1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_UTIL_ZONE_H_
#define V8_UTIL_ZONE_H_
#include <list>
#include <map>
#include <set>
#include <unordered_map>
#include <vector>
#include "ds/LifoAlloc.h"
#include "ds/Sort.h"
#include "new-regexp/util/vector.h"
namespace v8 {
namespace internal {
// V8::Zone ~= LifoAlloc
class Zone {
public:
Zone(size_t defaultChunkSize) : lifoAlloc_(defaultChunkSize) {
lifoAlloc_.setAsInfallibleByDefault();
}
void* New(size_t size) {
js::LifoAlloc::AutoFallibleScope fallible(&lifoAlloc_);
js::AutoEnterOOMUnsafeRegion oomUnsafe;
void* result = lifoAlloc_.alloc(size);
if (!result) {
oomUnsafe.crash("Irregexp Zone::new");
}
return result;
}
void DeleteAll() { lifoAlloc_.freeAll(); }
// Returns true if the total memory allocated exceeds a threshold.
static const size_t kExcessLimit = 256 * 1024 * 1024;
bool excess_allocation() const {
return lifoAlloc_.computedSizeOfExcludingThis() > kExcessLimit;
}
private:
js::LifoAlloc lifoAlloc_;
};
// Superclass for classes allocated in a Zone.
// Origin: https://github.com/v8/v8/blob/7b3332844212d78ee87a9426f3a6f7f781a8fbfa/src/zone/zone.h#L138-L155
class ZoneObject {
public:
// Allocate a new ZoneObject of 'size' bytes in the Zone.
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
// Ideally, the delete operator should be private instead of
// public, but unfortunately the compiler sometimes synthesizes
// (unused) destructors for classes derived from ZoneObject, which
// require the operator to be visible. MSVC requires the delete
// operator to be public.
// ZoneObjects should never be deleted individually; use
// Zone::DeleteAll() to delete all zone objects in one go.
void operator delete(void*, size_t) { MOZ_CRASH("unreachable"); }
void operator delete(void* pointer, Zone* zone) { MOZ_CRASH("unreachable"); }
};
// ZoneLists are growable lists with constant-time access to the
// elements. The list itself and all its elements are allocated in the
// Zone. ZoneLists cannot be deleted individually; you can delete all
// objects in the Zone by calling Zone::DeleteAll().
// Used throughout irregexp.
// Origin: https://github.com/v8/v8/blob/5e514a969376dc63517d575b062758efd36cd757/src/zone/zone.h#L173-L318
// Inlines: https://github.com/v8/v8/blob/5e514a969376dc63517d575b062758efd36cd757/src/zone/zone-list-inl.h#L17-L155
template <typename T>
class ZoneList final {
public:
// Construct a new ZoneList with the given capacity; the length is
// always zero. The capacity must be non-negative.
ZoneList(int capacity, Zone* zone) { Initialize(capacity, zone); }
// Construct a new ZoneList from a std::initializer_list
ZoneList(std::initializer_list<T> list, Zone* zone) {
Initialize(static_cast<int>(list.size()), zone);
for (auto& i : list) Add(i, zone);
}
// Construct a new ZoneList by copying the elements of the given ZoneList.
ZoneList(const ZoneList<T>& other, Zone* zone) {
Initialize(other.length(), zone);
AddAll(other, zone);
}
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
// Returns a reference to the element at index i. This reference is not safe
// to use after operations that can change the list's backing store
// (e.g. Add).
inline T& operator[](int i) const {
MOZ_ASSERT(0 < i);
MOZ_ASSERT(static_cast<unsigned>(i) < static_cast<unsigned>(length_));
return data_[i];
}
inline T& at(int i) const { return operator[](i); }
inline T& last() const { return at(length_ - 1); }
inline T& first() const { return at(0); }
using iterator = T*;
inline iterator begin() const { return &data_[0]; }
inline iterator end() const { return &data_[length_]; }
inline bool is_empty() const { return length_ == 0; }
inline int length() const { return length_; }
inline int capacity() const { return capacity_; }
Vector<T> ToVector() const { return Vector<T>(data_, length_); }
Vector<T> ToVector(int start, int length) const {
return Vector<T>(data_ + start, std::min(length_ - start, length));
}
Vector<const T> ToConstVector() const {
return Vector<const T>(data_, length_);
}
inline void Initialize(int capacity, Zone* zone) {
MOZ_ASSERT(capacity >= 0);
data_ = (capacity > 0) ? NewData(capacity, zone) : nullptr;
capacity_ = capacity;
length_ = 0;
}
// Adds a copy of the given 'element' to the end of the list,
// expanding the list if necessary.
void Add(const T& element, Zone* zone) {
if (length_ < capacity_) {
data_[length_++] = element;
} else {
ZoneList<T>::ResizeAdd(element, zone);
}
}
// Add all the elements from the argument list to this list.
void AddAll(const ZoneList<T>& other, Zone* zone) {
AddAll(other.ToVector(), zone);
}
// Add all the elements from the vector to this list.
void AddAll(const Vector<T>& other, Zone* zone) {
int result_length = length_ + other.length();
if (capacity_ < result_length) {
Resize(result_length, zone);
}
if (std::is_fundamental<T>()) {
memcpy(data_ + length_, other.begin(), sizeof(*data_) * other.length());
} else {
for (int i = 0; i < other.length(); i++) {
data_[length_ + i] = other.at(i);
}
}
length_ = result_length;
}
// Overwrites the element at the specific index.
void Set(int index, const T& element) {
MOZ_ASSERT(index >= 0 && index <= length_);
data_[index] = element;
}
// Removes the i'th element without deleting it even if T is a
// pointer type; moves all elements above i "down". Returns the
// removed element. This function's complexity is linear in the
// size of the list.
T Remove(int i) {
T element = at(i);
length_--;
while (i < length_) {
data_[i] = data_[i + 1];
i++;
}
return element;
}
// Removes the last element without deleting it even if T is a
// pointer type. Returns the removed element.
inline T RemoveLast() { return Remove(length_ - 1); }
// Clears the list by freeing the storage memory. If you want to keep the
// memory, use Rewind(0) instead. Be aware, that even if T is a
// pointer type, clearing the list doesn't delete the entries.
inline void Clear() {
data_ = nullptr;
capacity_ = 0;
length_ = 0;
}
// Drops all but the first 'pos' elements from the list.
inline void Rewind(int pos) {
MOZ_ASSERT(0 <= pos && pos <= length_);
length_ = pos;
}
inline bool Contains(const T& elm) const {
for (int i = 0; i < length_; i++) {
if (data_[i] == elm) return true;
}
return false;
}
template <typename CompareFunction>
void StableSort(CompareFunction cmp, size_t start, size_t length) {
js::AutoEnterOOMUnsafeRegion oomUnsafe;
T* scratch = static_cast<T*>(js_malloc(length * sizeof(T)));
if (!scratch) {
oomUnsafe.crash("Irregexp stable sort scratch space");
}
auto comparator = [cmp](const T& a, const T& b, bool* lessOrEqual) {
*lessOrEqual = cmp(&a, &b) <= 0;
return true;
};
MOZ_ALWAYS_TRUE(js::MergeSort(begin() + start, length, scratch,
comparator));
js_free(scratch);
}
void operator delete(void* pointer) { MOZ_CRASH("unreachable"); }
void operator delete(void* pointer, Zone* zone) { MOZ_CRASH("unreachable"); }
private:
T* data_;
int capacity_;
int length_;
inline T* NewData(int n, Zone* zone) {
return static_cast<T*>(zone->New(n * sizeof(T)));
}
// Increase the capacity of a full list, and add an element.
// List must be full already.
void ResizeAdd(const T& element, Zone* zone) {
MOZ_ASSERT(length_ >= capacity_);
// Grow the list capacity by 100%, but make sure to let it grow
// even when the capacity is zero (possible initial case).
int new_capacity = 1 + 2 * capacity_;
// Since the element reference could be an element of the list, copy
// it out of the old backing storage before resizing.
T temp = element;
Resize(new_capacity, zone);
data_[length_++] = temp;
}
// Resize the list.
void Resize(int new_capacity, Zone* zone) {
MOZ_ASSERT(length_ <= new_capacity);
T* new_data = NewData(new_capacity, zone);
if (length_ > 0) {
memcpy(new_data, data_, length_ * sizeof(T));
}
data_ = new_data;
capacity_ = new_capacity;
}
ZoneList& operator=(const ZoneList&) = delete;
ZoneList() = delete;
ZoneList(const ZoneList&) = delete;
};
// Origin: https://github.com/v8/v8/blob/5e514a969376dc63517d575b062758efd36cd757/src/zone/zone-allocator.h#L14-L77
template <typename T>
class ZoneAllocator {
public:
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using value_type = T;
using size_type = size_t;
using difference_type = ptrdiff_t;
template <class O>
struct rebind {
using other = ZoneAllocator<O>;
};
explicit ZoneAllocator(Zone* zone) : zone_(zone) {}
template <typename U>
ZoneAllocator(const ZoneAllocator<U>& other)
: ZoneAllocator<T>(other.zone_) {}
template <typename U>
friend class ZoneAllocator;
T* allocate(size_t n) { return static_cast<T*>(zone_->New(n * sizeof(T))); }
void deallocate(T* p, size_t) {} // noop for zones
bool operator==(ZoneAllocator const& other) const {
return zone_ == other.zone_;
}
bool operator!=(ZoneAllocator const& other) const {
return zone_ != other.zone_;
}
private:
Zone* zone_;
};
// Zone wrappers for std containers:
// Origin: https://github.com/v8/v8/blob/5e514a969376dc63517d575b062758efd36cd757/src/zone/zone-containers.h#L25-L169
// A wrapper subclass for std::vector to make it easy to construct one
// that uses a zone allocator.
// Used throughout irregexp
template <typename T>
class ZoneVector : public std::vector<T, ZoneAllocator<T>> {
public:
ZoneVector(Zone* zone)
: std::vector<T, ZoneAllocator<T>>(ZoneAllocator<T>(zone)) {}
// Constructs a new vector and fills it with the contents of the range
// [first, last).
template <class Iter>
ZoneVector(Iter first, Iter last, Zone* zone)
: std::vector<T, ZoneAllocator<T>>(first, last, ZoneAllocator<T>(zone)) {}
};
// A wrapper subclass for std::list to make it easy to construct one
// that uses a zone allocator.
// Used in regexp-bytecode-peephole.cc
template <typename T>
class ZoneLinkedList : public std::list<T, ZoneAllocator<T>> {
public:
// Constructs an empty list.
explicit ZoneLinkedList(Zone* zone)
: std::list<T, ZoneAllocator<T>>(ZoneAllocator<T>(zone)) {}
};
// A wrapper subclass for std::set to make it easy to construct one that uses
// a zone allocator.
// Used in regexp-parser.cc
template <typename K, typename Compare = std::less<K>>
class ZoneSet : public std::set<K, Compare, ZoneAllocator<K>> {
public:
// Constructs an empty set.
explicit ZoneSet(Zone* zone)
: std::set<K, Compare, ZoneAllocator<K>>(Compare(),
ZoneAllocator<K>(zone)) {}
};
// A wrapper subclass for std::map to make it easy to construct one that uses
// a zone allocator.
// Used in regexp-bytecode-peephole.cc
template <typename K, typename V, typename Compare = std::less<K>>
class ZoneMap
: public std::map<K, V, Compare, ZoneAllocator<std::pair<const K, V>>> {
public:
// Constructs an empty map.
explicit ZoneMap(Zone* zone)
: std::map<K, V, Compare, ZoneAllocator<std::pair<const K, V>>>(
Compare(), ZoneAllocator<std::pair<const K, V>>(zone)) {}
};
// A wrapper subclass for std::unordered_map to make it easy to construct one
// that uses a zone allocator.
// Used in regexp-bytecode-peephole.cc
template <typename K, typename V, typename Hash = std::hash<K>,
typename KeyEqual = std::equal_to<K>>
class ZoneUnorderedMap
: public std::unordered_map<K, V, Hash, KeyEqual,
ZoneAllocator<std::pair<const K, V>>> {
public:
// Constructs an empty map.
explicit ZoneUnorderedMap(Zone* zone, size_t bucket_count = 100)
: std::unordered_map<K, V, Hash, KeyEqual,
ZoneAllocator<std::pair<const K, V>>>(
bucket_count, Hash(), KeyEqual(),
ZoneAllocator<std::pair<const K, V>>(zone)) {}
};
} // namespace internal
} // namespace v8
#endif // V8_UTIL_FLAG_H_
|