summaryrefslogtreecommitdiff
path: root/js/src/regexp/regexp-stack.cc
blob: b8819e48b6b512d41af1cf370238b2b88b1e7ec8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
// Copyright 2009 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "regexp/regexp-stack.h"


namespace v8 {
namespace internal {

RegExpStackScope::RegExpStackScope(Isolate* isolate)
    : regexp_stack_(isolate->regexp_stack()) {
  // Initialize, if not already initialized.
  regexp_stack_->EnsureCapacity(0);
}


RegExpStackScope::~RegExpStackScope() {
  // Reset the buffer if it has grown.
  regexp_stack_->Reset();
}

RegExpStack::RegExpStack() : thread_local_(this), isolate_(nullptr) {}

RegExpStack::~RegExpStack() { thread_local_.FreeAndInvalidate(); }

char* RegExpStack::ArchiveStack(char* to) {
  if (!thread_local_.owns_memory_) {
    // Force dynamic stacks prior to archiving. Any growth will do. A dynamic
    // stack is needed because stack archival & restoration rely on `memory_`
    // pointing at a fixed-location backing store, whereas the static stack is
    // tied to a RegExpStack instance.
    EnsureCapacity(thread_local_.memory_size_ + 1);
    DCHECK(thread_local_.owns_memory_);
  }

  size_t size = sizeof(thread_local_);
  MemCopy(reinterpret_cast<void*>(to), &thread_local_, size);
  thread_local_ = ThreadLocal(this);
  return to + size;
}


char* RegExpStack::RestoreStack(char* from) {
  size_t size = sizeof(thread_local_);
  MemCopy(&thread_local_, reinterpret_cast<void*>(from), size);
  return from + size;
}

void RegExpStack::Reset() { thread_local_.ResetToStaticStack(this); }

void RegExpStack::ThreadLocal::ResetToStaticStack(RegExpStack* regexp_stack) {
  if (owns_memory_) DeleteArray(memory_);

  memory_ = regexp_stack->static_stack_;
  memory_top_ = regexp_stack->static_stack_ + kStaticStackSize;
  memory_size_ = kStaticStackSize;
  limit_ = reinterpret_cast<Address>(regexp_stack->static_stack_) +
           kStackLimitSlack * kSystemPointerSize;
  owns_memory_ = false;
}

void RegExpStack::ThreadLocal::FreeAndInvalidate() {
  if (owns_memory_) DeleteArray(memory_);

  // This stack may not be used after being freed. Just reset to invalid values
  // to ensure we don't accidentally use old memory areas.
  memory_ = nullptr;
  memory_top_ = nullptr;
  memory_size_ = 0;
  limit_ = kMemoryTop;
}

Address RegExpStack::EnsureCapacity(size_t size) {
  if (size > kMaximumStackSize) return kNullAddress;
  if (size < kMinimumDynamicStackSize) size = kMinimumDynamicStackSize;
  if (thread_local_.memory_size_ < size) {
    byte* new_memory = NewArray<byte>(size);
    if (thread_local_.memory_size_ > 0) {
      // Copy original memory into top of new memory.
      MemCopy(new_memory + size - thread_local_.memory_size_,
              thread_local_.memory_, thread_local_.memory_size_);
      if (thread_local_.owns_memory_) DeleteArray(thread_local_.memory_);
    }
    thread_local_.memory_ = new_memory;
    thread_local_.memory_top_ = new_memory + size;
    thread_local_.memory_size_ = size;
    thread_local_.limit_ = reinterpret_cast<Address>(new_memory) +
                           kStackLimitSlack * kSystemPointerSize;
    thread_local_.owns_memory_ = true;
  }
  return reinterpret_cast<Address>(thread_local_.memory_top_);
}


}  // namespace internal
}  // namespace v8