1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
// Copyright 2019 Google LLC
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdint.h>
#undef HWY_TARGET_INCLUDE
#define HWY_TARGET_INCLUDE "tests/combine_test.cc"
#include "hwy/foreach_target.h"
#include "hwy/highway.h"
#include "hwy/tests/test_util-inl.h"
HWY_BEFORE_NAMESPACE();
namespace hwy {
namespace HWY_NAMESPACE {
struct TestLowerHalf {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const Half<D> d2;
const size_t N = Lanes(d);
auto lanes = AllocateAligned<T>(N);
auto lanes2 = AllocateAligned<T>(N);
std::fill(lanes.get(), lanes.get() + N, T(0));
std::fill(lanes2.get(), lanes2.get() + N, T(0));
const auto v = Iota(d, 1);
Store(LowerHalf(d2, v), d2, lanes.get());
Store(LowerHalf(v), d2, lanes2.get()); // optionally without D
size_t i = 0;
for (; i < Lanes(d2); ++i) {
HWY_ASSERT_EQ(T(1 + i), lanes[i]);
HWY_ASSERT_EQ(T(1 + i), lanes2[i]);
}
// Other half remains unchanged
for (; i < N; ++i) {
HWY_ASSERT_EQ(T(0), lanes[i]);
HWY_ASSERT_EQ(T(0), lanes2[i]);
}
}
};
struct TestLowerQuarter {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const Half<D> d2;
const Half<decltype(d2)> d4;
const size_t N = Lanes(d);
auto lanes = AllocateAligned<T>(N);
auto lanes2 = AllocateAligned<T>(N);
std::fill(lanes.get(), lanes.get() + N, T(0));
std::fill(lanes2.get(), lanes2.get() + N, T(0));
const auto v = Iota(d, 1);
const auto lo = LowerHalf(d4, LowerHalf(d2, v));
const auto lo2 = LowerHalf(LowerHalf(v)); // optionally without D
Store(lo, d4, lanes.get());
Store(lo2, d4, lanes2.get());
size_t i = 0;
for (; i < Lanes(d4); ++i) {
HWY_ASSERT_EQ(T(i + 1), lanes[i]);
HWY_ASSERT_EQ(T(i + 1), lanes2[i]);
}
// Upper 3/4 remain unchanged
for (; i < N; ++i) {
HWY_ASSERT_EQ(T(0), lanes[i]);
HWY_ASSERT_EQ(T(0), lanes2[i]);
}
}
};
HWY_NOINLINE void TestAllLowerHalf() {
ForAllTypes(ForHalfVectors<TestLowerHalf>());
// The minimum vector size is 128 bits, so there's no guarantee we can have
// quarters of 64-bit lanes, hence test 'all' other types.
ForHalfVectors<TestLowerQuarter, 2> test_quarter;
ForUI8(test_quarter);
ForUI16(test_quarter); // exclude float16_t - cannot compare
ForUIF32(test_quarter);
}
struct TestUpperHalf {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
// Scalar does not define UpperHalf.
#if HWY_TARGET != HWY_SCALAR
const Half<D> d2;
const size_t N2 = Lanes(d2);
HWY_ASSERT(N2 * 2 == Lanes(d));
auto expected = AllocateAligned<T>(N2);
size_t i = 0;
for (; i < N2; ++i) {
expected[i] = static_cast<T>(N2 + 1 + i);
}
HWY_ASSERT_VEC_EQ(d2, expected.get(), UpperHalf(d2, Iota(d, 1)));
#else
(void)d;
#endif
}
};
HWY_NOINLINE void TestAllUpperHalf() {
ForAllTypes(ForHalfVectors<TestUpperHalf>());
}
struct TestZeroExtendVector {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const Twice<D> d2;
const auto v = Iota(d, 1);
const size_t N = Lanes(d);
const size_t N2 = Lanes(d2);
// If equal, then N was already MaxLanes(d) and it's not clear what
// Combine or ZeroExtendVector should return.
if (N2 == N) return;
HWY_ASSERT(N2 == 2 * N);
auto lanes = AllocateAligned<T>(N2);
Store(v, d, &lanes[0]);
Store(v, d, &lanes[N]);
const auto ext = ZeroExtendVector(d2, v);
Store(ext, d2, lanes.get());
// Lower half is unchanged
HWY_ASSERT_VEC_EQ(d, v, Load(d, &lanes[0]));
// Upper half is zero
HWY_ASSERT_VEC_EQ(d, Zero(d), Load(d, &lanes[N]));
}
};
HWY_NOINLINE void TestAllZeroExtendVector() {
ForAllTypes(ForExtendableVectors<TestZeroExtendVector>());
}
struct TestCombine {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const Twice<D> d2;
const size_t N2 = Lanes(d2);
auto lanes = AllocateAligned<T>(N2);
const auto lo = Iota(d, 1);
const auto hi = Iota(d, static_cast<T>(N2 / 2 + 1));
const auto combined = Combine(d2, hi, lo);
Store(combined, d2, lanes.get());
const auto expected = Iota(d2, 1);
HWY_ASSERT_VEC_EQ(d2, expected, combined);
}
};
HWY_NOINLINE void TestAllCombine() {
ForAllTypes(ForExtendableVectors<TestCombine>());
}
struct TestConcat {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
const size_t N = Lanes(d);
if (N == 1) return;
const size_t half_bytes = N * sizeof(T) / 2;
auto hi = AllocateAligned<T>(N);
auto lo = AllocateAligned<T>(N);
auto expected = AllocateAligned<T>(N);
RandomState rng;
for (size_t rep = 0; rep < 10; ++rep) {
for (size_t i = 0; i < N; ++i) {
hi[i] = static_cast<T>(Random64(&rng) & 0xFF);
lo[i] = static_cast<T>(Random64(&rng) & 0xFF);
}
{
memcpy(&expected[N / 2], &hi[N / 2], half_bytes);
memcpy(&expected[0], &lo[0], half_bytes);
const auto vhi = Load(d, hi.get());
const auto vlo = Load(d, lo.get());
HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatUpperLower(d, vhi, vlo));
}
{
memcpy(&expected[N / 2], &hi[N / 2], half_bytes);
memcpy(&expected[0], &lo[N / 2], half_bytes);
const auto vhi = Load(d, hi.get());
const auto vlo = Load(d, lo.get());
HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatUpperUpper(d, vhi, vlo));
}
{
memcpy(&expected[N / 2], &hi[0], half_bytes);
memcpy(&expected[0], &lo[N / 2], half_bytes);
const auto vhi = Load(d, hi.get());
const auto vlo = Load(d, lo.get());
HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatLowerUpper(d, vhi, vlo));
}
{
memcpy(&expected[N / 2], &hi[0], half_bytes);
memcpy(&expected[0], &lo[0], half_bytes);
const auto vhi = Load(d, hi.get());
const auto vlo = Load(d, lo.get());
HWY_ASSERT_VEC_EQ(d, expected.get(), ConcatLowerLower(d, vhi, vlo));
}
}
}
};
HWY_NOINLINE void TestAllConcat() {
ForAllTypes(ForShrinkableVectors<TestConcat>());
}
struct TestConcatOddEven {
template <class T, class D>
HWY_NOINLINE void operator()(T /*unused*/, D d) {
#if HWY_TARGET != HWY_SCALAR
const size_t N = Lanes(d);
const auto hi = Iota(d, static_cast<T>(N));
const auto lo = Iota(d, 0);
const auto even = Add(Iota(d, 0), Iota(d, 0));
const auto odd = Add(even, Set(d, 1));
HWY_ASSERT_VEC_EQ(d, odd, ConcatOdd(d, hi, lo));
HWY_ASSERT_VEC_EQ(d, even, ConcatEven(d, hi, lo));
#else
(void)d;
#endif
}
};
HWY_NOINLINE void TestAllConcatOddEven() {
ForAllTypes(ForShrinkableVectors<TestConcatOddEven>());
}
// NOLINTNEXTLINE(google-readability-namespace-comments)
} // namespace HWY_NAMESPACE
} // namespace hwy
HWY_AFTER_NAMESPACE();
#if HWY_ONCE
namespace hwy {
HWY_BEFORE_TEST(HwyCombineTest);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllLowerHalf);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllUpperHalf);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllZeroExtendVector);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllCombine);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllConcat);
HWY_EXPORT_AND_TEST_P(HwyCombineTest, TestAllConcatOddEven);
} // namespace hwy
#endif // HWY_ONCE
|