summaryrefslogtreecommitdiff
path: root/media/libaom/src/av1/common/blockd.h
blob: a2311c1b00805847eebfae717a5fd9958a6c95a5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/*
 * Copyright (c) 2016, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
 * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#ifndef AOM_AV1_COMMON_BLOCKD_H_
#define AOM_AV1_COMMON_BLOCKD_H_

#include "config/aom_config.h"

#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_scale/yv12config.h"

#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/mv.h"
#include "av1/common/scale.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"

#ifdef __cplusplus
extern "C" {
#endif

#define USE_B_QUANT_NO_TRELLIS 1

#define MAX_MB_PLANE 3

#define MAX_DIFFWTD_MASK_BITS 1

// DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
typedef enum ATTRIBUTE_PACKED {
  DIFFWTD_38 = 0,
  DIFFWTD_38_INV,
  DIFFWTD_MASK_TYPES,
} DIFFWTD_MASK_TYPE;

typedef enum ATTRIBUTE_PACKED {
  KEY_FRAME = 0,
  INTER_FRAME = 1,
  INTRA_ONLY_FRAME = 2,  // replaces intra-only
  S_FRAME = 3,
  FRAME_TYPES,
} FRAME_TYPE;

static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}

static INLINE int is_inter_mode(PREDICTION_MODE mode) {
  return mode >= INTER_MODE_START && mode < INTER_MODE_END;
}

typedef struct {
  uint8_t *plane[MAX_MB_PLANE];
  int stride[MAX_MB_PLANE];
} BUFFER_SET;

static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
  return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
}
static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
  return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
}

static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
  static PREDICTION_MODE lut[] = {
    MB_MODE_COUNT,  // DC_PRED
    MB_MODE_COUNT,  // V_PRED
    MB_MODE_COUNT,  // H_PRED
    MB_MODE_COUNT,  // D45_PRED
    MB_MODE_COUNT,  // D135_PRED
    MB_MODE_COUNT,  // D113_PRED
    MB_MODE_COUNT,  // D157_PRED
    MB_MODE_COUNT,  // D203_PRED
    MB_MODE_COUNT,  // D67_PRED
    MB_MODE_COUNT,  // SMOOTH_PRED
    MB_MODE_COUNT,  // SMOOTH_V_PRED
    MB_MODE_COUNT,  // SMOOTH_H_PRED
    MB_MODE_COUNT,  // PAETH_PRED
    MB_MODE_COUNT,  // NEARESTMV
    MB_MODE_COUNT,  // NEARMV
    MB_MODE_COUNT,  // GLOBALMV
    MB_MODE_COUNT,  // NEWMV
    NEARESTMV,      // NEAREST_NEARESTMV
    NEARMV,         // NEAR_NEARMV
    NEARESTMV,      // NEAREST_NEWMV
    NEWMV,          // NEW_NEARESTMV
    NEARMV,         // NEAR_NEWMV
    NEWMV,          // NEW_NEARMV
    GLOBALMV,       // GLOBAL_GLOBALMV
    NEWMV,          // NEW_NEWMV
  };
  assert(NELEMENTS(lut) == MB_MODE_COUNT);
  assert(is_inter_compound_mode(mode));
  return lut[mode];
}

static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
  static PREDICTION_MODE lut[] = {
    MB_MODE_COUNT,  // DC_PRED
    MB_MODE_COUNT,  // V_PRED
    MB_MODE_COUNT,  // H_PRED
    MB_MODE_COUNT,  // D45_PRED
    MB_MODE_COUNT,  // D135_PRED
    MB_MODE_COUNT,  // D113_PRED
    MB_MODE_COUNT,  // D157_PRED
    MB_MODE_COUNT,  // D203_PRED
    MB_MODE_COUNT,  // D67_PRED
    MB_MODE_COUNT,  // SMOOTH_PRED
    MB_MODE_COUNT,  // SMOOTH_V_PRED
    MB_MODE_COUNT,  // SMOOTH_H_PRED
    MB_MODE_COUNT,  // PAETH_PRED
    MB_MODE_COUNT,  // NEARESTMV
    MB_MODE_COUNT,  // NEARMV
    MB_MODE_COUNT,  // GLOBALMV
    MB_MODE_COUNT,  // NEWMV
    NEARESTMV,      // NEAREST_NEARESTMV
    NEARMV,         // NEAR_NEARMV
    NEWMV,          // NEAREST_NEWMV
    NEARESTMV,      // NEW_NEARESTMV
    NEWMV,          // NEAR_NEWMV
    NEARMV,         // NEW_NEARMV
    GLOBALMV,       // GLOBAL_GLOBALMV
    NEWMV,          // NEW_NEWMV
  };
  assert(NELEMENTS(lut) == MB_MODE_COUNT);
  assert(is_inter_compound_mode(mode));
  return lut[mode];
}

static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
  return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
          mode == NEW_NEARMV);
}

static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
  return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
          mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
}

static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
  return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
}

/* For keyframes, intra block modes are predicted by the (already decoded)
   modes for the Y blocks to the left and above us; for interframes, there
   is a single probability table. */

typedef int8_t MV_REFERENCE_FRAME;

typedef struct {
  // Number of base colors for Y (0) and UV (1)
  uint8_t palette_size[2];
  // Value of base colors for Y, U, and V
  uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
} PALETTE_MODE_INFO;

typedef struct {
  uint8_t use_filter_intra;
  FILTER_INTRA_MODE filter_intra_mode;
} FILTER_INTRA_MODE_INFO;

static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
  DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
};

#if CONFIG_RD_DEBUG
#define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
#endif

typedef struct RD_STATS {
  int rate;
  int64_t dist;
  // Please be careful of using rdcost, it's not guaranteed to be set all the
  // time.
  // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
  // these functions, make sure rdcost is always up-to-date according to
  // rate/dist.
  int64_t rdcost;
  int64_t sse;
  int skip;  // sse should equal to dist when skip == 1
  int64_t ref_rdcost;
  int zero_rate;
  uint8_t invalid_rate;
#if CONFIG_RD_DEBUG
  int txb_coeff_cost[MAX_MB_PLANE];
  int txb_coeff_cost_map[MAX_MB_PLANE][TXB_COEFF_COST_MAP_SIZE]
                        [TXB_COEFF_COST_MAP_SIZE];
#endif  // CONFIG_RD_DEBUG
} RD_STATS;

// This struct is used to group function args that are commonly
// sent together in functions related to interinter compound modes
typedef struct {
  int wedge_index;
  int wedge_sign;
  DIFFWTD_MASK_TYPE mask_type;
  uint8_t *seg_mask;
  COMPOUND_TYPE type;
} INTERINTER_COMPOUND_DATA;

#define INTER_TX_SIZE_BUF_LEN 16
#define TXK_TYPE_BUF_LEN 64
// This structure now relates to 4x4 block regions.
typedef struct MB_MODE_INFO {
  // Common for both INTER and INTRA blocks
  BLOCK_SIZE sb_type;
  PREDICTION_MODE mode;
  TX_SIZE tx_size;
  uint8_t inter_tx_size[INTER_TX_SIZE_BUF_LEN];
  int8_t skip;
  int8_t skip_mode;
  int8_t segment_id;
  int8_t seg_id_predicted;  // valid only when temporal_update is enabled

  // Only for INTRA blocks
  UV_PREDICTION_MODE uv_mode;

  PALETTE_MODE_INFO palette_mode_info;
  uint8_t use_intrabc;

  // Only for INTER blocks
  InterpFilters interp_filters;
  MV_REFERENCE_FRAME ref_frame[2];

  TX_TYPE txk_type[TXK_TYPE_BUF_LEN];

  FILTER_INTRA_MODE_INFO filter_intra_mode_info;

  // The actual prediction angle is the base angle + (angle_delta * step).
  int8_t angle_delta[PLANE_TYPES];

  // interintra members
  INTERINTRA_MODE interintra_mode;
  // TODO(debargha): Consolidate these flags
  int use_wedge_interintra;
  int interintra_wedge_index;
  int interintra_wedge_sign;
  // interinter members
  INTERINTER_COMPOUND_DATA interinter_comp;
  MOTION_MODE motion_mode;
  int overlappable_neighbors[2];
  int_mv mv[2];
  uint8_t ref_mv_idx;
  PARTITION_TYPE partition;
  /* deringing gain *per-superblock* */
  int8_t cdef_strength;
  int current_qindex;
  int delta_lf_from_base;
  int delta_lf[FRAME_LF_COUNT];
#if CONFIG_RD_DEBUG
  RD_STATS rd_stats;
  int mi_row;
  int mi_col;
#endif
  int num_proj_ref;
  WarpedMotionParams wm_params;

  // Index of the alpha Cb and alpha Cr combination
  int cfl_alpha_idx;
  // Joint sign of alpha Cb and alpha Cr
  int cfl_alpha_signs;

  int compound_idx;
  int comp_group_idx;
} MB_MODE_INFO;

static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
  return mbmi->use_intrabc;
}

static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
  assert(mode < UV_INTRA_MODES);
  static const PREDICTION_MODE uv2y[] = {
    DC_PRED,        // UV_DC_PRED
    V_PRED,         // UV_V_PRED
    H_PRED,         // UV_H_PRED
    D45_PRED,       // UV_D45_PRED
    D135_PRED,      // UV_D135_PRED
    D113_PRED,      // UV_D113_PRED
    D157_PRED,      // UV_D157_PRED
    D203_PRED,      // UV_D203_PRED
    D67_PRED,       // UV_D67_PRED
    SMOOTH_PRED,    // UV_SMOOTH_PRED
    SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED
    SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED
    PAETH_PRED,     // UV_PAETH_PRED
    DC_PRED,        // UV_CFL_PRED
    INTRA_INVALID,  // UV_INTRA_MODES
    INTRA_INVALID,  // UV_MODE_INVALID
  };
  return uv2y[mode];
}

static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
  return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
}

static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
  return mbmi->ref_frame[1] > INTRA_FRAME;
}

static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
  return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
                                    (mbmi->ref_frame[1] >= BWDREF_FRAME)));
}

static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
  static const MV_REFERENCE_FRAME lut[] = {
    LAST_FRAME,     // LAST_LAST2_FRAMES,
    LAST_FRAME,     // LAST_LAST3_FRAMES,
    LAST_FRAME,     // LAST_GOLDEN_FRAMES,
    BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES,
    LAST2_FRAME,    // LAST2_LAST3_FRAMES
    LAST2_FRAME,    // LAST2_GOLDEN_FRAMES,
    LAST3_FRAME,    // LAST3_GOLDEN_FRAMES,
    BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES,
    ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES,
  };
  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
  return lut[ref_idx];
}

static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
  static const MV_REFERENCE_FRAME lut[] = {
    LAST2_FRAME,    // LAST_LAST2_FRAMES,
    LAST3_FRAME,    // LAST_LAST3_FRAMES,
    GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES,
    ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES,
    LAST3_FRAME,    // LAST2_LAST3_FRAMES
    GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES,
    GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES,
    ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES,
    ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES,
  };
  assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
  return lut[ref_idx];
}

PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);

PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);

static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
                                     TransformationType type) {
  const PREDICTION_MODE mode = mbmi->mode;
  const BLOCK_SIZE bsize = mbmi->sb_type;
  const int block_size_allowed =
      AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
  return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
         block_size_allowed;
}

#if CONFIG_MISMATCH_DEBUG
static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
                                   int mi_row, int tx_blk_col, int tx_blk_row,
                                   int subsampling_x, int subsampling_y) {
  *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
             (tx_blk_col << tx_size_wide_log2[0]);
  *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
             (tx_blk_row << tx_size_high_log2[0]);
}
#endif

enum ATTRIBUTE_PACKED mv_precision { MV_PRECISION_Q3, MV_PRECISION_Q4 };

struct buf_2d {
  uint8_t *buf;
  uint8_t *buf0;
  int width;
  int height;
  int stride;
};

typedef struct eob_info {
  uint16_t eob;
  uint16_t max_scan_line;
} eob_info;

typedef struct {
  DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
  eob_info eob_data[MAX_MB_PLANE]
                   [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
  DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
} CB_BUFFER;

typedef struct macroblockd_plane {
  tran_low_t *dqcoeff;
  tran_low_t *dqcoeff_block;
  eob_info *eob_data;
  PLANE_TYPE plane_type;
  int subsampling_x;
  int subsampling_y;
  struct buf_2d dst;
  struct buf_2d pre[2];
  ENTROPY_CONTEXT *above_context;
  ENTROPY_CONTEXT *left_context;

  // The dequantizers below are true dequntizers used only in the
  // dequantization process.  They have the same coefficient
  // shift/scale as TX.
  int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
  uint8_t *color_index_map;

  // block size in pixels
  uint8_t width, height;

  qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
  qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];

  // the 'dequantizers' below are not literal dequantizer values.
  // They're used by encoder RDO to generate ad-hoc lambda values.
  // They use a hardwired Q3 coeff shift and do not necessarily match
  // the TX scale in use.
  const int16_t *dequant_Q3;
} MACROBLOCKD_PLANE;

#define BLOCK_OFFSET(x, i) \
  ((x) + (i) * (1 << (tx_size_wide_log2[0] + tx_size_high_log2[0])))

typedef struct RefBuffer {
  int idx;      // frame buf idx
  int map_idx;  // frame map idx
  YV12_BUFFER_CONFIG *buf;
  struct scale_factors sf;
} RefBuffer;

typedef struct {
  DECLARE_ALIGNED(16, InterpKernel, vfilter);
  DECLARE_ALIGNED(16, InterpKernel, hfilter);
} WienerInfo;

typedef struct {
  int ep;
  int xqd[2];
} SgrprojInfo;

#if CONFIG_DEBUG
#define CFL_SUB8X8_VAL_MI_SIZE (4)
#define CFL_SUB8X8_VAL_MI_SQUARE \
  (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
#endif  // CONFIG_DEBUG
#define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
#define CFL_BUF_LINE (32)
#define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
#define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
#define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
typedef struct cfl_ctx {
  // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
  // shifts)
  uint16_t recon_buf_q3[CFL_BUF_SQUARE];
  // Q3 AC contributions (reconstructed luma pixels - tx block avg)
  int16_t ac_buf_q3[CFL_BUF_SQUARE];

  // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
  // for every scaling parameter
  int dc_pred_is_cached[CFL_PRED_PLANES];
  // The DC_PRED cache is disable when decoding
  int use_dc_pred_cache;
  // Only cache the first row of the DC_PRED
  int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];

  // Height and width currently used in the CfL prediction buffer.
  int buf_height, buf_width;

  int are_parameters_computed;

  // Chroma subsampling
  int subsampling_x, subsampling_y;

  int mi_row, mi_col;

  // Whether the reconstructed luma pixels need to be stored
  int store_y;

#if CONFIG_DEBUG
  int rate;
#endif  // CONFIG_DEBUG

  int is_chroma_reference;
} CFL_CTX;

typedef struct jnt_comp_params {
  int use_jnt_comp_avg;
  int fwd_offset;
  int bck_offset;
} JNT_COMP_PARAMS;

// Most/all of the pointers are mere pointers to actual arrays are allocated
// elsewhere. This is mostly for coding convenience.
typedef struct macroblockd {
  struct macroblockd_plane plane[MAX_MB_PLANE];

  TileInfo tile;

  int mi_stride;

  MB_MODE_INFO **mi;
  MB_MODE_INFO *left_mbmi;
  MB_MODE_INFO *above_mbmi;
  MB_MODE_INFO *chroma_left_mbmi;
  MB_MODE_INFO *chroma_above_mbmi;

  int up_available;
  int left_available;
  int chroma_up_available;
  int chroma_left_available;

  /* Distance of MB away from frame edges in subpixels (1/8th pixel)  */
  int mb_to_left_edge;
  int mb_to_right_edge;
  int mb_to_top_edge;
  int mb_to_bottom_edge;

  /* pointers to reference frames */
  const RefBuffer *block_refs[2];

  /* pointer to current frame */
  const YV12_BUFFER_CONFIG *cur_buf;

  ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
  ENTROPY_CONTEXT left_context[MAX_MB_PLANE][MAX_MIB_SIZE];

  PARTITION_CONTEXT *above_seg_context;
  PARTITION_CONTEXT left_seg_context[MAX_MIB_SIZE];

  TXFM_CONTEXT *above_txfm_context;
  TXFM_CONTEXT *left_txfm_context;
  TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];

  WienerInfo wiener_info[MAX_MB_PLANE];
  SgrprojInfo sgrproj_info[MAX_MB_PLANE];

  // block dimension in the unit of mode_info.
  uint8_t n4_w, n4_h;

  uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
  CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
  uint8_t is_sec_rect;

  // Counts of each reference frame in the above and left neighboring blocks.
  // NOTE: Take into account both single and comp references.
  uint8_t neighbors_ref_counts[REF_FRAMES];

  FRAME_CONTEXT *tile_ctx;
  /* Bit depth: 8, 10, 12 */
  int bd;

  int qindex[MAX_SEGMENTS];
  int lossless[MAX_SEGMENTS];
  int corrupted;
  int cur_frame_force_integer_mv;
  // same with that in AV1_COMMON
  struct aom_internal_error_info *error_info;
  const WarpedMotionParams *global_motion;
  int delta_qindex;
  int current_qindex;
  // Since actual frame level loop filtering level value is not available
  // at the beginning of the tile (only available during actual filtering)
  // at encoder side.we record the delta_lf (against the frame level loop
  // filtering level) and code the delta between previous superblock's delta
  // lf and current delta lf. It is equivalent to the delta between previous
  // superblock's actual lf and current lf.
  int delta_lf_from_base;
  // For this experiment, we have four frame filter levels for different plane
  // and direction. So, to support the per superblock update, we need to add
  // a few more params as below.
  // 0: delta loop filter level for y plane vertical
  // 1: delta loop filter level for y plane horizontal
  // 2: delta loop filter level for u plane
  // 3: delta loop filter level for v plane
  // To make it consistent with the reference to each filter level in segment,
  // we need to -1, since
  // SEG_LVL_ALT_LF_Y_V = 1;
  // SEG_LVL_ALT_LF_Y_H = 2;
  // SEG_LVL_ALT_LF_U   = 3;
  // SEG_LVL_ALT_LF_V   = 4;
  int delta_lf[FRAME_LF_COUNT];
  int cdef_preset[4];

  DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]);
  uint8_t *mc_buf[2];
  CFL_CTX cfl;

  JNT_COMP_PARAMS jcp_param;

  uint16_t cb_offset[MAX_MB_PLANE];
  uint16_t txb_offset[MAX_MB_PLANE];
  uint16_t color_index_map_offset[2];

  CONV_BUF_TYPE *tmp_conv_dst;
  uint8_t *tmp_obmc_bufs[2];
} MACROBLOCKD;

static INLINE int get_bitdepth_data_path_index(const MACROBLOCKD *xd) {
  return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
}

static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
  return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
             ? CONVERT_TO_BYTEPTR(buf16)
             : buf16;
}

static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
  switch (bsize) {
    case BLOCK_4X4: return 0;
    case BLOCK_8X8: return 1;
    case BLOCK_16X16: return 2;
    case BLOCK_32X32: return 3;
    case BLOCK_64X64: return 4;
    case BLOCK_128X128: return 5;
    default: return SQR_BLOCK_SIZES;
  }
}

// For a square block size 'bsize', returns the size of the sub-blocks used by
// the given partition type. If the partition produces sub-blocks of different
// sizes, then the function returns the largest sub-block size.
// Implements the Partition_Subsize lookup table in the spec (Section 9.3.
// Conversion tables).
// Note: the input block size should be square.
// Otherwise it's considered invalid.
static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
                                               PARTITION_TYPE partition) {
  if (partition == PARTITION_INVALID) {
    return BLOCK_INVALID;
  } else {
    const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
    return sqr_bsize_idx >= SQR_BLOCK_SIZES
               ? BLOCK_INVALID
               : subsize_lookup[partition][sqr_bsize_idx];
  }
}

static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
                                     PLANE_TYPE plane_type) {
  static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
    DCT_DCT,    // DC
    ADST_DCT,   // V
    DCT_ADST,   // H
    DCT_DCT,    // D45
    ADST_ADST,  // D135
    ADST_DCT,   // D117
    DCT_ADST,   // D153
    DCT_ADST,   // D207
    ADST_DCT,   // D63
    ADST_ADST,  // SMOOTH
    ADST_DCT,   // SMOOTH_V
    DCT_ADST,   // SMOOTH_H
    ADST_ADST,  // PAETH
  };
  const PREDICTION_MODE mode =
      (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
  assert(mode < INTRA_MODES);
  return _intra_mode_to_tx_type[mode];
}

static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }

static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
  return bsize > BLOCK_4X4;
}

// Number of transform types in each set type
static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
  1, 2, 5, 7, 12, 16,
};

static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
  { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
  { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
};

static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
  0x0001,  // 0000 0000 0000 0001
  0x0201,  // 0000 0010 0000 0001
  0x020F,  // 0000 0010 0000 1111
  0x0E0F,  // 0000 1110 0000 1111
  0x0FFF,  // 0000 1111 1111 1111
  0xFFFF,  // 1111 1111 1111 1111
};

static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
                                                int use_reduced_set) {
  const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
  if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
  if (tx_size_sqr_up == TX_32X32)
    return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
  if (use_reduced_set)
    return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
  const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
  if (is_inter) {
    return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT9_IDTX_1DDCT
                                    : EXT_TX_SET_ALL16);
  } else {
    return (tx_size_sqr == TX_16X16 ? EXT_TX_SET_DTT4_IDTX
                                    : EXT_TX_SET_DTT4_IDTX_1DDCT);
  }
}

// Maps tx set types to the indices.
static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
  { // Intra
    0, -1, 2, 1, -1, -1 },
  { // Inter
    0, 3, -1, -1, 2, 1 },
};

static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
                                 int use_reduced_set) {
  const TxSetType set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
  return ext_tx_set_index[is_inter][set_type];
}

static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
                                   int use_reduced_set) {
  const int set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
  return av1_num_ext_tx_set[set_type];
}

#define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
#define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))

static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
  const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
  const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
  if (bsize == BLOCK_4X4)
    return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
  if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
    return max_rect_tx_size;
  else
    return largest_tx_size;
}

extern const int16_t dr_intra_derivative[90];
static const uint8_t mode_to_angle_map[] = {
  0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
};

// Converts block_index for given transform size to index of the block in raster
// order.
static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
                                                  int block_idx) {
  // For transform size 4x8, the possible block_idx values are 0 & 2, because
  // block_idx values are incremented in steps of size 'tx_width_unit x
  // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
  // block number 1 in raster order, inside an 8x8 MI block.
  // For any other transform size, the two indices are equivalent.
  return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
}

// Inverse of above function.
// Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
                                                  int raster_order) {
  assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
  // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
  return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
}

static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
                                          const MACROBLOCKD *xd,
                                          TX_SIZE tx_size) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];

  if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
      xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32)
    return DCT_DCT;

  return intra_mode_to_tx_type(mbmi, plane_type);
}

// Implements the get_plane_residual_size() function in the spec (Section
// 5.11.38. Get plane residual size function).
static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
                                              int subsampling_x,
                                              int subsampling_y) {
  if (bsize == BLOCK_INVALID) return BLOCK_INVALID;
  return ss_size_lookup[bsize][subsampling_x][subsampling_y];
}

static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
                                         int blk_col) {
  TX_SIZE txs = max_txsize_rect_lookup[bsize];
  for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
    txs = sub_tx_size_map[txs];
  const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
  const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
  const int bw_log2 = mi_size_wide_log2[bsize];
  const int stride_log2 = bw_log2 - tx_w_log2;
  const int index =
      ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2);
  assert(index < INTER_TX_SIZE_BUF_LEN);
  return index;
}

static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
                                         int blk_col) {
  TX_SIZE txs = max_txsize_rect_lookup[bsize];
  for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
    txs = sub_tx_size_map[txs];
  const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
  const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
  const int bw_uint_log2 = mi_size_wide_log2[bsize];
  const int stride_log2 = bw_uint_log2 - tx_w_log2;
  const int index =
      ((blk_row >> tx_h_log2) << stride_log2) + (blk_col >> tx_w_log2);
  assert(index < TXK_TYPE_BUF_LEN);
  return index;
}

static INLINE void update_txk_array(TX_TYPE *txk_type, BLOCK_SIZE bsize,
                                    int blk_row, int blk_col, TX_SIZE tx_size,
                                    TX_TYPE tx_type) {
  const int txk_type_idx = av1_get_txk_type_index(bsize, blk_row, blk_col);
  txk_type[txk_type_idx] = tx_type;

  const int txw = tx_size_wide_unit[tx_size];
  const int txh = tx_size_high_unit[tx_size];
  // The 16x16 unit is due to the constraint from tx_64x64 which sets the
  // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
  // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
  // the intricacy, cover all the 16x16 units inside a 64 level transform.
  if (txw == tx_size_wide_unit[TX_64X64] ||
      txh == tx_size_high_unit[TX_64X64]) {
    const int tx_unit = tx_size_wide_unit[TX_16X16];
    for (int idy = 0; idy < txh; idy += tx_unit) {
      for (int idx = 0; idx < txw; idx += tx_unit) {
        const int this_index =
            av1_get_txk_type_index(bsize, blk_row + idy, blk_col + idx);
        txk_type[this_index] = tx_type;
      }
    }
  }
}

static INLINE TX_TYPE av1_get_tx_type(PLANE_TYPE plane_type,
                                      const MACROBLOCKD *xd, int blk_row,
                                      int blk_col, TX_SIZE tx_size,
                                      int reduced_tx_set) {
  const MB_MODE_INFO *const mbmi = xd->mi[0];
  const struct macroblockd_plane *const pd = &xd->plane[plane_type];
  const TxSetType tx_set_type =
      av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);

  TX_TYPE tx_type;
  if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
    tx_type = DCT_DCT;
  } else {
    if (plane_type == PLANE_TYPE_Y) {
      const int txk_type_idx =
          av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col);
      tx_type = mbmi->txk_type[txk_type_idx];
    } else if (is_inter_block(mbmi)) {
      // scale back to y plane's coordinate
      blk_row <<= pd->subsampling_y;
      blk_col <<= pd->subsampling_x;
      const int txk_type_idx =
          av1_get_txk_type_index(mbmi->sb_type, blk_row, blk_col);
      tx_type = mbmi->txk_type[txk_type_idx];
    } else {
      // In intra mode, uv planes don't share the same prediction mode as y
      // plane, so the tx_type should not be shared
      tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
    }
  }
  assert(tx_type < TX_TYPES);
  if (!av1_ext_tx_used[tx_set_type][tx_type]) return DCT_DCT;
  return tx_type;
}

void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
                            const int num_planes);

static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
  TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
  int depth = 0;
  while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
    depth++;
    tx_size = sub_tx_size_map[tx_size];
  }
  return depth;
}

static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
  TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
  assert(tx_size != TX_4X4);
  int depth = 0;
  while (tx_size != TX_4X4) {
    depth++;
    tx_size = sub_tx_size_map[tx_size];
    assert(depth < 10);
  }
  assert(depth <= MAX_TX_CATS);
  return depth - 1;
}

static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
  TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
  TX_SIZE tx_size = max_tx_size;
  for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
  return tx_size;
}

static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
  switch (tx_size) {
    case TX_64X64:
    case TX_64X32:
    case TX_32X64: return TX_32X32;
    case TX_64X16: return TX_32X16;
    case TX_16X64: return TX_16X32;
    default: return tx_size;
  }
}

static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
                                            int subsampling_y) {
  const BLOCK_SIZE plane_bsize =
      get_plane_block_size(bsize, subsampling_x, subsampling_y);
  assert(plane_bsize < BLOCK_SIZES_ALL);
  const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
  return av1_get_adjusted_tx_size(uv_tx);
}

static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
  const MB_MODE_INFO *mbmi = xd->mi[0];
  if (xd->lossless[mbmi->segment_id]) return TX_4X4;
  if (plane == 0) return mbmi->tx_size;
  const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
  return av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x,
                               pd->subsampling_y);
}

void av1_reset_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col,
                            BLOCK_SIZE bsize, const int num_planes);

void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);

void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);

typedef void (*foreach_transformed_block_visitor)(int plane, int block,
                                                  int blk_row, int blk_col,
                                                  BLOCK_SIZE plane_bsize,
                                                  TX_SIZE tx_size, void *arg);

void av1_set_contexts(const MACROBLOCKD *xd, struct macroblockd_plane *pd,
                      int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
                      int has_eob, int aoff, int loff);

#define MAX_INTERINTRA_SB_SQUARE 32 * 32
static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
  return (mbmi->ref_frame[0] > INTRA_FRAME &&
          mbmi->ref_frame[1] == INTRA_FRAME);
}

static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
  return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
}

static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
  return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
}

static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
  return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
}

static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
  return is_interintra_allowed_bsize(mbmi->sb_type) &&
         is_interintra_allowed_mode(mbmi->mode) &&
         is_interintra_allowed_ref(mbmi->ref_frame);
}

static INLINE int is_interintra_allowed_bsize_group(int group) {
  int i;
  for (i = 0; i < BLOCK_SIZES_ALL; i++) {
    if (size_group_lookup[i] == group &&
        is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
      return 1;
    }
  }
  return 0;
}

static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
  return mbmi->ref_frame[0] > INTRA_FRAME &&
         mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
}

static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
                                       int plane) {
  if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
  const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
  if (plane == 0) return max_txsize;            // luma
  return av1_get_adjusted_tx_size(max_txsize);  // chroma
}

static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
  return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
}

static INLINE int is_motion_variation_allowed_compound(
    const MB_MODE_INFO *mbmi) {
  if (!has_second_ref(mbmi))
    return 1;
  else
    return 0;
}

// input: log2 of length, 0(4), 1(8), ...
static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };

static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
  return !(mbmi->overlappable_neighbors[0] == 0 &&
           mbmi->overlappable_neighbors[1] == 0);
}

static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
                    const MB_MODE_INFO *mbmi, int allow_warped_motion) {
  if (xd->cur_frame_force_integer_mv == 0) {
    const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
    if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
  }
  if (is_motion_variation_allowed_bsize(mbmi->sb_type) &&
      is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
      is_motion_variation_allowed_compound(mbmi)) {
    if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
    assert(!has_second_ref(mbmi));
    if (mbmi->num_proj_ref >= 1 &&
        (allow_warped_motion && !av1_is_scaled(&(xd->block_refs[0]->sf)))) {
      if (xd->cur_frame_force_integer_mv) {
        return OBMC_CAUSAL;
      }
      return WARPED_CAUSAL;
    }
    return OBMC_CAUSAL;
  } else {
    return SIMPLE_TRANSLATION;
  }
}

static INLINE void assert_motion_mode_valid(MOTION_MODE mode,
                                            const WarpedMotionParams *gm_params,
                                            const MACROBLOCKD *xd,
                                            const MB_MODE_INFO *mbmi,
                                            int allow_warped_motion) {
  const MOTION_MODE last_motion_mode_allowed =
      motion_mode_allowed(gm_params, xd, mbmi, allow_warped_motion);

  // Check that the input mode is not illegal
  if (last_motion_mode_allowed < mode)
    assert(0 && "Illegal motion mode selected");
}

static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
  return (is_inter_block(mbmi));
}

static INLINE int av1_allow_palette(int allow_screen_content_tools,
                                    BLOCK_SIZE sb_type) {
  return allow_screen_content_tools && block_size_wide[sb_type] <= 64 &&
         block_size_high[sb_type] <= 64 && sb_type >= BLOCK_8X8;
}

// Returns sub-sampled dimensions of the given block.
// The output values for 'rows_within_bounds' and 'cols_within_bounds' will
// differ from 'height' and 'width' when part of the block is outside the
// right
// and/or bottom image boundary.
static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
                                            const MACROBLOCKD *xd, int *width,
                                            int *height,
                                            int *rows_within_bounds,
                                            int *cols_within_bounds) {
  const int block_height = block_size_high[bsize];
  const int block_width = block_size_wide[bsize];
  const int block_rows = (xd->mb_to_bottom_edge >= 0)
                             ? block_height
                             : (xd->mb_to_bottom_edge >> 3) + block_height;
  const int block_cols = (xd->mb_to_right_edge >= 0)
                             ? block_width
                             : (xd->mb_to_right_edge >> 3) + block_width;
  const struct macroblockd_plane *const pd = &xd->plane[plane];
  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
  assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
  assert(block_width >= block_cols);
  assert(block_height >= block_rows);
  const int plane_block_width = block_width >> pd->subsampling_x;
  const int plane_block_height = block_height >> pd->subsampling_y;
  // Special handling for chroma sub8x8.
  const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
  const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
  if (width) *width = plane_block_width + 2 * is_chroma_sub8_x;
  if (height) *height = plane_block_height + 2 * is_chroma_sub8_y;
  if (rows_within_bounds) {
    *rows_within_bounds =
        (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
  }
  if (cols_within_bounds) {
    *cols_within_bounds =
        (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
  }
}

/* clang-format off */
typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
                              [CDF_SIZE(PALETTE_COLORS)];
typedef const int (*ColorCost)[PALETTE_SIZES][PALETTE_COLOR_INDEX_CONTEXTS]
                              [PALETTE_COLORS];
/* clang-format on */

typedef struct {
  int rows;
  int cols;
  int n_colors;
  int plane_width;
  int plane_height;
  uint8_t *color_map;
  MapCdf map_cdf;
  ColorCost color_cost;
} Av1ColorMapParam;

static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
                                            const MB_MODE_INFO *mbmi) {
  int ref;

  // First check if all modes are GLOBALMV
  if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;

  if (AOMMIN(mi_size_wide[mbmi->sb_type], mi_size_high[mbmi->sb_type]) < 2)
    return 0;

  // Now check if all global motion is non translational
  for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
    if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
  }
  return 1;
}

static INLINE PLANE_TYPE get_plane_type(int plane) {
  return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
}

static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
  if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
    return 1024;
  }
  if (tx_size == TX_16X64 || tx_size == TX_64X16) {
    return 512;
  }
  return tx_size_2d[tx_size];
}

#ifdef __cplusplus
}  // extern "C"
#endif

#endif  // AOM_AV1_COMMON_BLOCKD_H_