1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
|
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/convert_test.cc"
#include "hwy/foreach_target.h"
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
// Cast and ensure bytes are the same. Called directly from TestAllBitCast or
// via TestBitCastFrom.
template <typename ToT>
struct TestBitCast {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const Repartition<ToT, D> dto;
const size_t N = Lanes(d);
const size_t Nto = Lanes(dto);
if (N == 0 || Nto == 0) return;
HWY_ASSERT_EQ(N * sizeof(T), Nto * sizeof(ToT));
const auto vf = Iota(d, 1);
const auto vt = BitCast(dto, vf);
// Must return the same bits
auto from_lanes = AllocateAligned<T>(Lanes(d));
auto to_lanes = AllocateAligned<ToT>(Lanes(dto));
Store(vf, d, from_lanes.get());
Store(vt, dto, to_lanes.get());
HWY_ASSERT(
BytesEqual(from_lanes.get(), to_lanes.get(), Lanes(d) * sizeof(T)));
}
};
// From D to all types.
struct TestBitCastFrom {
template <typename T, class D>
HWY_NOINLINE void operator()(T t, D d) {
TestBitCast<uint8_t>()(t, d);
TestBitCast<uint16_t>()(t, d);
TestBitCast<uint32_t>()(t, d);
#if HWY_HAVE_INTEGER64
TestBitCast<uint64_t>()(t, d);
#endif
TestBitCast<int8_t>()(t, d);
TestBitCast<int16_t>()(t, d);
TestBitCast<int32_t>()(t, d);
#if HWY_HAVE_INTEGER64
TestBitCast<int64_t>()(t, d);
#endif
TestBitCast<float>()(t, d);
#if HWY_HAVE_FLOAT64
TestBitCast<double>()(t, d);
#endif
}
};
HWY_NOINLINE void TestAllBitCast() {
// For HWY_SCALAR and partial vectors, we can only cast to same-sized types:
// the former can't partition its single lane, and the latter can be smaller
// than a destination type.
const ForPartialVectors<TestBitCast<uint8_t>> to_u8;
to_u8(uint8_t());
to_u8(int8_t());
const ForPartialVectors<TestBitCast<int8_t>> to_i8;
to_i8(uint8_t());
to_i8(int8_t());
const ForPartialVectors<TestBitCast<uint16_t>> to_u16;
to_u16(uint16_t());
to_u16(int16_t());
const ForPartialVectors<TestBitCast<int16_t>> to_i16;
to_i16(uint16_t());
to_i16(int16_t());
const ForPartialVectors<TestBitCast<uint32_t>> to_u32;
to_u32(uint32_t());
to_u32(int32_t());
to_u32(float());
const ForPartialVectors<TestBitCast<int32_t>> to_i32;
to_i32(uint32_t());
to_i32(int32_t());
to_i32(float());
#if HWY_HAVE_INTEGER64
const ForPartialVectors<TestBitCast<uint64_t>> to_u64;
to_u64(uint64_t());
to_u64(int64_t());
#if HWY_HAVE_FLOAT64
to_u64(double());
#endif
const ForPartialVectors<TestBitCast<int64_t>> to_i64;
to_i64(uint64_t());
to_i64(int64_t());
#if HWY_HAVE_FLOAT64
to_i64(double());
#endif
#endif // HWY_HAVE_INTEGER64
const ForPartialVectors<TestBitCast<float>> to_float;
to_float(uint32_t());
to_float(int32_t());
to_float(float());
#if HWY_HAVE_FLOAT64
const ForPartialVectors<TestBitCast<double>> to_double;
to_double(double());
#if HWY_HAVE_INTEGER64
to_double(uint64_t());
to_double(int64_t());
#endif // HWY_HAVE_INTEGER64
#endif // HWY_HAVE_FLOAT64
#if HWY_TARGET != HWY_SCALAR
// For non-scalar vectors, we can cast all types to all.
ForAllTypes(ForGEVectors<64, TestBitCastFrom>());
#endif
}
template <typename ToT>
struct TestPromoteTo {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D from_d) {
static_assert(sizeof(T) < sizeof(ToT), "Input type must be narrower");
const Rebind<ToT, D> to_d;
const size_t N = Lanes(from_d);
auto from = AllocateAligned<T>(N);
auto expected = AllocateAligned<ToT>(N);
RandomState rng;
for (size_t rep = 0; rep < AdjustedReps(200); ++rep) {
for (size_t i = 0; i < N; ++i) {
const uint64_t bits = rng();
memcpy(&from[i], &bits, sizeof(T));
expected[i] = from[i];
}
HWY_ASSERT_VEC_EQ(to_d, expected.get(),
PromoteTo(to_d, Load(from_d, from.get())));
}
}
};
HWY_NOINLINE void TestAllPromoteTo() {
const ForPromoteVectors<TestPromoteTo<uint16_t>, 1> to_u16div2;
to_u16div2(uint8_t());
const ForPromoteVectors<TestPromoteTo<uint32_t>, 2> to_u32div4;
to_u32div4(uint8_t());
const ForPromoteVectors<TestPromoteTo<uint32_t>, 1> to_u32div2;
to_u32div2(uint16_t());
const ForPromoteVectors<TestPromoteTo<int16_t>, 1> to_i16div2;
to_i16div2(uint8_t());
to_i16div2(int8_t());
const ForPromoteVectors<TestPromoteTo<int32_t>, 1> to_i32div2;
to_i32div2(uint16_t());
to_i32div2(int16_t());
const ForPromoteVectors<TestPromoteTo<int32_t>, 2> to_i32div4;
to_i32div4(uint8_t());
to_i32div4(int8_t());
// Must test f16/bf16 separately because we can only load/store/convert them.
#if HWY_HAVE_INTEGER64
const ForPromoteVectors<TestPromoteTo<uint64_t>, 1> to_u64div2;
to_u64div2(uint32_t());
const ForPromoteVectors<TestPromoteTo<int64_t>, 1> to_i64div2;
to_i64div2(int32_t());
#endif
#if HWY_HAVE_FLOAT64
const ForPromoteVectors<TestPromoteTo<double>, 1> to_f64div2;
to_f64div2(int32_t());
to_f64div2(float());
#endif
}
template <typename T, HWY_IF_FLOAT(T)>
bool IsFinite(T t) {
return std::isfinite(t);
}
// Wrapper avoids calling std::isfinite for integer types (ambiguous).
template <typename T, HWY_IF_NOT_FLOAT(T)>
bool IsFinite(T /*unused*/) {
return true;
}
template <class D>
AlignedFreeUniquePtr<float[]> F16TestCases(D d, size_t& padded) {
const float test_cases[] = {
// +/- 1
1.0f, -1.0f,
// +/- 0
0.0f, -0.0f,
// near 0
0.25f, -0.25f,
// +/- integer
4.0f, -32.0f,
// positive near limit
65472.0f, 65504.0f,
// negative near limit
-65472.0f, -65504.0f,
// positive +/- delta
2.00390625f, 3.99609375f,
// negative +/- delta
-2.00390625f, -3.99609375f,
// No infinity/NaN - implementation-defined due to ARM.
};
const size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
const size_t N = Lanes(d);
padded = RoundUpTo(kNumTestCases, N); // allow loading whole vectors
auto in = AllocateAligned<float>(padded);
auto expected = AllocateAligned<float>(padded);
std::copy(test_cases, test_cases + kNumTestCases, in.get());
std::fill(in.get() + kNumTestCases, in.get() + padded, 0.0f);
return in;
}
struct TestF16 {
template <typename TF32, class DF32>
HWY_NOINLINE void operator()(TF32 /*t*/, DF32 d32) {
#if HWY_HAVE_FLOAT16
size_t padded;
auto in = F16TestCases(d32, padded);
using TF16 = float16_t;
const Rebind<TF16, DF32> d16;
const size_t N = Lanes(d32); // same count for f16
auto temp16 = AllocateAligned<TF16>(N);
for (size_t i = 0; i < padded; i += N) {
const auto loaded = Load(d32, &in[i]);
Store(DemoteTo(d16, loaded), d16, temp16.get());
HWY_ASSERT_VEC_EQ(d32, loaded, PromoteTo(d32, Load(d16, temp16.get())));
}
#else
(void)d32;
#endif
}
};
HWY_NOINLINE void TestAllF16() { ForDemoteVectors<TestF16>()(float()); }
template <class D>
AlignedFreeUniquePtr<float[]> BF16TestCases(D d, size_t& padded) {
const float test_cases[] = {
// +/- 1
1.0f, -1.0f,
// +/- 0
0.0f, -0.0f,
// near 0
0.25f, -0.25f,
// +/- integer
4.0f, -32.0f,
// positive near limit
3.389531389251535E38f, 1.99384199368e+38f,
// negative near limit
-3.389531389251535E38f, -1.99384199368e+38f,
// positive +/- delta
2.015625f, 3.984375f,
// negative +/- delta
-2.015625f, -3.984375f,
};
const size_t kNumTestCases = sizeof(test_cases) / sizeof(test_cases[0]);
const size_t N = Lanes(d);
padded = RoundUpTo(kNumTestCases, N); // allow loading whole vectors
auto in = AllocateAligned<float>(padded);
auto expected = AllocateAligned<float>(padded);
std::copy(test_cases, test_cases + kNumTestCases, in.get());
std::fill(in.get() + kNumTestCases, in.get() + padded, 0.0f);
return in;
}
struct TestBF16 {
template <typename TF32, class DF32>
HWY_NOINLINE void operator()(TF32 /*t*/, DF32 d32) {
#if !defined(HWY_EMULATE_SVE)
size_t padded;
auto in = BF16TestCases(d32, padded);
using TBF16 = bfloat16_t;
#if HWY_TARGET == HWY_SCALAR
const Rebind<TBF16, DF32> dbf16; // avoid 4/2 = 2 lanes
#else
const Repartition<TBF16, DF32> dbf16;
#endif
const Half<decltype(dbf16)> dbf16_half;
const size_t N = Lanes(d32);
HWY_ASSERT(Lanes(dbf16_half) <= N);
auto temp16 = AllocateAligned<TBF16>(N);
for (size_t i = 0; i < padded; i += N) {
const auto loaded = Load(d32, &in[i]);
const auto v16 = DemoteTo(dbf16_half, loaded);
Store(v16, dbf16_half, temp16.get());
const auto v16_loaded = Load(dbf16_half, temp16.get());
HWY_ASSERT_VEC_EQ(d32, loaded, PromoteTo(d32, v16_loaded));
}
#else
(void)d32;
#endif
}
};
HWY_NOINLINE void TestAllBF16() { ForShrinkableVectors<TestBF16>()(float()); }
struct TestConvertU8 {
template <typename T, class D>
HWY_NOINLINE void operator()(T /*unused*/, const D du32) {
const Rebind<uint8_t, D> du8;
auto lanes8 = AllocateAligned<uint8_t>(Lanes(du8));
Store(Iota(du8, 0), du8, lanes8.get());
const auto wrap = Set(du32, 0xFF);
HWY_ASSERT_VEC_EQ(du8, Iota(du8, 0), U8FromU32(And(Iota(du32, 0), wrap)));
HWY_ASSERT_VEC_EQ(du8, Iota(du8, 0x7F),
U8FromU32(And(Iota(du32, 0x7F), wrap)));
}
};
HWY_NOINLINE void TestAllConvertU8() {
ForDemoteVectors<TestConvertU8, 2>()(uint32_t());
}
// Separate function to attempt to work around a compiler bug on ARM: when this
// is merged with TestIntFromFloat, outputs match a previous Iota(-(N+1)) input.
struct TestIntFromFloatHuge {
template <typename TF, class DF>
HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
// Still does not work, although ARMv7 manual says that float->int
// saturates, i.e. chooses the nearest representable value. Also causes
// out-of-memory for MSVC.
#if HWY_TARGET != HWY_NEON && !HWY_COMPILER_MSVC
using TI = MakeSigned<TF>;
const Rebind<TI, DF> di;
// Workaround for incorrect 32-bit GCC codegen for SSSE3 - Print-ing
// the expected lvalue also seems to prevent the issue.
const size_t N = Lanes(df);
auto expected = AllocateAligned<TI>(N);
// Huge positive
Store(Set(di, LimitsMax<TI>()), di, expected.get());
HWY_ASSERT_VEC_EQ(di, expected.get(), ConvertTo(di, Set(df, TF(1E20))));
// Huge negative
Store(Set(di, LimitsMin<TI>()), di, expected.get());
HWY_ASSERT_VEC_EQ(di, expected.get(), ConvertTo(di, Set(df, TF(-1E20))));
#else
(void)df;
#endif
}
};
class TestIntFromFloat {
template <typename TF, class DF>
static HWY_NOINLINE void TestPowers(TF /*unused*/, const DF df) {
using TI = MakeSigned<TF>;
const Rebind<TI, DF> di;
constexpr size_t kBits = sizeof(TF) * 8;
// Powers of two, plus offsets to set some mantissa bits.
const int64_t ofs_table[3] = {0LL, 3LL << (kBits / 2), 1LL << (kBits - 15)};
for (int sign = 0; sign < 2; ++sign) {
for (size_t shift = 0; shift < kBits - 1; ++shift) {
for (int64_t ofs : ofs_table) {
const int64_t mag = (int64_t(1) << shift) + ofs;
const int64_t val = sign ? mag : -mag;
HWY_ASSERT_VEC_EQ(di, Set(di, static_cast<TI>(val)),
ConvertTo(di, Set(df, static_cast<TF>(val))));
}
}
}
}
template <typename TF, class DF>
static HWY_NOINLINE void TestRandom(TF /*unused*/, const DF df) {
using TI = MakeSigned<TF>;
const Rebind<TI, DF> di;
const size_t N = Lanes(df);
// TF does not have enough precision to represent TI.
const double min = static_cast<double>(LimitsMin<TI>());
const double max = static_cast<double>(LimitsMax<TI>());
// Also check random values.
auto from = AllocateAligned<TF>(N);
auto expected = AllocateAligned<TI>(N);
RandomState rng;
for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) {
for (size_t i = 0; i < N; ++i) {
do {
const uint64_t bits = rng();
memcpy(&from[i], &bits, sizeof(TF));
} while (!std::isfinite(from[i]));
if (from[i] >= max) {
expected[i] = LimitsMax<TI>();
} else if (from[i] <= min) {
expected[i] = LimitsMin<TI>();
} else {
expected[i] = static_cast<TI>(from[i]);
}
}
HWY_ASSERT_VEC_EQ(di, expected.get(),
ConvertTo(di, Load(df, from.get())));
}
}
public:
template <typename TF, class DF>
HWY_NOINLINE void operator()(TF tf, const DF df) {
using TI = MakeSigned<TF>;
const Rebind<TI, DF> di;
const size_t N = Lanes(df);
// Integer positive
HWY_ASSERT_VEC_EQ(di, Iota(di, TI(4)), ConvertTo(di, Iota(df, TF(4.0))));
// Integer negative
HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)), ConvertTo(di, Iota(df, -TF(N))));
// Above positive
HWY_ASSERT_VEC_EQ(di, Iota(di, TI(2)), ConvertTo(di, Iota(df, TF(2.001))));
// Below positive
HWY_ASSERT_VEC_EQ(di, Iota(di, TI(3)), ConvertTo(di, Iota(df, TF(3.9999))));
const TF eps = static_cast<TF>(0.0001);
// Above negative
HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N)),
ConvertTo(di, Iota(df, -TF(N + 1) + eps)));
// Below negative
HWY_ASSERT_VEC_EQ(di, Iota(di, -TI(N + 1)),
ConvertTo(di, Iota(df, -TF(N + 1) - eps)));
TestPowers(tf, df);
TestRandom(tf, df);
}
};
HWY_NOINLINE void TestAllIntFromFloat() {
ForFloatTypes(ForPartialVectors<TestIntFromFloatHuge>());
ForFloatTypes(ForPartialVectors<TestIntFromFloat>());
}
struct TestFloatFromInt {
template <typename TF, class DF>
HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
using TI = MakeSigned<TF>;
const RebindToSigned<DF> di;
const size_t N = Lanes(df);
// Integer positive
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), ConvertTo(df, Iota(di, TI(4))));
// Integer negative
HWY_ASSERT_VEC_EQ(df, Iota(df, -TF(N)), ConvertTo(df, Iota(di, -TI(N))));
// Max positive
HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMax<TI>())),
ConvertTo(df, Set(di, LimitsMax<TI>())));
// Min negative
HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMin<TI>())),
ConvertTo(df, Set(di, LimitsMin<TI>())));
}
};
HWY_NOINLINE void TestAllFloatFromInt() {
ForFloatTypes(ForPartialVectors<TestFloatFromInt>());
}
struct TestI32F64 {
template <typename TF, class DF>
HWY_NOINLINE void operator()(TF /*unused*/, const DF df) {
using TI = int32_t;
const Rebind<TI, DF> di;
const size_t N = Lanes(df);
// Integer positive
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), PromoteTo(df, Iota(di, TI(4))));
// Integer negative
HWY_ASSERT_VEC_EQ(df, Iota(df, -TF(N)), PromoteTo(df, Iota(di, -TI(N))));
// Above positive
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(2.0)), PromoteTo(df, Iota(di, TI(2))));
// Below positive
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(4.0)), PromoteTo(df, Iota(di, TI(4))));
// Above negative
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(-4.0)), PromoteTo(df, Iota(di, TI(-4))));
// Below negative
HWY_ASSERT_VEC_EQ(df, Iota(df, TF(-2.0)), PromoteTo(df, Iota(di, TI(-2))));
// Max positive int
HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMax<TI>())),
PromoteTo(df, Set(di, LimitsMax<TI>())));
// Min negative int
HWY_ASSERT_VEC_EQ(df, Set(df, TF(LimitsMin<TI>())),
PromoteTo(df, Set(di, LimitsMin<TI>())));
}
};
HWY_NOINLINE void TestAllI32F64() {
#if HWY_HAVE_FLOAT64
ForDemoteVectors<TestI32F64>()(double());
#endif
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(HwyConvertTest);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllBitCast);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllPromoteTo);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllF16);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllBF16);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllConvertU8);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllIntFromFloat);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllFloatFromInt);
HWY_EXPORT_AND_TEST_P(HwyConvertTest, TestAllI32F64);
} // namespace hwy
#endif
|