summaryrefslogtreecommitdiff
path: root/media/libaom/src/aom_dsp/x86/fft_sse2.c
blob: 6f20a3cc019ece17961048ea6b8e53a7bf994704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
 * Copyright (c) 2018, Alliance for Open Media. All rights reserved
 *
 * This source code is subject to the terms of the BSD 2 Clause License and
 * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
 * was not distributed with this source code in the LICENSE file, you can
 * obtain it at www.aomedia.org/license/software. If the Alliance for Open
 * Media Patent License 1.0 was not distributed with this source code in the
s * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
 */

#include <xmmintrin.h>

#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/fft_common.h"

static INLINE void transpose4x4(const float *A, float *B, const int lda,
                                const int ldb) {
  __m128 row1 = _mm_load_ps(&A[0 * lda]);
  __m128 row2 = _mm_load_ps(&A[1 * lda]);
  __m128 row3 = _mm_load_ps(&A[2 * lda]);
  __m128 row4 = _mm_load_ps(&A[3 * lda]);
  _MM_TRANSPOSE4_PS(row1, row2, row3, row4);
  _mm_store_ps(&B[0 * ldb], row1);
  _mm_store_ps(&B[1 * ldb], row2);
  _mm_store_ps(&B[2 * ldb], row3);
  _mm_store_ps(&B[3 * ldb], row4);
}

void aom_transpose_float_sse2(const float *A, float *B, int n) {
  for (int y = 0; y < n; y += 4) {
    for (int x = 0; x < n; x += 4) {
      transpose4x4(A + y * n + x, B + x * n + y, n, n);
    }
  }
}

void aom_fft_unpack_2d_output_sse2(const float *packed, float *output, int n) {
  const int n2 = n / 2;
  output[0] = packed[0];
  output[1] = 0;
  output[2 * (n2 * n)] = packed[n2 * n];
  output[2 * (n2 * n) + 1] = 0;

  output[2 * n2] = packed[n2];
  output[2 * n2 + 1] = 0;
  output[2 * (n2 * n + n2)] = packed[n2 * n + n2];
  output[2 * (n2 * n + n2) + 1] = 0;

  for (int c = 1; c < n2; ++c) {
    output[2 * (0 * n + c)] = packed[c];
    output[2 * (0 * n + c) + 1] = packed[c + n2];
    output[2 * (n2 * n + c) + 0] = packed[n2 * n + c];
    output[2 * (n2 * n + c) + 1] = packed[n2 * n + c + n2];
  }
  for (int r = 1; r < n2; ++r) {
    output[2 * (r * n + 0)] = packed[r * n];
    output[2 * (r * n + 0) + 1] = packed[(r + n2) * n];
    output[2 * (r * n + n2) + 0] = packed[r * n + n2];
    output[2 * (r * n + n2) + 1] = packed[(r + n2) * n + n2];

    for (int c = 1; c < AOMMIN(n2, 4); ++c) {
      output[2 * (r * n + c)] =
          packed[r * n + c] - packed[(r + n2) * n + c + n2];
      output[2 * (r * n + c) + 1] =
          packed[(r + n2) * n + c] + packed[r * n + c + n2];
    }

    for (int c = 4; c < n2; c += 4) {
      __m128 real1 = _mm_load_ps(packed + r * n + c);
      __m128 real2 = _mm_load_ps(packed + (r + n2) * n + c + n2);
      __m128 imag1 = _mm_load_ps(packed + (r + n2) * n + c);
      __m128 imag2 = _mm_load_ps(packed + r * n + c + n2);
      real1 = _mm_sub_ps(real1, real2);
      imag1 = _mm_add_ps(imag1, imag2);
      _mm_store_ps(output + 2 * (r * n + c), _mm_unpacklo_ps(real1, imag1));
      _mm_store_ps(output + 2 * (r * n + c + 2), _mm_unpackhi_ps(real1, imag1));
    }

    int r2 = r + n2;
    int r3 = n - r2;
    output[2 * (r2 * n + 0)] = packed[r3 * n];
    output[2 * (r2 * n + 0) + 1] = -packed[(r3 + n2) * n];
    output[2 * (r2 * n + n2)] = packed[r3 * n + n2];
    output[2 * (r2 * n + n2) + 1] = -packed[(r3 + n2) * n + n2];
    for (int c = 1; c < AOMMIN(4, n2); ++c) {
      output[2 * (r2 * n + c)] =
          packed[r3 * n + c] + packed[(r3 + n2) * n + c + n2];
      output[2 * (r2 * n + c) + 1] =
          -packed[(r3 + n2) * n + c] + packed[r3 * n + c + n2];
    }
    for (int c = 4; c < n2; c += 4) {
      __m128 real1 = _mm_load_ps(packed + r3 * n + c);
      __m128 real2 = _mm_load_ps(packed + (r3 + n2) * n + c + n2);
      __m128 imag1 = _mm_load_ps(packed + (r3 + n2) * n + c);
      __m128 imag2 = _mm_load_ps(packed + r3 * n + c + n2);
      real1 = _mm_add_ps(real1, real2);
      imag1 = _mm_sub_ps(imag2, imag1);
      _mm_store_ps(output + 2 * (r2 * n + c), _mm_unpacklo_ps(real1, imag1));
      _mm_store_ps(output + 2 * (r2 * n + c + 2),
                   _mm_unpackhi_ps(real1, imag1));
    }
  }
}

// Generate definitions for 1d transforms using float and __mm128
GEN_FFT_4(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
          _mm_set1_ps, _mm_add_ps, _mm_sub_ps);
GEN_FFT_8(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
          _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);
GEN_FFT_16(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
           _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);
GEN_FFT_32(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
           _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);

void aom_fft4x4_float_sse2(const float *input, float *temp, float *output) {
  aom_fft_2d_gen(input, temp, output, 4, aom_fft1d_4_sse2,
                 aom_transpose_float_sse2, aom_fft_unpack_2d_output_sse2, 4);
}

void aom_fft8x8_float_sse2(const float *input, float *temp, float *output) {
  aom_fft_2d_gen(input, temp, output, 8, aom_fft1d_8_sse2,
                 aom_transpose_float_sse2, aom_fft_unpack_2d_output_sse2, 4);
}

void aom_fft16x16_float_sse2(const float *input, float *temp, float *output) {
  aom_fft_2d_gen(input, temp, output, 16, aom_fft1d_16_sse2,
                 aom_transpose_float_sse2, aom_fft_unpack_2d_output_sse2, 4);
}

void aom_fft32x32_float_sse2(const float *input, float *temp, float *output) {
  aom_fft_2d_gen(input, temp, output, 32, aom_fft1d_32_sse2,
                 aom_transpose_float_sse2, aom_fft_unpack_2d_output_sse2, 4);
}

// Generate definitions for 1d inverse transforms using float and mm128
GEN_IFFT_4(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
           _mm_set1_ps, _mm_add_ps, _mm_sub_ps);
GEN_IFFT_8(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
           _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);
GEN_IFFT_16(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
            _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);
GEN_IFFT_32(static INLINE void, sse2, float, __m128, _mm_load_ps, _mm_store_ps,
            _mm_set1_ps, _mm_add_ps, _mm_sub_ps, _mm_mul_ps);

void aom_ifft4x4_float_sse2(const float *input, float *temp, float *output) {
  aom_ifft_2d_gen(input, temp, output, 4, aom_fft1d_4_float, aom_fft1d_4_sse2,
                  aom_ifft1d_4_sse2, aom_transpose_float_sse2, 4);
}

void aom_ifft8x8_float_sse2(const float *input, float *temp, float *output) {
  aom_ifft_2d_gen(input, temp, output, 8, aom_fft1d_8_float, aom_fft1d_8_sse2,
                  aom_ifft1d_8_sse2, aom_transpose_float_sse2, 4);
}

void aom_ifft16x16_float_sse2(const float *input, float *temp, float *output) {
  aom_ifft_2d_gen(input, temp, output, 16, aom_fft1d_16_float,
                  aom_fft1d_16_sse2, aom_ifft1d_16_sse2,
                  aom_transpose_float_sse2, 4);
}

void aom_ifft32x32_float_sse2(const float *input, float *temp, float *output) {
  aom_ifft_2d_gen(input, temp, output, 32, aom_fft1d_32_float,
                  aom_fft1d_32_sse2, aom_ifft1d_32_sse2,
                  aom_transpose_float_sse2, 4);
}