      int seg_y = i >> WARP_ERROR_BLOCK_LOG;
      // Only compute the error if this block contains inliers from the motion
      // model
      if (!segment_map[seg_y * segment_map_stride + seg_x]) continue;

      // avoid computing error into the frame padding
      patch_w = AOMMIN(error_bsize_w, p_width - j);
      patch_h = AOMMIN(error_bsize_h, p_height - i);
      sum_error += av1_calc_frame_error(ref + j + i * stride, stride,
                                        dst + j + i * p_stride, patch_w,
                                        patch_h, p_stride);
    }
  }
  return sum_error;
}

int64_t av1_frame_error(int use_hbd, int bd, const uint8_t *ref, int stride,
                        uint8_t *dst, int p_width, int p_height, int p_stride) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd) {
    return av1_calc_highbd_frame_error(CONVERT_TO_SHORTPTR(ref), stride,
                                       CONVERT_TO_SHORTPTR(dst), p_width,
                                       p_height, p_stride, bd);
  }
#endif
  (void)use_hbd;
  (void)bd;
  return av1_calc_frame_error(ref, stride, dst, p_width, p_height, p_stride);
}

int64_t av1_segmented_frame_error(int use_hbd, int bd, const uint8_t *ref,
                                  int stride, uint8_t *dst, int p_width,
                                  int p_height, int p_stride,
                                  uint8_t *segment_map,
                                  int segment_map_stride) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd) {
    return highbd_segmented_frame_error(
        CONVERT_TO_SHORTPTR(ref), stride, CONVERT_TO_SHORTPTR(dst), p_width,
        p_height, p_stride, bd, segment_map, segment_map_stride);
  }
#endif
  (void)use_hbd;
  (void)bd;
  return segmented_frame_error(ref, stride, dst, p_width, p_height, p_stride,
                               segment_map, segment_map_stride);
}

void av1_warp_plane(WarpedMotionParams *wm, int use_hbd, int bd,
                    const uint8_t *ref, int width, int height, int stride,
                    uint8_t *pred, int p_col, int p_row, int p_width,
                    int p_height, int p_stride, int subsampling_x,
                    int subsampling_y, ConvolveParams *conv_params) {
#if CONFIG_AV1_HIGHBITDEPTH
  if (use_hbd)
    highbd_warp_plane(wm, CONVERT_TO_SHORTPTR(ref), width, height, stride,
                      CONVERT_TO_SHORTPTR(pred), p_col, p_row, p_width,
                      p_height, p_stride, subsampling_x, subsampling_y, bd,
                      conv_params);
  else
    warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
               p_height, p_stride, subsampling_x, subsampling_y, conv_params);
#else
  (void)use_hbd;
  (void)bd;
  warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width,
             p_height, p_stride, subsampling_x, subsampling_y, conv_params);
#endif
}

#define LS_MV_MAX 256  // max mv in 1/8-pel
// Use LS_STEP = 8 so that 2 less bits needed for A, Bx, By.
#define LS_STEP 8

// Assuming LS_MV_MAX is < MAX_SB_SIZE * 8,
// the precision needed is:
//   (MAX_SB_SIZE_LOG2 + 3) [for sx * sx magnitude] +
//   (MAX_SB_SIZE_LOG2 + 4) [for sx * dx magnitude] +
//   1 [for sign] +
//   LEAST_SQUARES_SAMPLES_MAX_BITS
//        [for adding up to LEAST_SQUARES_SAMPLES_MAX samples]
// The value is 23
#define LS_MAT_RANGE_BITS \
  ((MAX_SB_SIZE_LOG2 + 4) * 2 + LEAST_SQUARES_SAMPLES_MAX_BITS)

// Bit-depth reduction from the full-range
#define LS_MAT_DOWN_BITS 2

// bits range of A, Bx and By after downshifting
#define LS_MAT_BITS (LS_MAT_RANGE_BITS - LS_MAT_DOWN_BITS)
#define LS_MAT_MIN (-(1 << (LS_MAT_BITS - 1)))
#define LS_MAT_MAX ((1 << (LS_MAT_BITS - 1)) - 1)

// By setting LS_STEP = 8, the least 2 bits of every elements in A, Bx, By are
// 0. So, we can reduce LS_MAT_RANGE_BITS(2) bits here.
#define LS_SQUARE(a)                                          \
  (((a) * (a)*4 + (a)*4 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
   (2 + LS_MAT_DOWN_BITS))
#define LS_PRODUCT1(a, b)                                           \
  (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP) >> \
   (2 + LS_MAT_DOWN_BITS))
#define LS_PRODUCT2(a, b)                                               \
  (((a) * (b)*4 + ((a) + (b)) * 2 * LS_STEP + LS_STEP * LS_STEP * 2) >> \
   (2 + LS_MAT_DOWN_BITS))

#define USE_LIMITED_PREC_MULT 0

#if USE_LIMITED_PREC_MULT

#define MUL_PREC_BITS 16
static uint16_t resolve_multiplier_64(uint64_t D, int16_t *shift) {
  int msb = 0;
  uint16_t mult = 0;
  *shift = 0;
  if (D != 0) {
    msb = (int16_t)((D >> 32) ? get_msb((unsigned int)(D >> 32)) + 32
                              : get_msb((unsigned int)D));
    if (msb >= MUL_PREC_BITS) {
      mult = (uint16_t)ROUND_POWER_OF_TWO_64(D, msb + 1 - MUL_PREC_BITS);
      *shift = msb + 1 - MUL_PREC_BITS;
    } else {
      mult = (uint16_t)D;
      *shift = 0;
    }
  }
  return mult;
}

static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
  int32_t ret;
  int16_t mshift;
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
  shift -= mshift;
  if (shift > 0) {
    return (int32_t)clamp(ROUND_POWER_OF_TWO_SIGNED(v, shift),
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
  } else {
    return (int32_t)clamp(v * (1 << (-shift)),
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
  }
  return ret;
}

static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
  int16_t mshift;
  uint16_t Mul = resolve_multiplier_64(llabs(Px), &mshift);
  int32_t v = (int32_t)Mul * (int32_t)iDet * (Px < 0 ? -1 : 1);
  shift -= mshift;
  if (shift > 0) {
    return (int32_t)clamp(
        ROUND_POWER_OF_TWO_SIGNED(v, shift),
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
  } else {
    return (int32_t)clamp(
        v * (1 << (-shift)),
        (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
        (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
  }
}

#else

static int32_t get_mult_shift_ndiag(int64_t Px, int16_t iDet, int shift) {
  int64_t v = Px * (int64_t)iDet;
  return (int32_t)clamp64(ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
                          -WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
                          WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}

static int32_t get_mult_shift_diag(int64_t Px, int16_t iDet, int shift) {
  int64_t v = Px * (int64_t)iDet;
  return (int32_t)clamp64(
      ROUND_POWER_OF_TWO_SIGNED_64(v, shift),
      (1 << WARPEDMODEL_PREC_BITS) - WARPEDMODEL_NONDIAGAFFINE_CLAMP + 1,
      (1 << WARPEDMODEL_PREC_BITS) + WARPEDMODEL_NONDIAGAFFINE_CLAMP - 1);
}
#endif  // USE_LIMITED_PREC_MULT

static int find_affine_int(int np, const int *pts1, const int *pts2,
                           BLOCK_SIZE bsize, int mvy, int mvx,
                           WarpedMotionParams *wm, int mi_row, int mi_col) {
  int32_t A[2][2] = { { 0, 0 }, { 0, 0 } };
  int32_t Bx[2] = { 0, 0 };
  int32_t By[2] = { 0, 0 };

  const int bw = block_size_wide[bsize];
  const int bh = block_size_high[bsize];
  const int rsuy = bh / 2 - 1;
  const int rsux = bw / 2 - 1;
  const int suy = rsuy * 8;
  const int sux = rsux * 8;
  const int duy = suy + mvy;
  const int dux = sux + mvx;

  // Assume the center pixel of the block has exactly the same motion vector
  // as transmitted for the block. First shift the origin of the source
  // points to the block center, and the origin of the destination points to
  // the block center added to the motion vector transmitted.
  // Let (xi, yi) denote the source points and (xi', yi') denote destination
  // points after origin shfifting, for i = 0, 1, 2, .... n-1.
  // Then if  P = [x0, y0,
  //               x1, y1
  //               x2, y1,
  //                ....
  //              ]
  //          q = [x0', x1', x2', ... ]'
  //          r = [y0', y1', y2', ... ]'
  // the least squares problems that need to be solved are:
  //          [h1, h2]' = inv(P'P)P'q and
  //          [h3, h4]' = inv(P'P)P'r
  // where the affine transformation is given by:
  //          x' = h1.x + h2.y
  //          y' = h3.x + h4.y
  //
  // The loop below computes: A = P'P, Bx = P'q, By = P'r
  // We need to just compute inv(A).Bx and inv(A).By for the solutions.
  // Contribution from neighbor block
  for (int i = 0; i < np; i++) {
    const int dx = pts2[i * 2] - dux;
    const int dy = pts2[i * 2 + 1] - duy;
    const int sx = pts1[i * 2] - sux;
    const int sy = pts1[i * 2 + 1] - suy;
    // (TODO)yunqing: This comparison wouldn't be necessary if the sample
    // selection is done in find_samples(). Also, global offset can be removed
    // while collecting samples.
    if (abs(sx - dx) < LS_MV_MAX && abs(sy - dy) < LS_MV_MAX) {
      A[0][0] += LS_SQUARE(sx);
      A[0][1] += LS_PRODUCT1(sx, sy);
      A[1][1] += LS_SQUARE(sy);
      Bx[0] += LS_PRODUCT2(sx, dx);
      Bx[1] += LS_PRODUCT1(sy, dx);
      By[0] += LS_PRODUCT1(sx, dy);
      By[1] += LS_PRODUCT2(sy, dy);
    }
  }

  // Just for debugging, and can be removed later.
  assert(A[0][0] >= LS_MAT_MIN && A[0][0] <= LS_MAT_MAX);
  assert(A[0][1] >= LS_MAT_MIN && A[0][1] <= LS_MAT_MAX);
  assert(A[1][1] >= LS_MAT_MIN && A[1][1] <= LS_MAT_MAX);
  assert(Bx[0] >= LS_MAT_MIN && Bx[0] <= LS_MAT_MAX);
  assert(Bx[1] >= LS_MAT_MIN && Bx[1] <= LS_MAT_MAX);
  assert(By[0] >= LS_MAT_MIN && By[0] <= LS_MAT_MAX);
  assert(By[1] >= LS_MAT_MIN && By[1] <= LS_MAT_MAX);

  // Compute Determinant of A
  const int64_t Det = (int64_t)A[0][0] * A[1][1] - (int64_t)A[0][1] * A[0][1];
  if (Det == 0) return 1;

  int16_t shift;
  int16_t iDet = resolve_divisor_64(llabs(Det), &shift) * (Det < 0 ? -1 : 1);
  shift -= WARPEDMODEL_PREC_BITS;
  if (shift < 0) {
    iDet <<= (-shift);
    shift = 0;
  }

  int64_t Px[2], Py[2];
  // These divided by the Det, are the least squares solutions
  Px[0] = (int64_t)A[1][1] * Bx[0] - (int64_t)A[0][1] * Bx[1];
  Px[1] = -(int64_t)A[0][1] * Bx[0] + (int64_t)A[0][0] * Bx[1];
  Py[0] = (int64_t)A[1][1] * By[0] - (int64_t)A[0][1] * By[1];
  Py[1] = -(int64_t)A[0][1] * By[0] + (int64_t)A[0][0] * By[1];

  wm->wmmat[2] = get_mult_shift_diag(Px[0], iDet, shift);
  wm->wmmat[3] = get_mult_shift_ndiag(Px[1], iDet, shift);
  wm->wmmat[4] = get_mult_shift_ndiag(Py[0], iDet, shift);
  wm->wmmat[5] = get_mult_shift_diag(Py[1], iDet, shift);

  const int isuy = (mi_row * MI_SIZE + rsuy);
  const int isux = (mi_col * MI_SIZE + rsux);
  // Note: In the vx, vy expressions below, the max value of each of the
  // 2nd and 3rd terms are (2^16 - 1) * (2^13 - 1). That leaves enough room
  // for the first term so that the overall sum in the worst case fits
  // within 32 bits overall.
  const int32_t vx = mvx * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
                     (isux * (wm->wmmat[2] - (1 << WARPEDMODEL_PREC_BITS)) +
                      isuy * wm->wmmat[3]);
  const int32_t vy = mvy * (1 << (WARPEDMODEL_PREC_BITS - 3)) -
                     (isux * wm->wmmat[4] +
                      isuy * (wm->wmmat[5] - (1 << WARPEDMODEL_PREC_BITS)));
  wm->wmmat[0] =
      clamp(vx, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);
  wm->wmmat[1] =
      clamp(vy, -WARPEDMODEL_TRANS_CLAMP, WARPEDMODEL_TRANS_CLAMP - 1);

  wm->wmmat[6] = wm->wmmat[7] = 0;
  return 0;
}

int av1_find_projection(int np, const int *pts1, const int *pts2,
                        BLOCK_SIZE bsize, int mvy, int mvx,
                        WarpedMotionParams *wm_params, int mi_row, int mi_col) {
  assert(wm_params->wmtype == AFFINE);

  if (find_affine_int(np, pts1, pts2, bsize, mvy, mvx, wm_params, mi_row,
                      mi_col))
    return 1;

  // check compatibility with the fast warp filter
  if (!av1_get_shear_params(wm_params)) return 1;

  return 0;
}