summaryrefslogtreecommitdiff
path: root/js/src/new-regexp/regexp-native-macro-assembler.cc
blob: 01453a93749567483ed0cfb915e81d6b89e5be03 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
 * vim: set ts=8 sts=2 et sw=2 tw=80:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "jit/Linker.h"
#include "gc/Zone.h"
#include "new-regexp/regexp-macro-assembler-arch.h"
#include "new-regexp/regexp-stack.h"
#include "vm/MatchPairs.h"

#include "jit/MacroAssembler-inl.h"

using namespace js;
using namespace js::irregexp;
using namespace js::jit;

namespace v8 {
namespace internal {

using js::MatchPairs;
using js::jit::AbsoluteAddress;
using js::jit::Address;
using js::jit::AllocatableGeneralRegisterSet;
using js::jit::Assembler;
using js::jit::BaseIndex;
using js::jit::CodeLocationLabel;
using js::jit::GeneralRegisterBackwardIterator;
using js::jit::GeneralRegisterForwardIterator;
using js::jit::GeneralRegisterSet;
using js::jit::Imm32;
using js::jit::ImmPtr;
using js::jit::ImmWord;
using js::jit::JitCode;
using js::jit::Linker;
using js::jit::LiveGeneralRegisterSet;
using js::jit::Register;
using js::jit::Registers;
using js::jit::StackMacroAssembler;

SMRegExpMacroAssembler::SMRegExpMacroAssembler(JSContext* cx, Isolate* isolate,
                                               StackMacroAssembler& masm,
                                               Zone* zone, Mode mode,
                                               uint32_t num_capture_registers)
    : NativeRegExpMacroAssembler(isolate, zone),
      cx_(cx),
      masm_(masm),
      mode_(mode),
      num_registers_(num_capture_registers),
      num_capture_registers_(num_capture_registers) {
  // Each capture has a start and an end register
  MOZ_ASSERT(num_capture_registers_ % 2 == 0);

  AllocatableGeneralRegisterSet regs(GeneralRegisterSet::All());

  temp0_ = regs.takeAny();
  temp1_ = regs.takeAny();
  temp2_ = regs.takeAny();
  input_end_pointer_ = regs.takeAny();
  current_character_ = regs.takeAny();
  current_position_ = regs.takeAny();
  backtrack_stack_pointer_ = regs.takeAny();
  savedRegisters_ = js::jit::SavedNonVolatileRegisters(regs);

  masm_.jump(&entry_label_);  // We'll generate the entry code later
  masm_.bind(&start_label_);  // and continue from here.
}

int SMRegExpMacroAssembler::stack_limit_slack() {
  return RegExpStack::kStackLimitSlack;
}

void SMRegExpMacroAssembler::AdvanceCurrentPosition(int by) {
  if (by != 0) {
    masm_.addPtr(Imm32(by * char_size()), current_position_);
  }
}

void SMRegExpMacroAssembler::AdvanceRegister(int reg, int by) {
  MOZ_ASSERT(reg >= 0 && reg < num_registers_);
  if (by != 0) {
    masm_.addPtr(Imm32(by), register_location(reg));
  }
}

void SMRegExpMacroAssembler::Backtrack() {
    // Pop code location from backtrack stack and jump to location.
    Pop(temp0_);
    masm_.jump(temp0_);
}

void SMRegExpMacroAssembler::Bind(Label* label) {
  masm_.bind(label->inner());
  if (label->patchOffset_.bound()) {
    AddLabelPatch(label->patchOffset_, label->pos());
  }
}

// Check if current_position + cp_offset is the input start
void SMRegExpMacroAssembler::CheckAtStartImpl(int cp_offset, Label* on_cond,
                                              Assembler::Condition cond) {
  Address addr(current_position_, cp_offset * char_size());
  masm_.computeEffectiveAddress(addr, temp0_);

  masm_.branchPtr(cond, inputStart(), temp0_,
                  LabelOrBacktrack(on_cond));
}

void SMRegExpMacroAssembler::CheckAtStart(int cp_offset, Label* on_at_start) {
  CheckAtStartImpl(cp_offset, on_at_start, Assembler::Equal);
}

void SMRegExpMacroAssembler::CheckNotAtStart(int cp_offset,
                                             Label* on_not_at_start) {
  CheckAtStartImpl(cp_offset, on_not_at_start, Assembler::NotEqual);
}

void SMRegExpMacroAssembler::CheckCharacterImpl(Imm32 c, Label* on_cond,
                                                Assembler::Condition cond) {
  masm_.branch32(cond, current_character_, c, LabelOrBacktrack(on_cond));
}

void SMRegExpMacroAssembler::CheckCharacter(uint32_t c, Label* on_equal) {
  CheckCharacterImpl(Imm32(c), on_equal, Assembler::Equal);
}

void SMRegExpMacroAssembler::CheckNotCharacter(uint32_t c,
                                               Label* on_not_equal) {
  CheckCharacterImpl(Imm32(c), on_not_equal, Assembler::NotEqual);
}

void SMRegExpMacroAssembler::CheckCharacterGT(uc16 c, Label* on_greater) {
  CheckCharacterImpl(Imm32(c), on_greater, Assembler::GreaterThan);
}

void SMRegExpMacroAssembler::CheckCharacterLT(uc16 c, Label* on_less) {
  CheckCharacterImpl(Imm32(c), on_less, Assembler::LessThan);
}

// Bitwise-and the current character with mask and then check for a
// match with c.
void SMRegExpMacroAssembler::CheckCharacterAfterAndImpl(uint32_t c,
                                                        uint32_t mask,
                                                        Label* on_cond,
                                                        bool is_not) {
  if (c == 0) {
    Assembler::Condition cond = is_not ? Assembler::NonZero : Assembler::Zero;
    masm_.branchTest32(cond, current_character_, Imm32(mask),
                       LabelOrBacktrack(on_cond));
  } else {
    Assembler::Condition cond = is_not ? Assembler::NotEqual : Assembler::Equal;
    masm_.move32(Imm32(mask), temp0_);
    masm_.and32(current_character_, temp0_);
    masm_.branch32(cond, temp0_, Imm32(c), LabelOrBacktrack(on_cond));
  }
}

void SMRegExpMacroAssembler::CheckCharacterAfterAnd(uint32_t c,
                                                    uint32_t mask,
                                                    Label* on_equal) {
  CheckCharacterAfterAndImpl(c, mask, on_equal, /*is_not =*/false);
}

void SMRegExpMacroAssembler::CheckNotCharacterAfterAnd(uint32_t c,
                                                       uint32_t mask,
                                                       Label* on_not_equal) {
  CheckCharacterAfterAndImpl(c, mask, on_not_equal, /*is_not =*/true);
}


// Subtract minus from the current character, then bitwise-and the
// result with mask, then check for a match with c.
void SMRegExpMacroAssembler::CheckNotCharacterAfterMinusAnd(
    uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
  masm_.computeEffectiveAddress(Address(current_character_, -minus), temp0_);
  if (c == 0) {
    masm_.branchTest32(Assembler::NonZero, temp0_, Imm32(mask),
                       LabelOrBacktrack(on_not_equal));
  } else {
    masm_.and32(Imm32(mask), temp0_);
    masm_.branch32(Assembler::NotEqual, temp0_, Imm32(c),
                   LabelOrBacktrack(on_not_equal));
  }
}

// If the current position matches the position stored on top of the backtrack
// stack, pops the backtrack stack and branches to the given label.
void SMRegExpMacroAssembler::CheckGreedyLoop(Label* on_equal) {
  js::jit::Label fallthrough;
  masm_.branchPtr(Assembler::NotEqual, Address(backtrack_stack_pointer_, 0),
                  current_position_, &fallthrough);
  masm_.addPtr(Imm32(sizeof(void*)), backtrack_stack_pointer_);  // Pop.
  JumpOrBacktrack(on_equal);
  masm_.bind(&fallthrough);
}

void SMRegExpMacroAssembler::CheckCharacterInRangeImpl(
    uc16 from, uc16 to, Label* on_cond, Assembler::Condition cond) {
  // x is in [from,to] if unsigned(x - from) <= to - from
  masm_.computeEffectiveAddress(Address(current_character_, -from), temp0_);
  masm_.branch32(cond, temp0_, Imm32(to - from), LabelOrBacktrack(on_cond));
}

void SMRegExpMacroAssembler::CheckCharacterInRange(uc16 from, uc16 to,
                                                   Label* on_in_range) {
  CheckCharacterInRangeImpl(from, to, on_in_range, Assembler::BelowOrEqual);
}

void SMRegExpMacroAssembler::CheckCharacterNotInRange(uc16 from, uc16 to,
                                                      Label* on_not_in_range) {
  CheckCharacterInRangeImpl(from, to, on_not_in_range, Assembler::Above);
}

void SMRegExpMacroAssembler::CheckBitInTable(Handle<ByteArray> table,
                                             Label* on_bit_set) {
  // Claim ownership of the ByteArray from the current HandleScope.
  // ByteArrays are allocated on the C++ heap and are (eventually)
  // owned by the RegExpShared.
  PseudoHandle<ByteArrayData> rawTable = table->takeOwnership(isolate());

  masm_.movePtr(ImmPtr(rawTable->data()), temp0_);

  masm_.move32(Imm32(kTableMask), temp1_);
  masm_.and32(current_character_, temp1_);

  masm_.load8ZeroExtend(BaseIndex(temp0_, temp1_, js::jit::TimesOne), temp0_);
  masm_.branchTest32(Assembler::NonZero, temp0_, temp0_,
                     LabelOrBacktrack(on_bit_set));

  // Transfer ownership of |rawTable| to the |tables_| vector.
  AddTable(std::move(rawTable));
}

void SMRegExpMacroAssembler::CheckNotBackReferenceImpl(int start_reg,
                                                       bool read_backward,
                                                       Label* on_no_match,
                                                       bool ignore_case) {
  js::jit::Label fallthrough;

  // Captures are stored as a sequential pair of registers.
  // Find the length of the back-referenced capture and load the
  // capture's start index into current_character_.
  masm_.loadPtr(register_location(start_reg),               // index of start
                current_character_);
  masm_.loadPtr(register_location(start_reg + 1), temp0_);  // index of end
  masm_.subPtr(current_character_, temp0_);                 // length of capture

  // Capture registers are either both set or both cleared.
  // If the capture length is zero, then the capture is either empty or cleared.
  // Fall through in both cases.
  masm_.branchPtr(Assembler::Equal, temp0_, ImmWord(0), &fallthrough);

  // Check that there are sufficient characters left in the input.
  if (read_backward) {
    // If start + len > current, there isn't enough room for a
    // lookbehind backreference.
    masm_.loadPtr(inputStart(), temp1_);
    masm_.addPtr(temp0_, temp1_);
    masm_.branchPtr(Assembler::GreaterThan, temp1_, current_position_,
                    LabelOrBacktrack(on_no_match));
  } else {
    // current_position_ is the negative offset from the end.
    // If current + len > 0, there isn't enough room for a backreference.
    masm_.movePtr(current_position_, temp1_);
    masm_.addPtr(temp0_, temp1_);
    masm_.branchPtr(Assembler::GreaterThan, temp1_, ImmWord(0),
                    LabelOrBacktrack(on_no_match));
  }

  if (mode_ == UC16 && ignore_case) {
    // We call a helper function for case-insensitive non-latin1 strings.

    // Save volatile regs. temp1_ and temp2_ don't need to be saved.
    LiveGeneralRegisterSet volatileRegs(GeneralRegisterSet::Volatile());
    volatileRegs.takeUnchecked(temp1_);
    volatileRegs.takeUnchecked(temp2_);
    masm_.PushRegsInMask(volatileRegs);

    // Parameters are
    //   Address captured - Address of captured substring's start.
    //   Address current - Address of current character position.
    //   size_t byte_length - length of capture (in bytes)

    // Compute |captured|
    masm_.addPtr(input_end_pointer_, current_character_);

    // Compute |current|
    masm_.addPtr(input_end_pointer_, current_position_);
    if (read_backward) {
      // Offset by length when matching backwards.
      masm_.subPtr(temp0_, current_position_);
    }

    masm_.setupUnalignedABICall(temp1_);
    masm_.passABIArg(current_character_);
    masm_.passABIArg(current_position_);
    masm_.passABIArg(temp0_);

    bool unicode = true; // TODO: Fix V8 bug
    if (unicode) {
      uint32_t (*fun)(const char16_t*, const char16_t*, size_t) =
          CaseInsensitiveCompareUCStrings;
      masm_.callWithABI(JS_FUNC_TO_DATA_PTR(void*, fun));
    } else {
      uint32_t (*fun)(const char16_t*, const char16_t*, size_t) =
          CaseInsensitiveCompareStrings;
      masm_.callWithABI(JS_FUNC_TO_DATA_PTR(void*, fun));
    }
    masm_.storeCallInt32Result(temp1_);
    masm_.PopRegsInMask(volatileRegs);
    masm_.branchTest32(Assembler::Zero, temp1_, temp1_,
                       LabelOrBacktrack(on_no_match));

    // On success, advance position by length of capture
    if (read_backward) {
      masm_.subPtr(temp0_, current_position_);
    } else {
      masm_.addPtr(temp0_, current_position_);
    }

    masm_.bind(&fallthrough);
    return;
  }

  // We will be modifying current_position_. Save it in case the match fails.
  masm_.push(current_position_);

  // Compute start of capture string
  masm_.addPtr(input_end_pointer_, current_character_);

  // Compute start of match string
  masm_.addPtr(input_end_pointer_, current_position_);
  if (read_backward) {
    // Offset by length when matching backwards.
    masm_.subPtr(temp0_, current_position_);
  }

  // Compute end of match string
  masm_.addPtr(current_position_, temp0_);

  js::jit::Label success;
  js::jit::Label fail;
  js::jit::Label loop;
  masm_.bind(&loop);

  // Load next character from each string.
  if (mode_ == LATIN1) {
    masm_.load8ZeroExtend(Address(current_character_, 0), temp1_);
    masm_.load8ZeroExtend(Address(current_position_, 0), temp2_);
  } else {
    masm_.load16ZeroExtend(Address(current_character_, 0), temp1_);
    masm_.load16ZeroExtend(Address(current_position_, 0), temp2_);
  }

  if (ignore_case) {
    MOZ_ASSERT(mode_ == LATIN1);
    // Try exact match.
    js::jit::Label loop_increment;
    masm_.branch32(Assembler::Equal, temp1_, temp2_, &loop_increment);

    // Mismatch. Try case-insensitive match.
    // Force the match character to lower case (by setting bit 0x20)
    // then check to see if it is a letter.
    js::jit::Label convert_capture;
    masm_.or32(Imm32(0x20), temp1_);

    // Check if it is in [a,z].
    masm_.computeEffectiveAddress(Address(temp1_, -'a'), temp2_);
    masm_.branch32(Assembler::BelowOrEqual, temp2_, Imm32('z' - 'a'),
                   &convert_capture);
    // Check for values in range [224,254].
    // Exclude 247 (U+00F7 DIVISION SIGN).
    masm_.sub32(Imm32(224 - 'a'), temp2_);
    masm_.branch32(Assembler::Above, temp2_, Imm32(254 - 224), &fail);
    masm_.branch32(Assembler::Equal, temp2_, Imm32(247 - 224), &fail);

    // Match character is lower case. Convert capture character
    // to lower case and compare.
    masm_.bind(&convert_capture);
    masm_.load8ZeroExtend(Address(current_character_, 0), temp2_);
    masm_.or32(Imm32(0x20), temp2_);
    masm_.branch32(Assembler::NotEqual, temp1_, temp2_, &fail);

    masm_.bind(&loop_increment);
  } else {
    // Fail if characters do not match.
    masm_.branch32(Assembler::NotEqual, temp1_, temp2_, &fail);
  }

  // Increment pointers into match and capture strings.
  masm_.addPtr(Imm32(char_size()), current_character_);
  masm_.addPtr(Imm32(char_size()), current_position_);

  // Loop if we have not reached the end of the match string.
  masm_.branchPtr(Assembler::Below, current_position_, temp0_, &loop);
  masm_.jump(&success);

  // If we fail, restore current_position_ and branch.
  masm_.bind(&fail);
  masm_.pop(current_position_);
  JumpOrBacktrack(on_no_match);

  masm_.bind(&success);

  // current_position_ is a pointer. Convert it back to an offset.
  masm_.subPtr(input_end_pointer_, current_position_);
  if (read_backward) {
    // Subtract match length if we matched backward
    masm_.addPtr(register_location(start_reg), current_position_);
    masm_.subPtr(register_location(start_reg + 1), current_position_);
  }

  // Drop saved value of current_position_
  masm_.addToStackPtr(Imm32(sizeof(uintptr_t)));

  masm_.bind(&fallthrough);
}

// Branch if a back-reference does not match a previous capture.
void SMRegExpMacroAssembler::CheckNotBackReference(int start_reg,
                                                   bool read_backward,
                                                   Label* on_no_match) {
  CheckNotBackReferenceImpl(start_reg, read_backward, on_no_match,
                            /*ignore_case = */ false);
}

void SMRegExpMacroAssembler::CheckNotBackReferenceIgnoreCase(
    int start_reg, bool read_backward, Label* on_no_match) {
  CheckNotBackReferenceImpl(start_reg, read_backward, on_no_match,
                            /*ignore_case = */ true);
}

// Checks whether the given offset from the current position is
// inside the input string.
void SMRegExpMacroAssembler::CheckPosition(int cp_offset,
                                           Label* on_outside_input) {
  // Note: current_position_ is a (negative) byte offset relative to
  // the end of the input string.
  if (cp_offset >= 0) {
    //      end + current + offset >= end
    // <=>        current + offset >= 0
    // <=>        current          >= -offset
    masm_.branchPtr(Assembler::GreaterThanOrEqual, current_position_,
                    ImmWord(-cp_offset * char_size()),
                    LabelOrBacktrack(on_outside_input));
  } else {
    // Compute offset position
    masm_.computeEffectiveAddress(
        Address(current_position_, cp_offset * char_size()), temp0_);

    // Compare to start of input.
    masm_.branchPtr(Assembler::GreaterThanOrEqual, inputStart(), temp0_,
                    LabelOrBacktrack(on_outside_input));
  }
}

// This function attempts to generate special case code for character classes.
// Returns true if a special case is generated.
// Otherwise returns false and generates no code.
bool SMRegExpMacroAssembler::CheckSpecialCharacterClass(uc16 type,
                                                        Label* on_no_match) {
  js::jit::Label* no_match = LabelOrBacktrack(on_no_match);

  // Note: throughout this function, range checks (c in [min, max])
  // are implemented by an unsigned (c - min) <= (max - min) check.
  switch (type) {
    case 's': {
      // Match space-characters
      if (mode_ != LATIN1) {
        return false;
      }
      js::jit::Label success;
      // One byte space characters are ' ', '\t'..'\r', and '\u00a0' (NBSP).

      // Check ' '
      masm_.branch32(Assembler::Equal, current_character_, Imm32(' '),
                     &success);

      // Check '\t'..'\r'
      masm_.computeEffectiveAddress(Address(current_character_, -'\t'),
                                    temp0_);
      masm_.branch32(Assembler::BelowOrEqual, temp0_, Imm32('\r' - '\t'),
                     &success);

      // Check \u00a0.
      masm_.branch32(Assembler::NotEqual, temp0_, Imm32(0x00a0 - '\t'),
                     no_match);

      masm_.bind(&success);
      return true;
    }
    case 'S':
      // The emitted code for generic character classes is good enough.
      return false;
    case 'd':
      // Match latin1 digits ('0'-'9')
      masm_.computeEffectiveAddress(Address(current_character_, -'0'), temp0_);
      masm_.branch32(Assembler::Above, temp0_, Imm32('9' - '0'), no_match);
      return true;
    case 'D':
      // Match anything except latin1 digits ('0'-'9')
      masm_.computeEffectiveAddress(Address(current_character_, -'0'), temp0_);
      masm_.branch32(Assembler::BelowOrEqual, temp0_, Imm32('9' - '0'),
                     no_match);
      return true;
    case '.':
      // Match non-newlines. This excludes '\n' (0x0a), '\r' (0x0d),
      // U+2028 LINE SEPARATOR, and U+2029 PARAGRAPH SEPARATOR.
      // See https://tc39.es/ecma262/#prod-LineTerminator

      // To test for 0x0a and 0x0d efficiently, we XOR the input with 1.
      // This converts 0x0a to 0x0b, and 0x0d to 0x0c, allowing us to
      // test for the contiguous range 0x0b..0x0c.
      masm_.move32(current_character_, temp0_);
      masm_.xor32(Imm32(0x01), temp0_);
      masm_.sub32(Imm32(0x0b), temp0_);
      masm_.branch32(Assembler::BelowOrEqual, temp0_, Imm32(0x0c - 0x0b),
                     no_match);

      if (mode_ == UC16) {
        // Compare original value to 0x2028 and 0x2029, using the already
        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
        // 0x201d (0x2028 - 0x0b) or 0x201e.
        masm_.sub32(Imm32(0x2028 - 0x0b), temp0_);
        masm_.branch32(Assembler::BelowOrEqual, temp0_, Imm32(0x2029 - 0x2028),
                       no_match);
      }
      return true;
    case 'w':
      // \w matches the set of 63 characters defined in Runtime Semantics:
      // WordCharacters. We use a static lookup table, which is defined in
      // regexp-macro-assembler.cc.
      // Note: if both Unicode and IgnoreCase are true, \w matches a
      // larger set of characters. That case is handled elsewhere.
      if (mode_ != LATIN1) {
        masm_.branch32(Assembler::Above, current_character_, Imm32('z'),
                       no_match);
      }
      static_assert(arraysize(word_character_map) > unibrow::Latin1::kMaxChar,
                    "regex: arraysize(word_character_map) > unibrow::Latin1::kMaxChar");
      masm_.movePtr(ImmPtr(word_character_map), temp0_);
      masm_.load8ZeroExtend(
          BaseIndex(temp0_, current_character_, js::jit::TimesOne), temp0_);
      masm_.branchTest32(Assembler::Zero, temp0_, temp0_, no_match);
      return true;
    case 'W': {
      // See 'w' above.
      js::jit::Label done;
      if (mode_ != LATIN1) {
        masm_.branch32(Assembler::Above, current_character_, Imm32('z'), &done);
      }
      static_assert(arraysize(word_character_map) > unibrow::Latin1::kMaxChar,
                    "regex: arraysize(word_character_map) > unibrow::Latin1::kMaxChar");
      masm_.movePtr(ImmPtr(word_character_map), temp0_);
      masm_.load8ZeroExtend(
          BaseIndex(temp0_, current_character_, js::jit::TimesOne), temp0_);
      masm_.branchTest32(Assembler::NonZero, temp0_, temp0_, no_match);
      if (mode_ != LATIN1) {
        masm_.bind(&done);
      }
      return true;
    }
      ////////////////////////////////////////////////////////////////////////
      // Non-standard classes (with no syntactic shorthand) used internally //
      ////////////////////////////////////////////////////////////////////////
    case '*':
      // Match any character
      return true;
    case 'n':
      // Match newlines. The opposite of '.'. See '.' above.
      masm_.move32(current_character_, temp0_);
      masm_.xor32(Imm32(0x01), temp0_);
      masm_.sub32(Imm32(0x0b), temp0_);
      if (mode_ == LATIN1) {
        masm_.branch32(Assembler::Above, temp0_, Imm32(0x0c - 0x0b), no_match);
      } else {
        MOZ_ASSERT(mode_ == UC16);
        js::jit::Label done;
        masm_.branch32(Assembler::BelowOrEqual, temp0_, Imm32(0x0c - 0x0b),
                       &done);

        // Compare original value to 0x2028 and 0x2029, using the already
        // computed (current_char ^ 0x01 - 0x0b). I.e., check for
        // 0x201d (0x2028 - 0x0b) or 0x201e.
        masm_.sub32(Imm32(0x2028 - 0x0b), temp0_);
        masm_.branch32(Assembler::Above, temp0_, Imm32(0x2029 - 0x2028),
                       no_match);
        masm_.bind(&done);
      }
      return true;

      // No custom implementation
    default:
      return false;
  }
}

void SMRegExpMacroAssembler::Fail() {
  masm_.movePtr(ImmWord(js::RegExpRunStatus_Success_NotFound), temp0_);
  masm_.jump(&exit_label_);
}

void SMRegExpMacroAssembler::GoTo(Label* to) {
  masm_.jump(LabelOrBacktrack(to));
}

void SMRegExpMacroAssembler::IfRegisterGE(int reg, int comparand,
                                          Label* if_ge) {
  masm_.branchPtr(Assembler::GreaterThanOrEqual, register_location(reg),
                  ImmWord(comparand), LabelOrBacktrack(if_ge));
}

void SMRegExpMacroAssembler::IfRegisterLT(int reg, int comparand,
                                          Label* if_lt) {
  masm_.branchPtr(Assembler::LessThan, register_location(reg),
                  ImmWord(comparand), LabelOrBacktrack(if_lt));
}

void SMRegExpMacroAssembler::IfRegisterEqPos(int reg, Label* if_eq) {
  masm_.branchPtr(Assembler::Equal, register_location(reg), current_position_,
                  LabelOrBacktrack(if_eq));
}

// This is a word-for-word identical copy of the V8 code, which is
// duplicated in at least nine different places in V8 (one per
// supported architecture) with no differences outside of comments and
// formatting. It should be hoisted into the superclass. Once that is
// done upstream, this version can be deleted.
void SMRegExpMacroAssembler::LoadCurrentCharacterImpl(int cp_offset,
                                                      Label* on_end_of_input,
                                                      bool check_bounds,
                                                      int characters,
                                                      int eats_at_least) {
  // It's possible to preload a small number of characters when each success
  // path requires a large number of characters, but not the reverse.
  MOZ_ASSERT(eats_at_least >= characters);
  MOZ_ASSERT(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)

  if (check_bounds) {
    if (cp_offset >= 0) {
      CheckPosition(cp_offset + eats_at_least - 1, on_end_of_input);
    } else {
      CheckPosition(cp_offset, on_end_of_input);
    }
  }
  LoadCurrentCharacterUnchecked(cp_offset, characters);
}

// Load the character (or characters) at the specified offset from the
// current position. Zero-extend to 32 bits.
void SMRegExpMacroAssembler::LoadCurrentCharacterUnchecked(int cp_offset,
                                                           int characters) {
  BaseIndex address(input_end_pointer_, current_position_, js::jit::TimesOne,
                    cp_offset * char_size());
  if (mode_ == LATIN1) {
    if (characters == 4) {
      masm_.load32(address, current_character_);
    } else if (characters == 2) {
      masm_.load16ZeroExtend(address, current_character_);
    } else {
      MOZ_ASSERT(characters == 1);
      masm_.load8ZeroExtend(address, current_character_);
    }
  } else {
    MOZ_ASSERT(mode_ == UC16);
    if (characters == 2) {
      masm_.load32(address, current_character_);
    } else {
      MOZ_ASSERT(characters == 1);
      masm_.load16ZeroExtend(address, current_character_);
    }
  }
}

void SMRegExpMacroAssembler::PopCurrentPosition() { Pop(current_position_); }

void SMRegExpMacroAssembler::PopRegister(int register_index) {
  Pop(temp0_);
  masm_.storePtr(temp0_, register_location(register_index));
}

void SMRegExpMacroAssembler::PushBacktrack(Label* label) {
  MOZ_ASSERT(!label->is_bound());
  MOZ_ASSERT(!label->patchOffset_.bound());
  label->patchOffset_ = masm_.movWithPatch(ImmPtr(nullptr), temp0_);
  MOZ_ASSERT(label->patchOffset_.bound());

  Push(temp0_);

  CheckBacktrackStackLimit();
}

void SMRegExpMacroAssembler::PushCurrentPosition() { Push(current_position_); }

void SMRegExpMacroAssembler::PushRegister(int register_index,
                                          StackCheckFlag check_stack_limit) {
  masm_.loadPtr(register_location(register_index), temp0_);
  Push(temp0_);
  if (check_stack_limit) {
    CheckBacktrackStackLimit();
  }
}

void SMRegExpMacroAssembler::ReadCurrentPositionFromRegister(int reg) {
  masm_.loadPtr(register_location(reg), current_position_);
}

void SMRegExpMacroAssembler::WriteCurrentPositionToRegister(int reg,
                                                            int cp_offset) {
  if (cp_offset == 0) {
    masm_.storePtr(current_position_, register_location(reg));
  } else {
    Address addr(current_position_, cp_offset * char_size());
    masm_.computeEffectiveAddress(addr, temp0_);
    masm_.storePtr(temp0_, register_location(reg));
  }
}

// Note: The backtrack stack pointer is stored in a register as an
// offset from the stack top, not as a bare pointer, so that it is not
// corrupted if the backtrack stack grows (and therefore moves).
void SMRegExpMacroAssembler::ReadStackPointerFromRegister(int reg) {
  masm_.loadPtr(register_location(reg), backtrack_stack_pointer_);
  masm_.addPtr(backtrackStackBase(), backtrack_stack_pointer_);
}
void SMRegExpMacroAssembler::WriteStackPointerToRegister(int reg) {
  masm_.movePtr(backtrack_stack_pointer_, temp0_);
  masm_.subPtr(backtrackStackBase(), temp0_);
  masm_.storePtr(temp0_, register_location(reg));
}

// When matching a regexp that is anchored at the end, this operation
// is used to try skipping the beginning of long strings. If the
// maximum length of a match is less than the length of the string, we
// can skip the initial len - max_len bytes.
void SMRegExpMacroAssembler::SetCurrentPositionFromEnd(int by) {
  js::jit::Label after_position;
  masm_.branchPtr(Assembler::GreaterThanOrEqual, current_position_,
                  ImmWord(-by * char_size()), &after_position);
  masm_.movePtr(ImmWord(-by * char_size()), current_position_);

  // On RegExp code entry (where this operation is used), the character before
  // the current position is expected to be already loaded.
  // We have advanced the position, so it's safe to read backwards.
  LoadCurrentCharacterUnchecked(-1, 1);
  masm_.bind(&after_position);
}

void SMRegExpMacroAssembler::SetRegister(int register_index, int to) {
  MOZ_ASSERT(register_index >= num_capture_registers_);
  masm_.storePtr(ImmWord(to), register_location(register_index));
}

// Returns true if a regexp match can be restarted (aka the regexp is global).
// The return value is not used anywhere, but we implement it to be safe.
bool SMRegExpMacroAssembler::Succeed() {
  masm_.jump(&success_label_);
  return global();
}

// Capture registers are initialized to input[-1]
void SMRegExpMacroAssembler::ClearRegisters(int reg_from, int reg_to) {
  MOZ_ASSERT(reg_from <= reg_to);
  masm_.loadPtr(inputStart(), temp0_);
  masm_.subPtr(Imm32(char_size()), temp0_);
  for (int reg = reg_from; reg <= reg_to; reg++) {
    masm_.storePtr(temp0_, register_location(reg));
  }
}

void SMRegExpMacroAssembler::Push(Register source) {
  MOZ_ASSERT(source != backtrack_stack_pointer_);

  masm_.subPtr(Imm32(sizeof(void*)), backtrack_stack_pointer_);
  masm_.storePtr(source, Address(backtrack_stack_pointer_, 0));
}

void SMRegExpMacroAssembler::Pop(Register target) {
  MOZ_ASSERT(target != backtrack_stack_pointer_);

  masm_.loadPtr(Address(backtrack_stack_pointer_, 0), target);
  masm_.addPtr(Imm32(sizeof(void*)), backtrack_stack_pointer_);
}

void SMRegExpMacroAssembler::JumpOrBacktrack(Label* to) {
  if (to) {
    masm_.jump(to->inner());
  } else {
    Backtrack();
  }
}

// Generate a quick inline test for backtrack stack overflow.
// If the test fails, call an OOL handler to try growing the stack.
void SMRegExpMacroAssembler::CheckBacktrackStackLimit() {
  js::jit::Label no_stack_overflow;
  masm_.branchPtr(
      Assembler::BelowOrEqual,
      AbsoluteAddress(isolate()->regexp_stack()->limit_address_address()),
      backtrack_stack_pointer_, &no_stack_overflow);

  masm_.call(&stack_overflow_label_);

  // Exit with an exception if the call failed
  masm_.branchTest32(Assembler::Zero, temp0_, temp0_,
                     &exit_with_exception_label_);

  masm_.bind(&no_stack_overflow);
}

// This is used to sneak an OOM through the V8 layer.
static Handle<HeapObject> DummyCode() {
  return Handle<HeapObject>::fromHandleValue(JS::UndefinedHandleValue);
}

// Finalize code. This is called last, so that we know how many
// registers we need.
Handle<HeapObject> SMRegExpMacroAssembler::GetCode(Handle<String> source) {
  if (!cx_->compartment()->ensureJitCompartmentExists(cx_)) {
    return DummyCode();
  }

  masm_.bind(&entry_label_);

  createStackFrame();
  initFrameAndRegs();

  masm_.jump(&start_label_);

  successHandler();
  exitHandler();
  backtrackHandler();
  stackOverflowHandler();

  Linker linker(masm_);
  JitCode* code = linker.newCode<NoGC>(cx_, REGEXP_CODE);
  if (!code) {
    ReportOutOfMemory(cx_);
    return DummyCode();
  }

  for (LabelPatch& lp : labelPatches_) {
    Assembler::PatchDataWithValueCheck(CodeLocationLabel(code, lp.patchOffset_),
                                       ImmPtr(code->raw() + lp.labelOffset_),
                                       ImmPtr(nullptr));
  }

  return Handle<HeapObject>(JS::PrivateGCThingValue(code), isolate());
}

/*
 * The stack will have the following structure:
 *  sp-> - FrameData
 *         - inputStart
 *         - backtrack stack base
 *         - matches
 *         - numMatches
 *       - Registers
 *         - Capture positions
 *         - Scratch registers
 *       --- frame alignment ---
 *       - Saved register area
 *       - Return address
 */
void SMRegExpMacroAssembler::createStackFrame() {
#ifdef JS_CODEGEN_ARM64
  // ARM64 communicates stack address via SP, but uses a pseudo-sp (PSP) for
  // addressing.  The register we use for PSP may however also be used by
  // calling code, and it is nonvolatile, so save it.  Do this as a special
  // case first because the generic save/restore code needs the PSP to be
  // initialized already.
  MOZ_ASSERT(js::jit::PseudoStackPointer64.Is(masm_.GetStackPointer64()));
  masm_.Str(js::jit::PseudoStackPointer64,
            vixl::MemOperand(js::jit::sp, -16, vixl::PreIndex));

  // Initialize the PSP from the SP.
  masm_.initPseudoStackPtr();
#endif

  // Push non-volatile registers which might be modified by jitcode.
  size_t pushedNonVolatileRegisters = 0;
  for (GeneralRegisterForwardIterator iter(savedRegisters_); iter.more();
       ++iter) {
    masm_.Push(*iter);
    pushedNonVolatileRegisters++;
  }

  // The pointer to InputOutputData is passed as the first argument.
  // On x86 we have to load it off the stack into temp0_.
  // On other platforms it is already in a register.
#ifdef JS_CODEGEN_X86
  Address ioDataAddr(masm_.getStackPointer(),
                     (pushedNonVolatileRegisters + 1) * sizeof(void*));
  masm_.loadPtr(ioDataAddr, temp0_);
#else
  if (js::jit::IntArgReg0 != temp0_) {
    masm_.movePtr(js::jit::IntArgReg0, temp0_);
  }
#endif

  // Start a new stack frame.
  size_t frameBytes = sizeof(FrameData) + num_registers_ * sizeof(void*);
  frameSize_ = js::jit::StackDecrementForCall(js::jit::ABIStackAlignment,
                                              masm_.framePushed(), frameBytes);
  masm_.reserveStack(frameSize_);
  masm_.checkStackAlignment();

  // Check if we have space on the stack. Use the *NoInterrupt stack limit to
  // avoid failing repeatedly when the regex code is called from Ion JIT code.
  // (See bug 1208819)
  js::jit::Label stack_ok;
  AbsoluteAddress limit_addr(cx_->addressOfJitStackLimitNoInterrupt());
  masm_.branchStackPtrRhs(Assembler::Below, limit_addr, &stack_ok);

  // There is not enough space on the stack. Exit with an exception.
  masm_.movePtr(ImmWord(js::RegExpRunStatus_Error), temp0_);
  masm_.jump(&exit_label_);

  masm_.bind(&stack_ok);
}

void SMRegExpMacroAssembler::initFrameAndRegs() {
  // At this point, an uninitialized stack frame has been created,
  // and the address of the InputOutputData is in temp0_.
  Register ioDataReg = temp0_;

  Register matchesReg = temp1_;
  masm_.loadPtr(Address(ioDataReg, offsetof(InputOutputData, matches)),
                matchesReg);

  // Initialize output registers
  masm_.loadPtr(Address(matchesReg, MatchPairs::offsetOfPairs()), temp2_);
  masm_.storePtr(temp2_, matches());
  masm_.load32(Address(matchesReg, MatchPairs::offsetOfPairCount()), temp2_);
  masm_.store32(temp2_, numMatches());

#ifdef DEBUG
  // Bounds-check numMatches.
  js::jit::Label enoughRegisters;
  masm_.branchPtr(Assembler::GreaterThanOrEqual, temp2_,
                  ImmWord(num_capture_registers_ / 2), &enoughRegisters);
  masm_.assumeUnreachable("Not enough output pairs for RegExp");
  masm_.bind(&enoughRegisters);
#endif

  // Load input start pointer.
  masm_.loadPtr(Address(ioDataReg, offsetof(InputOutputData, inputStart)),
                current_position_);

  // Load input end pointer
  masm_.loadPtr(Address(ioDataReg, offsetof(InputOutputData, inputEnd)),
                input_end_pointer_);

  // Set up input position to be negative offset from string end.
  masm_.subPtr(input_end_pointer_, current_position_);

  // Store inputStart
  masm_.storePtr(current_position_, inputStart());

  // Load start index
  Register startIndexReg = temp1_;
  masm_.loadPtr(Address(ioDataReg, offsetof(InputOutputData, startIndex)),
                startIndexReg);
  masm_.computeEffectiveAddress(
      BaseIndex(current_position_, startIndexReg, factor()), current_position_);

  // Initialize current_character_.
  // Load newline if index is at start, or previous character otherwise.
  js::jit::Label start_regexp;
  js::jit::Label load_previous_character;
  masm_.branchPtr(Assembler::NotEqual, startIndexReg, ImmWord(0),
                  &load_previous_character);
  masm_.movePtr(ImmWord('\n'), current_character_);
  masm_.jump(&start_regexp);

  masm_.bind(&load_previous_character);
  LoadCurrentCharacterUnchecked(-1, 1);
  masm_.bind(&start_regexp);

  // Initialize captured registers with inputStart - 1
  MOZ_ASSERT(num_capture_registers_ > 0);
  Register inputStartMinusOneReg = temp2_;
  masm_.loadPtr(inputStart(), inputStartMinusOneReg);
  masm_.subPtr(Imm32(char_size()), inputStartMinusOneReg);
  if (num_capture_registers_ > 8) {
    masm_.movePtr(ImmWord(register_offset(0)), temp1_);
    js::jit::Label init_loop;
    masm_.bind(&init_loop);
    masm_.storePtr(inputStartMinusOneReg, BaseIndex(masm_.getStackPointer(),
                                                    temp1_, js::jit::TimesOne));
    masm_.addPtr(ImmWord(sizeof(void*)), temp1_);
    masm_.branchPtr(Assembler::LessThan, temp1_,
                    ImmWord(register_offset(num_capture_registers_)),
                    &init_loop);
  } else {
    // Unroll the loop
    for (int i = 0; i < num_capture_registers_; i++) {
      masm_.storePtr(inputStartMinusOneReg, register_location(i));
    }
  }

  // Initialize backtrack stack pointer
  masm_.loadPtr(AbsoluteAddress(isolate()->top_of_regexp_stack()),
                backtrack_stack_pointer_);
  masm_.storePtr(backtrack_stack_pointer_, backtrackStackBase());
}

void SMRegExpMacroAssembler::successHandler() {
  MOZ_ASSERT(success_label_.used());
  masm_.bind(&success_label_);

  // Copy captures to the MatchPairs pointed to by the InputOutputData.
  // Captures are stored as positions, which are negative byte offsets
  // from the end of the string.  We must convert them to actual
  // indices.
  //
  // Index:        [ 0 ][ 1 ][ 2 ][ 3 ][ 4 ][ 5 ][END]
  // Pos (1-byte): [-6 ][-5 ][-4 ][-3 ][-2 ][-1 ][ 0 ] // IS = -6
  // Pos (2-byte): [-12][-10][-8 ][-6 ][-4 ][-2 ][ 0 ] // IS = -12
  //
  // To convert a position to an index, we subtract InputStart, and
  // divide the result by char_size.
  Register matchesReg = temp1_;
  masm_.loadPtr(matches(), matchesReg);

  Register inputStartReg = temp2_;
  masm_.loadPtr(inputStart(), inputStartReg);

  for (int i = 0; i < num_capture_registers_; i++) {
    masm_.loadPtr(register_location(i), temp0_);
    masm_.subPtr(inputStartReg, temp0_);
    if (mode_ == UC16) {
      masm_.rshiftPtrArithmetic(Imm32(1), temp0_);
    }
    masm_.store32(temp0_, Address(matchesReg, i * sizeof(int32_t)));
  }

  masm_.movePtr(ImmWord(js::RegExpRunStatus_Success), temp0_);
  // This falls through to the exit handler.
}

void SMRegExpMacroAssembler::exitHandler() {
  masm_.bind(&exit_label_);

  if (temp0_ != js::jit::ReturnReg) {
    masm_.movePtr(temp0_, js::jit::ReturnReg);
  }

  masm_.freeStack(frameSize_);

  // Restore registers which were saved on entry
  for (GeneralRegisterBackwardIterator iter(savedRegisters_); iter.more();
       ++iter) {
    masm_.Pop(*iter);
  }

#ifdef JS_CODEGEN_ARM64
  // Now restore the value that was in the PSP register on entry, and return.

  // Obtain the correct SP from the PSP.
  masm_.Mov(js::jit::sp, js::jit::PseudoStackPointer64);

  // Restore the saved value of the PSP register, this value is whatever the
  // caller had saved in it, not any actual SP value, and it must not be
  // overwritten subsequently.
  masm_.Ldr(js::jit::PseudoStackPointer64,
            vixl::MemOperand(js::jit::sp, 16, vixl::PostIndex));

  // Perform a plain Ret(), as abiret() will move SP <- PSP and that is wrong.
  masm_.Ret(vixl::lr);
#else
  masm_.abiret();
#endif

  if (exit_with_exception_label_.used()) {
    masm_.bind(&exit_with_exception_label_);

    // Exit with an error result to signal thrown exception
    masm_.movePtr(ImmWord(js::RegExpRunStatus_Error), temp0_);
    masm_.jump(&exit_label_);
  }
}

void SMRegExpMacroAssembler::backtrackHandler() {
  if (!backtrack_label_.used()) {
    return;
  }
  masm_.bind(&backtrack_label_);
  Backtrack();
}

void SMRegExpMacroAssembler::stackOverflowHandler() {
  if (!stack_overflow_label_.used()) {
    return;
  }

  // Called if the backtrack-stack limit has been hit.
  // NOTE: depending on architecture, the call may have
  // changed the stack pointer. We adjust for that below.
  masm_.bind(&stack_overflow_label_);

  // Load argument
  masm_.movePtr(ImmPtr(isolate()->regexp_stack()), temp1_);

  // Save registers before calling C function
  LiveGeneralRegisterSet volatileRegs(GeneralRegisterSet::Volatile());

#ifdef JS_USE_LINK_REGISTER
  masm.pushReturnAddress();
#endif

  // Adjust for the return address on the stack.
  size_t frameOffset = sizeof(void*);

  volatileRegs.takeUnchecked(temp0_);
  volatileRegs.takeUnchecked(temp1_);
  masm_.PushRegsInMask(volatileRegs);

  masm_.setupUnalignedABICall(temp0_);
  masm_.passABIArg(temp1_);
  masm_.callWithABI(JS_FUNC_TO_DATA_PTR(void*, GrowBacktrackStack));
  masm_.storeCallBoolResult(temp0_);

  masm_.PopRegsInMask(volatileRegs);

  // If GrowBacktrackStack returned false, we have failed to grow the
  // stack, and must exit with a stack-overflow exception. Do this in
  // the caller so that the stack is adjusted by our return instruction.
  js::jit::Label overflow_return;
  masm_.branchTest32(Assembler::Zero, temp0_, temp0_, &overflow_return);

  // Otherwise, store the new backtrack stack base and recompute the new
  // top of the stack.
  Address bsbAddress(masm_.getStackPointer(),
                     offsetof(FrameData, backtrackStackBase) + frameOffset);
  masm_.subPtr(bsbAddress, backtrack_stack_pointer_);

  masm_.loadPtr(AbsoluteAddress(isolate()->top_of_regexp_stack()), temp1_);
  masm_.storePtr(temp1_, bsbAddress);
  masm_.addPtr(temp1_, backtrack_stack_pointer_);

  // Resume execution in calling code.
  masm_.bind(&overflow_return);
  masm_.ret();
}

// This is only used by tracing code.
// The return value doesn't matter.
RegExpMacroAssembler::IrregexpImplementation
SMRegExpMacroAssembler::Implementation() {
  return kBytecodeImplementation;
}

/*static */
uint32_t SMRegExpMacroAssembler::CaseInsensitiveCompareStrings(
    const char16_t* substring1, const char16_t* substring2, size_t byteLength) {
  JS::AutoCheckCannotGC nogc;

  MOZ_ASSERT(byteLength % sizeof(char16_t) == 0);
  size_t length = byteLength / sizeof(char16_t);

  for (size_t i = 0; i < length; i++) {
    char16_t c1 = substring1[i];
    char16_t c2 = substring2[i];
    if (c1 != c2) {
      c1 = js::unicode::ToUpperCase(c1);
      c2 = js::unicode::ToUpperCase(c2);
      if (c1 != c2) {
        return 0;
      }
    }
  }

  return 1;
}

/*static */
uint32_t SMRegExpMacroAssembler::CaseInsensitiveCompareUCStrings(
    const char16_t* substring1, const char16_t* substring2, size_t byteLength) {
  JS::AutoCheckCannotGC nogc;

  MOZ_ASSERT(byteLength % sizeof(char16_t) == 0);
  size_t length = byteLength / sizeof(char16_t);

  for (size_t i = 0; i < length; i++) {
    char16_t c1 = substring1[i];
    char16_t c2 = substring2[i];
    if (c1 != c2) {
      c1 = js::unicode::FoldCase(c1);
      c2 = js::unicode::FoldCase(c2);
      if (c1 != c2) {
        return 0;
      }
    }
  }

  return 1;
}

/* static */
bool SMRegExpMacroAssembler::GrowBacktrackStack(RegExpStack* regexp_stack) {
  JS::AutoCheckCannotGC nogc;
  size_t size = regexp_stack->stack_capacity();
  return !!regexp_stack->EnsureCapacity(size * 2);
}

}  // namespace internal
}  // namespace v8