1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef vm_NativeObject_h
#define vm_NativeObject_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include <stdint.h>
#include "jsfriendapi.h"
#include "jsobj.h"
#include "NamespaceImports.h"
#include "gc/Barrier.h"
#include "gc/Heap.h"
#include "gc/Marking.h"
#include "js/Value.h"
#include "vm/Shape.h"
#include "vm/ShapedObject.h"
#include "vm/String.h"
#include "vm/TypeInference.h"
namespace js {
class Shape;
class TenuringTracer;
/*
* To really poison a set of values, using 'magic' or 'undefined' isn't good
* enough since often these will just be ignored by buggy code (see bug 629974)
* in debug builds and crash in release builds. Instead, we use a safe-for-crash
* pointer.
*/
static MOZ_ALWAYS_INLINE void
Debug_SetValueRangeToCrashOnTouch(Value* beg, Value* end)
{
#ifdef DEBUG
for (Value* v = beg; v != end; ++v)
v->setObject(*reinterpret_cast<JSObject*>(0x48));
#endif
}
static MOZ_ALWAYS_INLINE void
Debug_SetValueRangeToCrashOnTouch(Value* vec, size_t len)
{
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch(vec, vec + len);
#endif
}
static MOZ_ALWAYS_INLINE void
Debug_SetValueRangeToCrashOnTouch(GCPtrValue* vec, size_t len)
{
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*) vec, len);
#endif
}
static MOZ_ALWAYS_INLINE void
Debug_SetSlotRangeToCrashOnTouch(HeapSlot* vec, uint32_t len)
{
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*) vec, len);
#endif
}
static MOZ_ALWAYS_INLINE void
Debug_SetSlotRangeToCrashOnTouch(HeapSlot* begin, HeapSlot* end)
{
#ifdef DEBUG
Debug_SetValueRangeToCrashOnTouch((Value*) begin, end - begin);
#endif
}
class ArrayObject;
/*
* ES6 20130308 draft 8.4.2.4 ArraySetLength.
*
* |id| must be "length", |attrs| are the attributes to be used for the newly-
* changed length property, |value| is the value for the new length, and
* |result| receives an error code if the change is invalid.
*/
extern bool
ArraySetLength(JSContext* cx, Handle<ArrayObject*> obj, HandleId id,
unsigned attrs, HandleValue value, ObjectOpResult& result);
/*
* Elements header used for native objects. The elements component of such objects
* offers an efficient representation for all or some of the indexed properties
* of the object, using a flat array of Values rather than a shape hierarchy
* stored in the object's slots. This structure is immediately followed by an
* array of elements, with the elements member in an object pointing to the
* beginning of that array (the end of this structure).
* See below for usage of this structure.
*
* The sets of properties represented by an object's elements and slots
* are disjoint. The elements contain only indexed properties, while the slots
* can contain both named and indexed properties; any indexes in the slots are
* distinct from those in the elements. If isIndexed() is false for an object,
* all indexed properties (if any) are stored in the dense elements.
*
* Indexes will be stored in the object's slots instead of its elements in
* the following case:
* - there are more than MIN_SPARSE_INDEX slots total and the load factor
* (COUNT / capacity) is less than 0.25
* - a property is defined that has non-default property attributes.
*
* We track these pieces of metadata for dense elements:
* - The length property as a uint32_t, accessible for array objects with
* ArrayObject::{length,setLength}(). This is unused for non-arrays.
* - The number of element slots (capacity), gettable with
* getDenseCapacity().
* - The array's initialized length, accessible with
* getDenseInitializedLength().
*
* Holes in the array are represented by MagicValue(JS_ELEMENTS_HOLE) values.
* These indicate indexes which are not dense properties of the array. The
* property may, however, be held by the object's properties.
*
* The capacity and length of an object's elements are almost entirely
* unrelated! In general the length may be greater than, less than, or equal
* to the capacity. The first case occurs with |new Array(100)|. The length
* is 100, but the capacity remains 0 (indices below length and above capacity
* must be treated as holes) until elements between capacity and length are
* set. The other two cases are common, depending upon the number of elements
* in an array and the underlying allocator used for element storage.
*
* The only case in which the capacity and length of an object's elements are
* related is when the object is an array with non-writable length. In this
* case the capacity is always less than or equal to the length. This permits
* JIT code to optimize away the check for non-writable length when assigning
* to possibly out-of-range elements: such code already has to check for
* |index < capacity|, and fallback code checks for non-writable length.
*
* The initialized length of an object specifies the number of elements that
* have been initialized. All elements above the initialized length are
* holes in the object, and the memory for all elements between the initialized
* length and capacity is left uninitialized. The initialized length is some
* value less than or equal to both the object's length and the object's
* capacity.
*
* There is flexibility in exactly the value the initialized length must hold,
* e.g. if an array has length 5, capacity 10, completely empty, it is valid
* for the initialized length to be any value between zero and 5, as long as
* the in memory values below the initialized length have been initialized with
* a hole value. However, in such cases we want to keep the initialized length
* as small as possible: if the object is known to have no hole values below
* its initialized length, then it is "packed" and can be accessed much faster
* by JIT code.
*
* Elements do not track property creation order, so enumerating the elements
* of an object does not necessarily visit indexes in the order they were
* created.
*/
class ObjectElements
{
public:
enum Flags: uint32_t {
// Integers written to these elements must be converted to doubles.
CONVERT_DOUBLE_ELEMENTS = 0x1,
// Present only if these elements correspond to an array with
// non-writable length; never present for non-arrays.
NONWRITABLE_ARRAY_LENGTH = 0x2,
// These elements are shared with another object and must be copied
// before they can be changed. A pointer to the original owner of the
// elements, which is immutable, is stored immediately after the
// elements data. There is one case where elements can be written to
// before being copied: when setting the CONVERT_DOUBLE_ELEMENTS flag
// the shared elements may change (from ints to doubles) without
// making a copy first.
COPY_ON_WRITE = 0x4,
// For TypedArrays only: this TypedArray's storage is mapping shared
// memory. This is a static property of the TypedArray, set when it
// is created and never changed.
SHARED_MEMORY = 0x8,
// These elements are set to integrity level "frozen".
FROZEN = 0x10,
};
private:
friend class ::JSObject;
friend class ArrayObject;
friend class NativeObject;
friend class TenuringTracer;
friend bool js::SetIntegrityLevel(JSContext* cx, HandleObject obj, IntegrityLevel level);
friend bool
ArraySetLength(JSContext* cx, Handle<ArrayObject*> obj, HandleId id,
unsigned attrs, HandleValue value, ObjectOpResult& result);
/* See Flags enum above. */
uint32_t flags;
/*
* Number of initialized elements. This is <= the capacity, and for arrays
* is <= the length. Memory for elements above the initialized length is
* uninitialized, but values between the initialized length and the proper
* length are conceptually holes.
*/
uint32_t initializedLength;
/* Number of allocated slots. */
uint32_t capacity;
/* 'length' property of array objects, unused for other objects. */
uint32_t length;
bool shouldConvertDoubleElements() const {
return flags & CONVERT_DOUBLE_ELEMENTS;
}
void setShouldConvertDoubleElements() {
// Note: allow isCopyOnWrite() here, see comment above.
flags |= CONVERT_DOUBLE_ELEMENTS;
}
void clearShouldConvertDoubleElements() {
MOZ_ASSERT(!isCopyOnWrite());
flags &= ~CONVERT_DOUBLE_ELEMENTS;
}
bool hasNonwritableArrayLength() const {
return flags & NONWRITABLE_ARRAY_LENGTH;
}
void setNonwritableArrayLength() {
MOZ_ASSERT(!isCopyOnWrite());
flags |= NONWRITABLE_ARRAY_LENGTH;
}
bool isCopyOnWrite() const {
return flags & COPY_ON_WRITE;
}
void clearCopyOnWrite() {
MOZ_ASSERT(isCopyOnWrite());
flags &= ~COPY_ON_WRITE;
}
public:
constexpr ObjectElements(uint32_t capacity, uint32_t length)
: flags(0), initializedLength(0), capacity(capacity), length(length)
{}
enum class SharedMemory {
IsShared
};
constexpr ObjectElements(uint32_t capacity, uint32_t length, SharedMemory shmem)
: flags(SHARED_MEMORY), initializedLength(0), capacity(capacity), length(length)
{}
HeapSlot* elements() {
return reinterpret_cast<HeapSlot*>(uintptr_t(this) + sizeof(ObjectElements));
}
const HeapSlot* elements() const {
return reinterpret_cast<const HeapSlot*>(uintptr_t(this) + sizeof(ObjectElements));
}
static ObjectElements * fromElements(HeapSlot* elems) {
return reinterpret_cast<ObjectElements*>(uintptr_t(elems) - sizeof(ObjectElements));
}
bool isSharedMemory() const {
return flags & SHARED_MEMORY;
}
GCPtrNativeObject& ownerObject() const {
MOZ_ASSERT(isCopyOnWrite());
return *(GCPtrNativeObject*)(&elements()[initializedLength]);
}
static int offsetOfFlags() {
return int(offsetof(ObjectElements, flags)) - int(sizeof(ObjectElements));
}
static int offsetOfInitializedLength() {
return int(offsetof(ObjectElements, initializedLength)) - int(sizeof(ObjectElements));
}
static int offsetOfCapacity() {
return int(offsetof(ObjectElements, capacity)) - int(sizeof(ObjectElements));
}
static int offsetOfLength() {
return int(offsetof(ObjectElements, length)) - int(sizeof(ObjectElements));
}
static bool ConvertElementsToDoubles(JSContext* cx, uintptr_t elements);
static bool MakeElementsCopyOnWrite(ExclusiveContext* cx, NativeObject* obj);
static bool FreezeElements(ExclusiveContext* cx, HandleNativeObject obj);
bool isFrozen() const {
return flags & FROZEN;
}
void freeze() {
MOZ_ASSERT(!isFrozen());
MOZ_ASSERT(!isCopyOnWrite());
flags |= FROZEN;
}
void markNotFrozen() {
MOZ_ASSERT(isFrozen());
MOZ_ASSERT(!isCopyOnWrite());
flags &= ~FROZEN;
}
uint8_t elementAttributes() const {
if (isFrozen())
return JSPROP_ENUMERATE | JSPROP_PERMANENT | JSPROP_READONLY;
return JSPROP_ENUMERATE;
}
// This is enough slots to store an object of this class. See the static
// assertion below.
static const size_t VALUES_PER_HEADER = 2;
};
static_assert(ObjectElements::VALUES_PER_HEADER * sizeof(HeapSlot) == sizeof(ObjectElements),
"ObjectElements doesn't fit in the given number of slots");
/*
* Shared singletons for objects with no elements.
* emptyObjectElementsShared is used only for TypedArrays, when the TA
* maps shared memory.
*/
extern HeapSlot* const emptyObjectElements;
extern HeapSlot* const emptyObjectElementsShared;
struct Class;
class GCMarker;
class Shape;
class NewObjectCache;
#ifdef DEBUG
static inline bool
IsObjectValueInCompartment(const Value& v, JSCompartment* comp);
#endif
// Operations which change an object's dense elements can either succeed, fail,
// or be unable to complete. For native objects, the latter is used when the
// object's elements must become sparse instead. The enum below is used for
// such operations, and for similar operations on unboxed arrays and methods
// that work on both kinds of objects.
enum class DenseElementResult {
Failure,
Success,
Incomplete
};
/*
* NativeObject specifies the internal implementation of a native object.
*
* Native objects use ShapedObject::shape_ to record property information. Two
* native objects with the same shape are guaranteed to have the same number of
* fixed slots.
*
* Native objects extend the base implementation of an object with storage for
* the object's named properties and indexed elements.
*
* These are stored separately from one another. Objects are followed by a
* variable-sized array of values for inline storage, which may be used by
* either properties of native objects (fixed slots), by elements (fixed
* elements), or by other data for certain kinds of objects, such as
* ArrayBufferObjects and TypedArrayObjects.
*
* Named property storage can be split between fixed slots and a dynamically
* allocated array (the slots member). For an object with N fixed slots, shapes
* with slots [0..N-1] are stored in the fixed slots, and the remainder are
* stored in the dynamic array. If all properties fit in the fixed slots, the
* 'slots_' member is nullptr.
*
* Elements are indexed via the 'elements_' member. This member can point to
* either the shared emptyObjectElements and emptyObjectElementsShared singletons,
* into the inline value array (the address of the third value, to leave room
* for a ObjectElements header;in this case numFixedSlots() is zero) or to
* a dynamically allocated array.
*
* Slots and elements may both be non-empty. The slots may be either names or
* indexes; no indexed property will be in both the slots and elements.
*/
class NativeObject : public ShapedObject
{
protected:
/* Slots for object properties. */
js::HeapSlot* slots_;
/* Slots for object dense elements. */
js::HeapSlot* elements_;
friend class ::JSObject;
private:
static void staticAsserts() {
static_assert(sizeof(NativeObject) == sizeof(JSObject_Slots0),
"native object size must match GC thing size");
static_assert(sizeof(NativeObject) == sizeof(shadow::Object),
"shadow interface must match actual implementation");
static_assert(sizeof(NativeObject) % sizeof(Value) == 0,
"fixed slots after an object must be aligned");
static_assert(offsetof(NativeObject, group_) == offsetof(shadow::Object, group),
"shadow type must match actual type");
static_assert(offsetof(NativeObject, slots_) == offsetof(shadow::Object, slots),
"shadow slots must match actual slots");
static_assert(offsetof(NativeObject, elements_) == offsetof(shadow::Object, _1),
"shadow placeholder must match actual elements");
static_assert(MAX_FIXED_SLOTS <= Shape::FIXED_SLOTS_MAX,
"verify numFixedSlots() bitfield is big enough");
static_assert(sizeof(NativeObject) + MAX_FIXED_SLOTS * sizeof(Value) == JSObject::MAX_BYTE_SIZE,
"inconsistent maximum object size");
}
public:
Shape* lastProperty() const {
MOZ_ASSERT(shape_);
return shape_;
}
uint32_t propertyCount() const {
return lastProperty()->entryCount();
}
bool hasShapeTable() const {
return lastProperty()->hasTable();
}
HeapSlotArray getDenseElements() {
return HeapSlotArray(elements_, !getElementsHeader()->isCopyOnWrite());
}
HeapSlotArray getDenseElementsAllowCopyOnWrite() {
// Backdoor allowing direct access to copy on write elements.
return HeapSlotArray(elements_, true);
}
const Value& getDenseElement(uint32_t idx) const {
MOZ_ASSERT(idx < getDenseInitializedLength());
return elements_[idx];
}
bool containsDenseElement(uint32_t idx) {
return idx < getDenseInitializedLength() && !elements_[idx].isMagic(JS_ELEMENTS_HOLE);
}
uint32_t getDenseInitializedLength() const {
return getElementsHeader()->initializedLength;
}
uint32_t getDenseCapacity() const {
return getElementsHeader()->capacity;
}
bool isSharedMemory() const {
return getElementsHeader()->isSharedMemory();
}
// Update the last property, keeping the number of allocated slots in sync
// with the object's new slot span.
bool setLastProperty(ExclusiveContext* cx, Shape* shape);
// As for setLastProperty(), but allows the number of fixed slots to
// change. This can only be used when fixed slots are being erased from the
// object, and only when the object will not require dynamic slots to cover
// the new properties.
void setLastPropertyShrinkFixedSlots(Shape* shape);
// As for setLastProperty(), but changes the class associated with the
// object to a non-native one. This leaves the object with a type and shape
// that are (temporarily) inconsistent.
void setLastPropertyMakeNonNative(Shape* shape);
// As for setLastProperty(), but changes the class associated with the
// object to a native one. The object's type has already been changed, and
// this brings the shape into sync with it.
void setLastPropertyMakeNative(ExclusiveContext* cx, Shape* shape);
// Newly-created TypedArrays that map a SharedArrayBuffer are
// marked as shared by giving them an ObjectElements that has the
// ObjectElements::SHARED_MEMORY flag set.
void setIsSharedMemory() {
MOZ_ASSERT(elements_ == emptyObjectElements);
elements_ = emptyObjectElementsShared;
}
bool isInWholeCellBuffer() const {
const gc::TenuredCell* cell = &asTenured();
gc::ArenaCellSet* cells = cell->arena()->bufferedCells;
return cells && cells->hasCell(cell);
}
protected:
#ifdef DEBUG
void checkShapeConsistency();
#else
void checkShapeConsistency() { }
#endif
static Shape*
replaceWithNewEquivalentShape(ExclusiveContext* cx, HandleNativeObject obj,
Shape* existingShape, Shape* newShape = nullptr,
bool accessorShape = false);
/*
* Remove the last property of an object, provided that it is safe to do so
* (the shape and previous shape do not carry conflicting information about
* the object itself).
*/
inline void removeLastProperty(ExclusiveContext* cx);
inline bool canRemoveLastProperty();
/*
* Update the slot span directly for a dictionary object, and allocate
* slots to cover the new span if necessary.
*/
bool setSlotSpan(ExclusiveContext* cx, uint32_t span);
static MOZ_MUST_USE bool toDictionaryMode(ExclusiveContext* cx, HandleNativeObject obj);
private:
friend class TenuringTracer;
/*
* Get internal pointers to the range of values starting at start and
* running for length.
*/
void getSlotRangeUnchecked(uint32_t start, uint32_t length,
HeapSlot** fixedStart, HeapSlot** fixedEnd,
HeapSlot** slotsStart, HeapSlot** slotsEnd)
{
MOZ_ASSERT(start + length >= start);
uint32_t fixed = numFixedSlots();
if (start < fixed) {
if (start + length < fixed) {
*fixedStart = &fixedSlots()[start];
*fixedEnd = &fixedSlots()[start + length];
*slotsStart = *slotsEnd = nullptr;
} else {
uint32_t localCopy = fixed - start;
*fixedStart = &fixedSlots()[start];
*fixedEnd = &fixedSlots()[start + localCopy];
*slotsStart = &slots_[0];
*slotsEnd = &slots_[length - localCopy];
}
} else {
*fixedStart = *fixedEnd = nullptr;
*slotsStart = &slots_[start - fixed];
*slotsEnd = &slots_[start - fixed + length];
}
}
void getSlotRange(uint32_t start, uint32_t length,
HeapSlot** fixedStart, HeapSlot** fixedEnd,
HeapSlot** slotsStart, HeapSlot** slotsEnd)
{
MOZ_ASSERT(slotInRange(start + length, SENTINEL_ALLOWED));
getSlotRangeUnchecked(start, length, fixedStart, fixedEnd, slotsStart, slotsEnd);
}
protected:
friend class GCMarker;
friend class Shape;
friend class NewObjectCache;
void invalidateSlotRange(uint32_t start, uint32_t length) {
#ifdef DEBUG
HeapSlot* fixedStart;
HeapSlot* fixedEnd;
HeapSlot* slotsStart;
HeapSlot* slotsEnd;
getSlotRange(start, length, &fixedStart, &fixedEnd, &slotsStart, &slotsEnd);
Debug_SetSlotRangeToCrashOnTouch(fixedStart, fixedEnd);
Debug_SetSlotRangeToCrashOnTouch(slotsStart, slotsEnd);
#endif /* DEBUG */
}
void initializeSlotRange(uint32_t start, uint32_t count);
/*
* Initialize a flat array of slots to this object at a start slot. The
* caller must ensure that are enough slots.
*/
void initSlotRange(uint32_t start, const Value* vector, uint32_t length);
/*
* Copy a flat array of slots to this object at a start slot. Caller must
* ensure there are enough slots in this object.
*/
void copySlotRange(uint32_t start, const Value* vector, uint32_t length);
#ifdef DEBUG
enum SentinelAllowed {
SENTINEL_NOT_ALLOWED,
SENTINEL_ALLOWED
};
/*
* Check that slot is in range for the object's allocated slots.
* If sentinelAllowed then slot may equal the slot capacity.
*/
bool slotInRange(uint32_t slot, SentinelAllowed sentinel = SENTINEL_NOT_ALLOWED) const;
#endif
/*
* Minimum size for dynamically allocated slots in normal Objects.
* ArrayObjects don't use this limit and can have a lower slot capacity,
* since they normally don't have a lot of slots.
*/
static const uint32_t SLOT_CAPACITY_MIN = 8;
HeapSlot* fixedSlots() const {
return reinterpret_cast<HeapSlot*>(uintptr_t(this) + sizeof(NativeObject));
}
public:
static MOZ_MUST_USE bool generateOwnShape(ExclusiveContext* cx, HandleNativeObject obj,
Shape* newShape = nullptr)
{
return replaceWithNewEquivalentShape(cx, obj, obj->lastProperty(), newShape);
}
static MOZ_MUST_USE bool shadowingShapeChange(ExclusiveContext* cx, HandleNativeObject obj,
const Shape& shape);
static bool clearFlag(ExclusiveContext* cx, HandleNativeObject obj, BaseShape::Flag flag);
// The maximum number of slots in an object.
// |MAX_SLOTS_COUNT * sizeof(JS::Value)| shouldn't overflow
// int32_t (see slotsSizeMustNotOverflow).
static const uint32_t MAX_SLOTS_COUNT = (1 << 28) - 1;
static void slotsSizeMustNotOverflow() {
static_assert(NativeObject::MAX_SLOTS_COUNT <= INT32_MAX / sizeof(JS::Value),
"every caller of this method requires that a slot "
"number (or slot count) count multiplied by "
"sizeof(Value) can't overflow uint32_t (and sometimes "
"int32_t, too)");
}
uint32_t numFixedSlots() const {
return reinterpret_cast<const shadow::Object*>(this)->numFixedSlots();
}
uint32_t numUsedFixedSlots() const {
uint32_t nslots = lastProperty()->slotSpan(getClass());
return Min(nslots, numFixedSlots());
}
uint32_t numFixedSlotsForCompilation() const;
uint32_t slotSpan() const {
if (inDictionaryMode())
return lastProperty()->base()->slotSpan();
return lastProperty()->slotSpan();
}
/* Whether a slot is at a fixed offset from this object. */
bool isFixedSlot(size_t slot) {
return slot < numFixedSlots();
}
/* Index into the dynamic slots array to use for a dynamic slot. */
size_t dynamicSlotIndex(size_t slot) {
MOZ_ASSERT(slot >= numFixedSlots());
return slot - numFixedSlots();
}
/*
* Grow or shrink slots immediately before changing the slot span.
* The number of allocated slots is not stored explicitly, and changes to
* the slots must track changes in the slot span.
*/
bool growSlots(ExclusiveContext* cx, uint32_t oldCount, uint32_t newCount);
void shrinkSlots(ExclusiveContext* cx, uint32_t oldCount, uint32_t newCount);
/*
* This method is static because it's called from JIT code. On OOM, returns
* false without leaving a pending exception on the context.
*/
static bool growSlotsDontReportOOM(ExclusiveContext* cx, NativeObject* obj, uint32_t newCount);
bool hasDynamicSlots() const { return !!slots_; }
/* Compute dynamicSlotsCount() for this object. */
uint32_t numDynamicSlots() const {
return dynamicSlotsCount(numFixedSlots(), slotSpan(), getClass());
}
bool empty() const {
return lastProperty()->isEmptyShape();
}
Shape* lookup(ExclusiveContext* cx, jsid id);
Shape* lookup(ExclusiveContext* cx, PropertyName* name) {
return lookup(cx, NameToId(name));
}
bool contains(ExclusiveContext* cx, jsid id) {
return lookup(cx, id) != nullptr;
}
bool contains(ExclusiveContext* cx, PropertyName* name) {
return lookup(cx, name) != nullptr;
}
bool contains(ExclusiveContext* cx, Shape* shape) {
return lookup(cx, shape->propid()) == shape;
}
bool containsShapeOrElement(ExclusiveContext* cx, jsid id) {
if (JSID_IS_INT(id) && containsDenseElement(JSID_TO_INT(id)))
return true;
return contains(cx, id);
}
/* Contextless; can be called from other pure code. */
Shape* lookupPure(jsid id);
Shape* lookupPure(PropertyName* name) {
return lookupPure(NameToId(name));
}
bool containsPure(jsid id) {
return lookupPure(id) != nullptr;
}
bool containsPure(PropertyName* name) {
return containsPure(NameToId(name));
}
bool containsPure(Shape* shape) {
return lookupPure(shape->propid()) == shape;
}
/*
* Allocate and free an object slot.
*
* FIXME: bug 593129 -- slot allocation should be done by object methods
* after calling object-parameter-free shape methods, avoiding coupling
* logic across the object vs. shape module wall.
*/
static bool allocSlot(ExclusiveContext* cx, HandleNativeObject obj, uint32_t* slotp);
void freeSlot(ExclusiveContext* cx, uint32_t slot);
private:
static Shape* getChildPropertyOnDictionary(ExclusiveContext* cx, HandleNativeObject obj,
HandleShape parent, MutableHandle<StackShape> child);
static Shape* getChildProperty(ExclusiveContext* cx, HandleNativeObject obj,
HandleShape parent, MutableHandle<StackShape> child);
public:
/* Add a property whose id is not yet in this scope. */
static Shape* addProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleId id,
JSGetterOp getter, JSSetterOp setter,
uint32_t slot, unsigned attrs, unsigned flags,
bool allowDictionary = true);
/* Add a data property whose id is not yet in this scope. */
Shape* addDataProperty(ExclusiveContext* cx,
jsid id_, uint32_t slot, unsigned attrs);
Shape* addDataProperty(ExclusiveContext* cx, HandlePropertyName name,
uint32_t slot, unsigned attrs);
/* Add or overwrite a property for id in this scope. */
static Shape*
putProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleId id,
JSGetterOp getter, JSSetterOp setter,
uint32_t slot, unsigned attrs,
unsigned flags);
static inline Shape*
putProperty(ExclusiveContext* cx, HandleObject obj, PropertyName* name,
JSGetterOp getter, JSSetterOp setter,
uint32_t slot, unsigned attrs,
unsigned flags);
/* Change the given property into a sibling with the same id in this scope. */
static Shape*
changeProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleShape shape,
unsigned attrs, JSGetterOp getter, JSSetterOp setter);
/* Remove the property named by id from this object. */
static bool removeProperty(ExclusiveContext* cx, HandleNativeObject obj, jsid id);
/* Clear the scope, making it empty. */
static void clear(ExclusiveContext* cx, HandleNativeObject obj);
protected:
/*
* Internal helper that adds a shape not yet mapped by this object.
*
* Notes:
* 1. getter and setter must be normalized based on flags (see jsscope.cpp).
* 2. Checks for non-extensibility must be done by callers.
*/
static Shape*
addPropertyInternal(ExclusiveContext* cx, HandleNativeObject obj, HandleId id,
JSGetterOp getter, JSSetterOp setter, uint32_t slot, unsigned attrs,
unsigned flags, ShapeTable::Entry* entry, bool allowDictionary,
const AutoKeepShapeTables& keep);
static MOZ_MUST_USE bool fillInAfterSwap(JSContext* cx, HandleNativeObject obj,
const Vector<Value>& values, void* priv);
public:
// Return true if this object has been converted from shared-immutable
// prototype-rooted shape storage to dictionary-shapes in a doubly-linked
// list.
bool inDictionaryMode() const {
return lastProperty()->inDictionary();
}
const Value& getSlot(uint32_t slot) const {
MOZ_ASSERT(slotInRange(slot));
uint32_t fixed = numFixedSlots();
if (slot < fixed)
return fixedSlots()[slot];
return slots_[slot - fixed];
}
const HeapSlot* getSlotAddressUnchecked(uint32_t slot) const {
uint32_t fixed = numFixedSlots();
if (slot < fixed)
return fixedSlots() + slot;
return slots_ + (slot - fixed);
}
HeapSlot* getSlotAddressUnchecked(uint32_t slot) {
uint32_t fixed = numFixedSlots();
if (slot < fixed)
return fixedSlots() + slot;
return slots_ + (slot - fixed);
}
HeapSlot* getSlotAddress(uint32_t slot) {
/*
* This can be used to get the address of the end of the slots for the
* object, which may be necessary when fetching zero-length arrays of
* slots (e.g. for callObjVarArray).
*/
MOZ_ASSERT(slotInRange(slot, SENTINEL_ALLOWED));
return getSlotAddressUnchecked(slot);
}
const HeapSlot* getSlotAddress(uint32_t slot) const {
/*
* This can be used to get the address of the end of the slots for the
* object, which may be necessary when fetching zero-length arrays of
* slots (e.g. for callObjVarArray).
*/
MOZ_ASSERT(slotInRange(slot, SENTINEL_ALLOWED));
return getSlotAddressUnchecked(slot);
}
HeapSlot& getSlotRef(uint32_t slot) {
MOZ_ASSERT(slotInRange(slot));
return *getSlotAddress(slot);
}
const HeapSlot& getSlotRef(uint32_t slot) const {
MOZ_ASSERT(slotInRange(slot));
return *getSlotAddress(slot);
}
void setSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slotInRange(slot));
MOZ_ASSERT(IsObjectValueInCompartment(value, compartment()));
getSlotRef(slot).set(this, HeapSlot::Slot, slot, value);
}
void initSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(getSlot(slot).isUndefined());
MOZ_ASSERT(slotInRange(slot));
MOZ_ASSERT(IsObjectValueInCompartment(value, compartment()));
initSlotUnchecked(slot, value);
}
void initSlotUnchecked(uint32_t slot, const Value& value) {
getSlotAddressUnchecked(slot)->init(this, HeapSlot::Slot, slot, value);
}
// MAX_FIXED_SLOTS is the biggest number of fixed slots our GC
// size classes will give an object.
static const uint32_t MAX_FIXED_SLOTS = 16;
protected:
inline bool updateSlotsForSpan(ExclusiveContext* cx, size_t oldSpan, size_t newSpan);
private:
void prepareElementRangeForOverwrite(size_t start, size_t end) {
MOZ_ASSERT(end <= getDenseInitializedLength());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
for (size_t i = start; i < end; i++)
elements_[i].destroy();
}
/*
* Trigger the write barrier on a range of slots that will no longer be
* reachable.
*/
void prepareSlotRangeForOverwrite(size_t start, size_t end) {
for (size_t i = start; i < end; i++)
getSlotAddressUnchecked(i)->destroy();
}
public:
static bool rollbackProperties(ExclusiveContext* cx, HandleNativeObject obj,
uint32_t slotSpan);
inline void setSlotWithType(ExclusiveContext* cx, Shape* shape,
const Value& value, bool overwriting = true);
inline const Value& getReservedSlot(uint32_t index) const {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
return getSlot(index);
}
const HeapSlot& getReservedSlotRef(uint32_t index) const {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
return getSlotRef(index);
}
HeapSlot& getReservedSlotRef(uint32_t index) {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
return getSlotRef(index);
}
void initReservedSlot(uint32_t index, const Value& v) {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
initSlot(index, v);
}
void setReservedSlot(uint32_t index, const Value& v) {
MOZ_ASSERT(index < JSSLOT_FREE(getClass()));
setSlot(index, v);
}
/* For slots which are known to always be fixed, due to the way they are allocated. */
HeapSlot& getFixedSlotRef(uint32_t slot) {
MOZ_ASSERT(slot < numFixedSlots());
return fixedSlots()[slot];
}
const Value& getFixedSlot(uint32_t slot) const {
MOZ_ASSERT(slot < numFixedSlots());
return fixedSlots()[slot];
}
void setFixedSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slot < numFixedSlots());
fixedSlots()[slot].set(this, HeapSlot::Slot, slot, value);
}
void initFixedSlot(uint32_t slot, const Value& value) {
MOZ_ASSERT(slot < numFixedSlots());
fixedSlots()[slot].init(this, HeapSlot::Slot, slot, value);
}
/*
* Get the number of dynamic slots to allocate to cover the properties in
* an object with the given number of fixed slots and slot span. The slot
* capacity is not stored explicitly, and the allocated size of the slot
* array is kept in sync with this count.
*/
static uint32_t dynamicSlotsCount(uint32_t nfixed, uint32_t span, const Class* clasp);
static uint32_t dynamicSlotsCount(Shape* shape) {
return dynamicSlotsCount(shape->numFixedSlots(), shape->slotSpan(), shape->getObjectClass());
}
/* Elements accessors. */
// The maximum size, in sizeof(Value), of the allocation used for an
// object's dense elements. (This includes space used to store an
// ObjectElements instance.)
// |MAX_DENSE_ELEMENTS_ALLOCATION * sizeof(JS::Value)| shouldn't overflow
// int32_t (see elementsSizeMustNotOverflow).
static const uint32_t MAX_DENSE_ELEMENTS_ALLOCATION = (1 << 28) - 1;
// The maximum number of usable dense elements in an object.
static const uint32_t MAX_DENSE_ELEMENTS_COUNT =
MAX_DENSE_ELEMENTS_ALLOCATION - ObjectElements::VALUES_PER_HEADER;
static void elementsSizeMustNotOverflow() {
static_assert(NativeObject::MAX_DENSE_ELEMENTS_COUNT <= INT32_MAX / sizeof(JS::Value),
"every caller of this method require that an element "
"count multiplied by sizeof(Value) can't overflow "
"uint32_t (and sometimes int32_t ,too)");
}
ObjectElements * getElementsHeader() const {
return ObjectElements::fromElements(elements_);
}
/* Accessors for elements. */
bool ensureElements(ExclusiveContext* cx, uint32_t capacity) {
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
if (capacity > getDenseCapacity())
return growElements(cx, capacity);
return true;
}
static bool goodElementsAllocationAmount(ExclusiveContext* cx, uint32_t reqAllocated,
uint32_t length, uint32_t* goodAmount);
bool growElements(ExclusiveContext* cx, uint32_t newcap);
void shrinkElements(ExclusiveContext* cx, uint32_t cap);
void setDynamicElements(ObjectElements* header) {
MOZ_ASSERT(!hasDynamicElements());
elements_ = header->elements();
MOZ_ASSERT(hasDynamicElements());
}
static bool CopyElementsForWrite(ExclusiveContext* cx, NativeObject* obj);
bool maybeCopyElementsForWrite(ExclusiveContext* cx) {
if (denseElementsAreCopyOnWrite())
return CopyElementsForWrite(cx, this);
return true;
}
private:
inline void ensureDenseInitializedLengthNoPackedCheck(ExclusiveContext* cx,
uint32_t index, uint32_t extra);
// Run a post write barrier that encompasses multiple contiguous elements in a
// single step.
inline void elementsRangeWriteBarrierPost(uint32_t start, uint32_t count) {
for (size_t i = 0; i < count; i++) {
const Value& v = elements_[start + i];
if (v.isObject() && IsInsideNursery(&v.toObject())) {
JS::shadow::Runtime* shadowRuntime = shadowRuntimeFromMainThread();
shadowRuntime->gcStoreBufferPtr()->putSlot(this, HeapSlot::Element,
start + i, count - i);
return;
}
}
}
// See the comment over setDenseElementUnchecked, this applies in the same way.
void setDenseInitializedLengthUnchecked(uint32_t length) {
MOZ_ASSERT(length <= getDenseCapacity());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
prepareElementRangeForOverwrite(length, getElementsHeader()->initializedLength);
getElementsHeader()->initializedLength = length;
}
// Use this function with care. This is done to allow sparsifying frozen
// objects, but should only be called in a few places, and should be
// audited carefully!
void setDenseElementUnchecked(uint32_t index, const Value& val) {
MOZ_ASSERT(index < getDenseInitializedLength());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
elements_[index].set(this, HeapSlot::Element, index, val);
}
public:
void setDenseInitializedLength(uint32_t length) {
MOZ_ASSERT(!denseElementsAreFrozen());
setDenseInitializedLengthUnchecked(length);
}
inline void ensureDenseInitializedLength(ExclusiveContext* cx,
uint32_t index, uint32_t extra);
void setDenseElement(uint32_t index, const Value& val) {
MOZ_ASSERT(!denseElementsAreFrozen());
setDenseElementUnchecked(index, val);
}
void initDenseElement(uint32_t index, const Value& val) {
MOZ_ASSERT(index < getDenseInitializedLength());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
elements_[index].init(this, HeapSlot::Element, index, val);
}
void setDenseElementMaybeConvertDouble(uint32_t index, const Value& val) {
if (val.isInt32() && shouldConvertDoubleElements())
setDenseElement(index, DoubleValue(val.toInt32()));
else
setDenseElement(index, val);
}
inline void setDenseElementWithType(ExclusiveContext* cx, uint32_t index,
const Value& val);
inline void initDenseElementWithType(ExclusiveContext* cx, uint32_t index,
const Value& val);
inline void setDenseElementHole(ExclusiveContext* cx, uint32_t index);
static inline void removeDenseElementForSparseIndex(ExclusiveContext* cx,
HandleNativeObject obj, uint32_t index);
inline Value getDenseOrTypedArrayElement(uint32_t idx);
void copyDenseElements(uint32_t dstStart, const Value* src, uint32_t count) {
MOZ_ASSERT(dstStart + count <= getDenseCapacity());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
if (JS::shadow::Zone::asShadowZone(zone())->needsIncrementalBarrier()) {
for (uint32_t i = 0; i < count; ++i)
elements_[dstStart + i].set(this, HeapSlot::Element, dstStart + i, src[i]);
} else {
memcpy(reinterpret_cast<Value*>(&elements_[dstStart]), src,
count * sizeof(Value));
elementsRangeWriteBarrierPost(dstStart, count);
}
}
void initDenseElements(uint32_t dstStart, const Value* src, uint32_t count) {
MOZ_ASSERT(dstStart + count <= getDenseCapacity());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
memcpy(reinterpret_cast<Value*>(&elements_[dstStart]), src, count * sizeof(Value));
elementsRangeWriteBarrierPost(dstStart, count);
}
void moveDenseElements(uint32_t dstStart, uint32_t srcStart, uint32_t count) {
MOZ_ASSERT(dstStart + count <= getDenseCapacity());
MOZ_ASSERT(srcStart + count <= getDenseInitializedLength());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
/*
* Using memmove here would skip write barriers. Also, we need to consider
* an array containing [A, B, C], in the following situation:
*
* 1. Incremental GC marks slot 0 of array (i.e., A), then returns to JS code.
* 2. JS code moves slots 1..2 into slots 0..1, so it contains [B, C, C].
* 3. Incremental GC finishes by marking slots 1 and 2 (i.e., C).
*
* Since normal marking never happens on B, it is very important that the
* write barrier is invoked here on B, despite the fact that it exists in
* the array before and after the move.
*/
if (JS::shadow::Zone::asShadowZone(zone())->needsIncrementalBarrier()) {
if (dstStart < srcStart) {
HeapSlot* dst = elements_ + dstStart;
HeapSlot* src = elements_ + srcStart;
for (uint32_t i = 0; i < count; i++, dst++, src++)
dst->set(this, HeapSlot::Element, dst - elements_, *src);
} else {
HeapSlot* dst = elements_ + dstStart + count - 1;
HeapSlot* src = elements_ + srcStart + count - 1;
for (uint32_t i = 0; i < count; i++, dst--, src--)
dst->set(this, HeapSlot::Element, dst - elements_, *src);
}
} else {
memmove(elements_ + dstStart, elements_ + srcStart, count * sizeof(HeapSlot));
elementsRangeWriteBarrierPost(dstStart, count);
}
}
void moveDenseElementsNoPreBarrier(uint32_t dstStart, uint32_t srcStart, uint32_t count) {
MOZ_ASSERT(!shadowZone()->needsIncrementalBarrier());
MOZ_ASSERT(dstStart + count <= getDenseCapacity());
MOZ_ASSERT(srcStart + count <= getDenseCapacity());
MOZ_ASSERT(!denseElementsAreCopyOnWrite());
MOZ_ASSERT(!denseElementsAreFrozen());
memmove(elements_ + dstStart, elements_ + srcStart, count * sizeof(HeapSlot));
elementsRangeWriteBarrierPost(dstStart, count);
}
bool shouldConvertDoubleElements() {
return getElementsHeader()->shouldConvertDoubleElements();
}
inline void setShouldConvertDoubleElements();
inline void clearShouldConvertDoubleElements();
bool denseElementsAreCopyOnWrite() {
return getElementsHeader()->isCopyOnWrite();
}
bool denseElementsAreFrozen() {
return getElementsHeader()->isFrozen();
}
/* Packed information for this object's elements. */
inline bool writeToIndexWouldMarkNotPacked(uint32_t index);
inline void markDenseElementsNotPacked(ExclusiveContext* cx);
// Ensures that the object can hold at least index + extra elements. This
// returns DenseElement_Success on success, DenseElement_Failed on failure
// to grow the array, or DenseElement_Incomplete when the object is too
// sparse to grow (this includes the case of index + extra overflow). In
// the last two cases the object is kept intact.
inline DenseElementResult ensureDenseElements(ExclusiveContext* cx,
uint32_t index, uint32_t extra);
inline DenseElementResult extendDenseElements(ExclusiveContext* cx,
uint32_t requiredCapacity, uint32_t extra);
/* Convert a single dense element to a sparse property. */
static bool sparsifyDenseElement(ExclusiveContext* cx,
HandleNativeObject obj, uint32_t index);
/* Convert all dense elements to sparse properties. */
static bool sparsifyDenseElements(ExclusiveContext* cx, HandleNativeObject obj);
/* Small objects are dense, no matter what. */
static const uint32_t MIN_SPARSE_INDEX = 1000;
/*
* Element storage for an object will be sparse if fewer than 1/8 indexes
* are filled in.
*/
static const unsigned SPARSE_DENSITY_RATIO = 8;
/*
* Check if after growing the object's elements will be too sparse.
* newElementsHint is an estimated number of elements to be added.
*/
bool willBeSparseElements(uint32_t requiredCapacity, uint32_t newElementsHint);
/*
* After adding a sparse index to obj, see if it should be converted to use
* dense elements.
*/
static DenseElementResult maybeDensifySparseElements(ExclusiveContext* cx,
HandleNativeObject obj);
inline HeapSlot* fixedElements() const {
static_assert(2 * sizeof(Value) == sizeof(ObjectElements),
"when elements are stored inline, the first two "
"slots will hold the ObjectElements header");
return &fixedSlots()[2];
}
#ifdef DEBUG
bool canHaveNonEmptyElements();
#endif
void setFixedElements() {
MOZ_ASSERT(canHaveNonEmptyElements());
elements_ = fixedElements();
}
inline bool hasDynamicElements() const {
/*
* Note: for objects with zero fixed slots this could potentially give
* a spurious 'true' result, if the end of this object is exactly
* aligned with the end of its arena and dynamic slots are allocated
* immediately afterwards. Such cases cannot occur for dense arrays
* (which have at least two fixed slots) and can only result in a leak.
*/
return !hasEmptyElements() && elements_ != fixedElements();
}
inline bool hasFixedElements() const {
return elements_ == fixedElements();
}
inline bool hasEmptyElements() const {
return elements_ == emptyObjectElements || elements_ == emptyObjectElementsShared;
}
/*
* Get a pointer to the unused data in the object's allocation immediately
* following this object, for use with objects which allocate a larger size
* class than they need and store non-elements data inline.
*/
inline uint8_t* fixedData(size_t nslots) const;
inline void privateWriteBarrierPre(void** oldval);
void privateWriteBarrierPost(void** pprivate) {
gc::Cell** cellp = reinterpret_cast<gc::Cell**>(pprivate);
MOZ_ASSERT(cellp);
MOZ_ASSERT(*cellp);
gc::StoreBuffer* storeBuffer = (*cellp)->storeBuffer();
if (storeBuffer)
storeBuffer->putCell(cellp);
}
/* Private data accessors. */
inline void*& privateRef(uint32_t nfixed) const { /* XXX should be private, not protected! */
/*
* The private pointer of an object can hold any word sized value.
* Private pointers are stored immediately after the last fixed slot of
* the object.
*/
MOZ_ASSERT(nfixed == numFixedSlots());
MOZ_ASSERT(hasPrivate());
HeapSlot* end = &fixedSlots()[nfixed];
return *reinterpret_cast<void**>(end);
}
bool hasPrivate() const {
return getClass()->hasPrivate();
}
void* getPrivate() const {
return privateRef(numFixedSlots());
}
void setPrivate(void* data) {
void** pprivate = &privateRef(numFixedSlots());
privateWriteBarrierPre(pprivate);
*pprivate = data;
}
void setPrivateGCThing(gc::Cell* cell) {
void** pprivate = &privateRef(numFixedSlots());
privateWriteBarrierPre(pprivate);
*pprivate = reinterpret_cast<void*>(cell);
privateWriteBarrierPost(pprivate);
}
void setPrivateUnbarriered(void* data) {
void** pprivate = &privateRef(numFixedSlots());
*pprivate = data;
}
void initPrivate(void* data) {
privateRef(numFixedSlots()) = data;
}
/* Access private data for an object with a known number of fixed slots. */
inline void* getPrivate(uint32_t nfixed) const {
return privateRef(nfixed);
}
static inline NativeObject*
copy(ExclusiveContext* cx, gc::AllocKind kind, gc::InitialHeap heap,
HandleNativeObject templateObject);
void updateShapeAfterMovingGC();
void sweepDictionaryListPointer();
/* JIT Accessors */
static size_t offsetOfElements() { return offsetof(NativeObject, elements_); }
static size_t offsetOfFixedElements() {
return sizeof(NativeObject) + sizeof(ObjectElements);
}
static size_t getFixedSlotOffset(size_t slot) {
return sizeof(NativeObject) + slot * sizeof(Value);
}
static size_t getPrivateDataOffset(size_t nfixed) { return getFixedSlotOffset(nfixed); }
static size_t offsetOfSlots() { return offsetof(NativeObject, slots_); }
};
// Object class for plain native objects created using '{}' object literals,
// 'new Object()', 'Object.create', etc.
class PlainObject : public NativeObject
{
public:
static const js::Class class_;
};
inline void
NativeObject::privateWriteBarrierPre(void** oldval)
{
JS::shadow::Zone* shadowZone = this->shadowZoneFromAnyThread();
if (shadowZone->needsIncrementalBarrier() && *oldval && getClass()->hasTrace())
getClass()->doTrace(shadowZone->barrierTracer(), this);
}
#ifdef DEBUG
static inline bool
IsObjectValueInCompartment(const Value& v, JSCompartment* comp)
{
if (!v.isObject())
return true;
return v.toObject().compartment() == comp;
}
#endif
/*** Standard internal methods *******************************************************************/
/*
* These functions should follow the algorithms in ES6 draft rev 29 section 9.1
* ("Ordinary Object Internal Methods"). It's an ongoing project.
*
* Many native objects are not "ordinary" in ES6, so these functions also have
* to serve some of the special needs of Functions (9.2, 9.3, 9.4.1), Arrays
* (9.4.2), Strings (9.4.3), and so on.
*/
extern bool
NativeDefineProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleId id,
Handle<JS::PropertyDescriptor> desc,
ObjectOpResult& result);
extern bool
NativeDefineProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleId id, HandleValue value,
JSGetterOp getter, JSSetterOp setter, unsigned attrs,
ObjectOpResult& result);
extern bool
NativeDefineProperty(ExclusiveContext* cx, HandleNativeObject obj, PropertyName* name,
HandleValue value, GetterOp getter, SetterOp setter,
unsigned attrs, ObjectOpResult& result);
extern bool
NativeDefineElement(ExclusiveContext* cx, HandleNativeObject obj, uint32_t index, HandleValue value,
JSGetterOp getter, JSSetterOp setter, unsigned attrs,
ObjectOpResult& result);
/* If the result out-param is omitted, throw on failure. */
extern bool
NativeDefineProperty(ExclusiveContext* cx, HandleNativeObject obj, HandleId id, HandleValue value,
JSGetterOp getter, JSSetterOp setter, unsigned attrs);
extern bool
NativeDefineProperty(ExclusiveContext* cx, HandleNativeObject obj, PropertyName* name,
HandleValue value, JSGetterOp getter, JSSetterOp setter,
unsigned attrs);
extern bool
NativeHasProperty(JSContext* cx, HandleNativeObject obj, HandleId id, bool* foundp);
extern bool
NativeGetOwnPropertyDescriptor(JSContext* cx, HandleNativeObject obj, HandleId id,
MutableHandle<JS::PropertyDescriptor> desc);
extern bool
NativeGetProperty(JSContext* cx, HandleNativeObject obj, HandleValue receiver, HandleId id,
MutableHandleValue vp);
extern bool
NativeGetPropertyNoGC(JSContext* cx, NativeObject* obj, const Value& receiver, jsid id, Value* vp);
inline bool
NativeGetProperty(JSContext* cx, HandleNativeObject obj, HandleId id, MutableHandleValue vp)
{
RootedValue receiver(cx, ObjectValue(*obj));
return NativeGetProperty(cx, obj, receiver, id, vp);
}
bool
SetPropertyByDefining(JSContext* cx, HandleId id, HandleValue v, HandleValue receiver,
ObjectOpResult& result);
bool
SetPropertyOnProto(JSContext* cx, HandleObject obj, HandleId id, HandleValue v,
HandleValue receiver, ObjectOpResult& result);
/*
* Indicates whether an assignment operation is qualified (`x.y = 0`) or
* unqualified (`y = 0`). In strict mode, the latter is an error if no such
* variable already exists.
*
* Used as an argument to NativeSetProperty.
*/
enum QualifiedBool {
Unqualified = 0,
Qualified = 1
};
extern bool
NativeSetProperty(JSContext* cx, HandleNativeObject obj, HandleId id, HandleValue v,
HandleValue receiver, QualifiedBool qualified, ObjectOpResult& result);
extern bool
NativeSetElement(JSContext* cx, HandleNativeObject obj, uint32_t index, HandleValue v,
HandleValue receiver, ObjectOpResult& result);
extern bool
NativeDeleteProperty(JSContext* cx, HandleNativeObject obj, HandleId id, ObjectOpResult& result);
/*** SpiderMonkey nonstandard internal methods ***************************************************/
template <AllowGC allowGC>
extern bool
NativeLookupOwnProperty(ExclusiveContext* cx,
typename MaybeRooted<NativeObject*, allowGC>::HandleType obj,
typename MaybeRooted<jsid, allowGC>::HandleType id,
typename MaybeRooted<Shape*, allowGC>::MutableHandleType propp);
/*
* Get a property from `receiver`, after having already done a lookup and found
* the property on a native object `obj`.
*
* `shape` must not be null and must not be an implicit dense property. It must
* be present in obj's shape chain.
*/
extern bool
NativeGetExistingProperty(JSContext* cx, HandleObject receiver, HandleNativeObject obj,
HandleShape shape, MutableHandleValue vp);
/* * */
extern bool
GetPropertyForNameLookup(JSContext* cx, HandleObject obj, HandleId id, MutableHandleValue vp);
} /* namespace js */
template <>
inline bool
JSObject::is<js::NativeObject>() const { return isNative(); }
namespace js {
// Alternate to JSObject::as<NativeObject>() that tolerates null pointers.
inline NativeObject*
MaybeNativeObject(JSObject* obj)
{
return obj ? &obj->as<NativeObject>() : nullptr;
}
// Defined in NativeObject-inl.h.
bool IsPackedArray(JSObject* obj);
} // namespace js
/*** Inline functions declared in jsobj.h that use the native declarations above *****************/
inline bool
js::HasProperty(JSContext* cx, HandleObject obj, HandleId id, bool* foundp)
{
if (HasPropertyOp op = obj->getOpsHasProperty())
return op(cx, obj, id, foundp);
return NativeHasProperty(cx, obj.as<NativeObject>(), id, foundp);
}
inline bool
js::GetProperty(JSContext* cx, HandleObject obj, HandleValue receiver, HandleId id,
MutableHandleValue vp)
{
if (GetPropertyOp op = obj->getOpsGetProperty())
return op(cx, obj, receiver, id, vp);
return NativeGetProperty(cx, obj.as<NativeObject>(), receiver, id, vp);
}
inline bool
js::GetPropertyNoGC(JSContext* cx, JSObject* obj, const Value& receiver, jsid id, Value* vp)
{
if (obj->getOpsGetProperty())
return false;
return NativeGetPropertyNoGC(cx, &obj->as<NativeObject>(), receiver, id, vp);
}
inline bool
js::SetProperty(JSContext* cx, HandleObject obj, HandleId id, HandleValue v,
HandleValue receiver, ObjectOpResult& result)
{
if (obj->getOpsSetProperty())
return JSObject::nonNativeSetProperty(cx, obj, id, v, receiver, result);
return NativeSetProperty(cx, obj.as<NativeObject>(), id, v, receiver, Qualified, result);
}
inline bool
js::SetElement(JSContext* cx, HandleObject obj, uint32_t index, HandleValue v,
HandleValue receiver, ObjectOpResult& result)
{
if (obj->getOpsSetProperty())
return JSObject::nonNativeSetElement(cx, obj, index, v, receiver, result);
return NativeSetElement(cx, obj.as<NativeObject>(), index, v, receiver, result);
}
#endif /* vm_NativeObject_h */
|