summaryrefslogtreecommitdiff
path: root/image/SurfaceFilters.h
blob: 70c8d4087dcb1638b0a4863c9670a17c4a64a77f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/**
 * This header contains various SurfaceFilter implementations that apply
 * transformations to image data, for usage with SurfacePipe.
 */

#ifndef mozilla_image_SurfaceFilters_h
#define mozilla_image_SurfaceFilters_h

#include <algorithm>
#include <stdint.h>
#include <string.h>

#include "mozilla/Likely.h"
#include "mozilla/Maybe.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/gfx/2D.h"

#include "DownscalingFilter.h"
#include "SurfaceCache.h"
#include "SurfacePipe.h"

namespace mozilla {
namespace image {

//////////////////////////////////////////////////////////////////////////////
// DeinterlacingFilter
//////////////////////////////////////////////////////////////////////////////

template <typename PixelType, typename Next> class DeinterlacingFilter;

/**
 * A configuration struct for DeinterlacingFilter.
 *
 * The 'PixelType' template parameter should be either uint32_t (for output to a
 * SurfaceSink) or uint8_t (for output to a PalettedSurfaceSink).
 */
template <typename PixelType>
struct DeinterlacingConfig
{
  template <typename Next> using Filter = DeinterlacingFilter<PixelType, Next>;
  bool mProgressiveDisplay; /// If true, duplicate rows during deinterlacing
                            /// to make progressive display look better, at
                            /// the cost of some performance.
};

/**
 * DeinterlacingFilter performs deinterlacing by reordering the rows that are
 * written to it.
 *
 * The 'PixelType' template parameter should be either uint32_t (for output to a
 * SurfaceSink) or uint8_t (for output to a PalettedSurfaceSink).
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename PixelType, typename Next>
class DeinterlacingFilter final : public SurfaceFilter
{
public:
  DeinterlacingFilter()
    : mInputRow(0)
    , mOutputRow(0)
    , mPass(0)
    , mProgressiveDisplay(true)
  { }

  template <typename... Rest>
  nsresult Configure(const DeinterlacingConfig<PixelType>& aConfig, const Rest&... aRest)
  {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (sizeof(PixelType) == 1 && !mNext.IsValidPalettedPipe()) {
      NS_WARNING("Paletted DeinterlacingFilter used with non-paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }
    if (sizeof(PixelType) == 4 && mNext.IsValidPalettedPipe()) {
      NS_WARNING("Non-paletted DeinterlacingFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    gfx::IntSize outputSize = mNext.InputSize();
    mProgressiveDisplay = aConfig.mProgressiveDisplay;

    const uint32_t bufferSize = outputSize.width *
                                outputSize.height *
                                sizeof(PixelType);

    // Use the size of the SurfaceCache as a heuristic to avoid gigantic
    // allocations. Even if DownscalingFilter allowed us to allocate space for
    // the output image, the deinterlacing buffer may still be too big, and
    // fallible allocation won't always save us in the presence of overcommit.
    if (!SurfaceCache::CanHold(bufferSize)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    // Allocate the buffer, which contains deinterlaced scanlines of the image.
    // The buffer is necessary so that we can output rows which have already
    // been deinterlaced again on subsequent passes. Since a later stage in the
    // pipeline may be transforming the rows it receives (for example, by
    // downscaling them), the rows may no longer exist in their original form on
    // the surface itself.
    mBuffer.reset(new (fallible) uint8_t[bufferSize]);
    if (MOZ_UNLIKELY(!mBuffer)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    // Clear the buffer to avoid writing uninitialized memory to the output.
    memset(mBuffer.get(), 0, bufferSize);

    ConfigureFilter(outputSize, sizeof(PixelType));
    return NS_OK;
  }

  bool IsValidPalettedPipe() const override
  {
    return sizeof(PixelType) == 1 && mNext.IsValidPalettedPipe();
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override
  {
    return mNext.TakeInvalidRect();
  }

protected:
  uint8_t* DoResetToFirstRow() override
  {
    mNext.ResetToFirstRow();
    mPass = 0;
    mInputRow = 0;
    mOutputRow = InterlaceOffset(mPass);
    return GetRowPointer(mOutputRow);
  }

  uint8_t* DoAdvanceRow() override
  {
    if (mPass >= 4) {
      return nullptr;  // We already finished all passes.
    }
    if (mInputRow >= InputSize().height) {
      return nullptr;  // We already got all the input rows we expect.
    }

    // Duplicate from the first Haeberli row to the remaining Haeberli rows
    // within the buffer.
    DuplicateRows(HaeberliOutputStartRow(mPass, mProgressiveDisplay, mOutputRow),
                  HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                         InputSize(), mOutputRow));

    // Write the current set of Haeberli rows (which contains the current row)
    // to the next stage in the pipeline.
    OutputRows(HaeberliOutputStartRow(mPass, mProgressiveDisplay, mOutputRow),
               HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                      InputSize(), mOutputRow));

    // Determine which output row the next input row corresponds to.
    bool advancedPass = false;
    uint32_t stride = InterlaceStride(mPass);
    int32_t nextOutputRow = mOutputRow + stride;
    while (nextOutputRow >= InputSize().height) {
      // Copy any remaining rows from the buffer.
      if (!advancedPass) {
        OutputRows(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                          InputSize(), mOutputRow),
                   InputSize().height);
      }

      // We finished the current pass; advance to the next one.
      mPass++;
      if (mPass >= 4) {
        return nullptr;  // Finished all passes.
      }

      // Tell the next pipeline stage that we're starting the next pass.
      mNext.ResetToFirstRow();

      // Update our state to reflect the pass change.
      advancedPass = true;
      stride = InterlaceStride(mPass);
      nextOutputRow = InterlaceOffset(mPass);
    }

    MOZ_ASSERT(nextOutputRow >= 0);
    MOZ_ASSERT(nextOutputRow < InputSize().height);

    MOZ_ASSERT(HaeberliOutputStartRow(mPass, mProgressiveDisplay,
                                      nextOutputRow) >= 0);
    MOZ_ASSERT(HaeberliOutputStartRow(mPass, mProgressiveDisplay,
                                      nextOutputRow) < InputSize().height);
    MOZ_ASSERT(HaeberliOutputStartRow(mPass, mProgressiveDisplay,
                                      nextOutputRow) <= nextOutputRow);

    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                      InputSize(), nextOutputRow) >= 0);
    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                      InputSize(), nextOutputRow)
                 <= InputSize().height);
    MOZ_ASSERT(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                      InputSize(), nextOutputRow)
                 > nextOutputRow);

    int32_t nextHaeberliOutputRow =
      HaeberliOutputStartRow(mPass, mProgressiveDisplay, nextOutputRow);

    // Copy rows from the buffer until we reach the desired output row.
    if (advancedPass) {
      OutputRows(0, nextHaeberliOutputRow);
    } else {
      OutputRows(HaeberliOutputUntilRow(mPass, mProgressiveDisplay,
                                        InputSize(), mOutputRow),
                 nextHaeberliOutputRow);
    }

    // Update our position within the buffer.
    mInputRow++;
    mOutputRow = nextOutputRow;

    // We'll actually write to the first Haeberli output row, then copy it until
    // we reach the last Haeberli output row. The assertions above make sure
    // this always includes mOutputRow.
    return GetRowPointer(nextHaeberliOutputRow);
  }

private:
  static uint32_t InterlaceOffset(uint32_t aPass)
  {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t offset[] = { 0, 4, 2, 1 };
    return offset[aPass];
  }

  static uint32_t InterlaceStride(uint32_t aPass)
  {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t stride[] = { 8, 8, 4, 2 };
    return stride[aPass];
  }

  static int32_t HaeberliOutputStartRow(uint32_t aPass,
                                        bool aProgressiveDisplay,
                                        int32_t aOutputRow)
  {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t firstRowOffset[] = { 3, 1, 0, 0 };

    if (aProgressiveDisplay) {
      return std::max(aOutputRow - firstRowOffset[aPass], 0);
    } else {
      return aOutputRow;
    }
  }

  static int32_t HaeberliOutputUntilRow(uint32_t aPass,
                                        bool aProgressiveDisplay,
                                        const gfx::IntSize& aInputSize,
                                        int32_t aOutputRow)
  {
    MOZ_ASSERT(aPass < 4, "Invalid pass");
    static const uint8_t lastRowOffset[] = { 4, 2, 1, 0 };

    if (aProgressiveDisplay) {
      return std::min(aOutputRow + lastRowOffset[aPass],
                      aInputSize.height - 1)
             + 1;  // Add one because this is an open interval on the right.
    } else {
      return aOutputRow + 1;
    }
  }

  void DuplicateRows(int32_t aStart, int32_t aUntil)
  {
    MOZ_ASSERT(aStart >= 0);
    MOZ_ASSERT(aUntil >= 0);

    if (aUntil <= aStart || aStart >= InputSize().height) {
      return;
    }

    // The source row is the first row in the range.
    const uint8_t* sourceRowPointer = GetRowPointer(aStart);

    // We duplicate the source row into each subsequent row in the range.
    for (int32_t destRow = aStart + 1 ; destRow < aUntil ; ++destRow) {
      uint8_t* destRowPointer = GetRowPointer(destRow);
      memcpy(destRowPointer, sourceRowPointer, InputSize().width * sizeof(PixelType));
    }
  }

  void OutputRows(int32_t aStart, int32_t aUntil)
  {
    MOZ_ASSERT(aStart >= 0);
    MOZ_ASSERT(aUntil >= 0);

    if (aUntil <= aStart || aStart >= InputSize().height) {
      return;
    }

    for (int32_t rowToOutput = aStart; rowToOutput < aUntil; ++rowToOutput) {
      mNext.WriteBuffer(reinterpret_cast<PixelType*>(GetRowPointer(rowToOutput)));
    }
  }

  uint8_t* GetRowPointer(uint32_t aRow) const
  {
    uint32_t offset = aRow * InputSize().width * sizeof(PixelType);
    MOZ_ASSERT(offset < InputSize().width * InputSize().height * sizeof(PixelType),
               "Start of row is outside of image");
    MOZ_ASSERT(offset + InputSize().width * sizeof(PixelType)
                 <= InputSize().width * InputSize().height * sizeof(PixelType),
               "End of row is outside of image");
    return mBuffer.get() + offset;
  }

  Next mNext;                    /// The next SurfaceFilter in the chain.

  UniquePtr<uint8_t[]> mBuffer;  /// The buffer used to store reordered rows.
  int32_t mInputRow;             /// The current row we're reading. (0-indexed)
  int32_t mOutputRow;            /// The current row we're writing. (0-indexed)
  uint8_t mPass;                 /// Which pass we're on. (0-indexed)
  bool mProgressiveDisplay;      /// If true, duplicate rows to optimize for
                                 /// progressive display.
};


//////////////////////////////////////////////////////////////////////////////
// RemoveFrameRectFilter
//////////////////////////////////////////////////////////////////////////////

template <typename Next> class RemoveFrameRectFilter;

/**
 * A configuration struct for RemoveFrameRectFilter.
 */
struct RemoveFrameRectConfig
{
  template <typename Next> using Filter = RemoveFrameRectFilter<Next>;
  gfx::IntRect mFrameRect;  /// The surface subrect which contains data.
};

/**
 * RemoveFrameRectFilter turns an image with a frame rect that does not match
 * its logical size into an image with no frame rect. It does this by writing
 * transparent pixels into any padding regions and throwing away excess data.
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename Next>
class RemoveFrameRectFilter final : public SurfaceFilter
{
public:
  RemoveFrameRectFilter()
    : mRow(0)
  { }

  template <typename... Rest>
  nsresult Configure(const RemoveFrameRectConfig& aConfig, const Rest&... aRest)
  {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (mNext.IsValidPalettedPipe()) {
      NS_WARNING("RemoveFrameRectFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    mFrameRect = mUnclampedFrameRect = aConfig.mFrameRect;
    gfx::IntSize outputSize = mNext.InputSize();

    // Forbid frame rects with negative size.
    if (aConfig.mFrameRect.width < 0 || aConfig.mFrameRect.height < 0) {
      return NS_ERROR_INVALID_ARG;
    }

    // Clamp mFrameRect to the output size.
    gfx::IntRect outputRect(0, 0, outputSize.width, outputSize.height);
    mFrameRect = mFrameRect.Intersect(outputRect);

    // If there's no intersection, |mFrameRect| will be an empty rect positioned
    // at the maximum of |inputRect|'s and |aFrameRect|'s coordinates, which is
    // not what we want. Force it to (0, 0) in that case.
    if (mFrameRect.IsEmpty()) {
      mFrameRect.MoveTo(0, 0);
    }

    // We don't need an intermediate buffer unless the unclamped frame rect
    // width is larger than the clamped frame rect width. In that case, the
    // caller will end up writing data that won't end up in the final image at
    // all, and we'll need a buffer to give that data a place to go.
    if (mFrameRect.width < mUnclampedFrameRect.width) {
      mBuffer.reset(new (fallible) uint8_t[mUnclampedFrameRect.width *
                                           sizeof(uint32_t)]);
      if (MOZ_UNLIKELY(!mBuffer)) {
        return NS_ERROR_OUT_OF_MEMORY;
      }

      memset(mBuffer.get(), 0, mUnclampedFrameRect.width * sizeof(uint32_t));
    }

    ConfigureFilter(mUnclampedFrameRect.Size(), sizeof(uint32_t));
    return NS_OK;
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override
  {
    return mNext.TakeInvalidRect();
  }

protected:
  uint8_t* DoResetToFirstRow() override
  {
    uint8_t* rowPtr = mNext.ResetToFirstRow();
    if (rowPtr == nullptr) {
      mRow = mFrameRect.YMost();
      return nullptr;
    }

    mRow = mUnclampedFrameRect.y;

    // Advance the next pipeline stage to the beginning of the frame rect,
    // outputting blank rows.
    if (mFrameRect.y > 0) {
      for (int32_t rowToOutput = 0; rowToOutput < mFrameRect.y ; ++rowToOutput) {
        mNext.WriteEmptyRow();
      }
    }

    // We're at the beginning of the frame rect now, so return if we're either
    // ready for input or we're already done.
    rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
    if (!mFrameRect.IsEmpty() || rowPtr == nullptr) {
      // Note that the pointer we're returning is for the next row we're
      // actually going to write to, but we may discard writes before that point
      // if mRow < mFrameRect.y.
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect, but the frame rect
    // is empty, so we need to output the rest of the image immediately. Advance
    // to the end of the next pipeline stage's buffer, outputting blank rows.
    while (mNext.WriteEmptyRow() == WriteState::NEED_MORE_DATA) { }

    mRow = mFrameRect.YMost();
    return nullptr;  // We're done.
  }

  uint8_t* DoAdvanceRow() override
  {
    uint8_t* rowPtr = nullptr;

    const int32_t currentRow = mRow;
    mRow++;

    if (currentRow < mFrameRect.y) {
      // This row is outside of the frame rect, so just drop it on the floor.
      rowPtr = mBuffer ? mBuffer.get() : mNext.CurrentRowPointer();
      return AdjustRowPointer(rowPtr);
    } else if (currentRow >= mFrameRect.YMost()) {
      NS_WARNING("RemoveFrameRectFilter: Advancing past end of frame rect");
      return nullptr;
    }

    // If we had to buffer, copy the data. Otherwise, just advance the row.
    if (mBuffer) {
      // We write from the beginning of the buffer unless |mUnclampedFrameRect.x|
      // is negative; if that's the case, we have to skip the portion of the
      // unclamped frame rect that's outside the row.
      uint32_t* source = reinterpret_cast<uint32_t*>(mBuffer.get()) -
                         std::min(mUnclampedFrameRect.x, 0);

      // We write |mFrameRect.width| columns starting at |mFrameRect.x|; we've
      // already clamped these values to the size of the output, so we don't
      // have to worry about bounds checking here (though WriteBuffer() will do
      // it for us in any case).
      WriteState state = mNext.WriteBuffer(source, mFrameRect.x, mFrameRect.width);

      rowPtr = state == WriteState::NEED_MORE_DATA ? mBuffer.get()
                                                   : nullptr;
    } else {
      rowPtr = mNext.AdvanceRow();
    }

    // If there's still more data coming or we're already done, just adjust the
    // pointer and return.
    if (mRow < mFrameRect.YMost() || rowPtr == nullptr) {
      return AdjustRowPointer(rowPtr);
    }

    // We've finished the region specified by the frame rect. Advance to the end
    // of the next pipeline stage's buffer, outputting blank rows.
    while (mNext.WriteEmptyRow() == WriteState::NEED_MORE_DATA) { }

    mRow = mFrameRect.YMost();
    return nullptr;  // We're done.
  }

private:
  uint8_t* AdjustRowPointer(uint8_t* aNextRowPointer) const
  {
    if (mBuffer) {
      MOZ_ASSERT(aNextRowPointer == mBuffer.get() || aNextRowPointer == nullptr);
      return aNextRowPointer;  // No adjustment needed for an intermediate buffer.
    }

    if (mFrameRect.IsEmpty() ||
        mRow >= mFrameRect.YMost() ||
        aNextRowPointer == nullptr) {
      return nullptr;  // Nothing left to write.
    }

    return aNextRowPointer + mFrameRect.x * sizeof(uint32_t);
  }

  Next mNext;                        /// The next SurfaceFilter in the chain.

  gfx::IntRect mFrameRect;           /// The surface subrect which contains data,
                                     /// clamped to the image size.
  gfx::IntRect mUnclampedFrameRect;  /// The frame rect before clamping.
  UniquePtr<uint8_t[]> mBuffer;      /// The intermediate buffer, if one is
                                     /// necessary because the frame rect width
                                     /// is larger than the image's logical width.
  int32_t  mRow;                     /// The row in unclamped frame rect space
                                     /// that we're currently writing.
};


//////////////////////////////////////////////////////////////////////////////
// ADAM7InterpolatingFilter
//////////////////////////////////////////////////////////////////////////////

template <typename Next> class ADAM7InterpolatingFilter;

/**
 * A configuration struct for ADAM7InterpolatingFilter.
 */
struct ADAM7InterpolatingConfig
{
  template <typename Next> using Filter = ADAM7InterpolatingFilter<Next>;
};

/**
 * ADAM7InterpolatingFilter performs bilinear interpolation over an ADAM7
 * interlaced image.
 *
 * ADAM7 breaks up the image into 8x8 blocks. On each of the 7 passes, a new set
 * of pixels in each block receives their final values, according to the
 * following pattern:
 *
 *    1 6 4 6 2 6 4 6
 *    7 7 7 7 7 7 7 7
 *    5 6 5 6 5 6 5 6
 *    7 7 7 7 7 7 7 7
 *    3 6 4 6 3 6 4 6
 *    7 7 7 7 7 7 7 7
 *    5 6 5 6 5 6 5 6
 *    7 7 7 7 7 7 7 7
 *
 * When rendering the pixels that have not yet received their final values, we
 * can get much better intermediate results if we interpolate between
 * the pixels we *have* gotten so far. This filter performs bilinear
 * interpolation by first performing linear interpolation horizontally for each
 * "important" row (which we'll define as a row that has received any pixels
 * with final values at all) and then performing linear interpolation vertically
 * to produce pixel values for rows which aren't important on the current pass.
 *
 * Note that this filter totally ignores the data which is written to rows which
 * aren't important on the current pass! It's fine to write nothing at all for
 * these rows, although doing so won't cause any harm.
 *
 * XXX(seth): In bug 1280552 we'll add a SIMD implementation for this filter.
 *
 * The 'Next' template parameter specifies the next filter in the chain.
 */
template <typename Next>
class ADAM7InterpolatingFilter final : public SurfaceFilter
{
public:
  ADAM7InterpolatingFilter()
    : mPass(0)  // The current pass, in the range 1..7. Starts at 0 so that
                // DoResetToFirstRow() doesn't have to special case the first pass.
    , mRow(0)
  { }

  template <typename... Rest>
  nsresult Configure(const ADAM7InterpolatingConfig& aConfig, const Rest&... aRest)
  {
    nsresult rv = mNext.Configure(aRest...);
    if (NS_FAILED(rv)) {
      return rv;
    }

    if (mNext.IsValidPalettedPipe()) {
      NS_WARNING("ADAM7InterpolatingFilter used with paletted pipe?");
      return NS_ERROR_INVALID_ARG;
    }

    // We have two intermediate buffers, one for the previous row with final
    // pixel values and one for the row that the previous filter in the chain is
    // currently writing to.
    size_t inputWidthInBytes = mNext.InputSize().width * sizeof(uint32_t);
    mPreviousRow.reset(new (fallible) uint8_t[inputWidthInBytes]);
    if (MOZ_UNLIKELY(!mPreviousRow)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    mCurrentRow.reset(new (fallible) uint8_t[inputWidthInBytes]);
    if (MOZ_UNLIKELY(!mCurrentRow)) {
      return NS_ERROR_OUT_OF_MEMORY;
    }

    memset(mPreviousRow.get(), 0, inputWidthInBytes);
    memset(mCurrentRow.get(), 0, inputWidthInBytes);

    ConfigureFilter(mNext.InputSize(), sizeof(uint32_t));
    return NS_OK;
  }

  Maybe<SurfaceInvalidRect> TakeInvalidRect() override
  {
    return mNext.TakeInvalidRect();
  }

protected:
  uint8_t* DoResetToFirstRow() override
  {
    mRow = 0;
    mPass = std::min(mPass + 1, 7);

    uint8_t* rowPtr = mNext.ResetToFirstRow();
    if (mPass == 7) {
      // Short circuit this filter on the final pass, since all pixels have
      // their final values at that point.
      return rowPtr;
    }

    return mCurrentRow.get();
  }

  uint8_t* DoAdvanceRow() override
  {
    MOZ_ASSERT(0 < mPass && mPass <= 7, "Invalid pass");

    int32_t currentRow = mRow;
    ++mRow;

    if (mPass == 7) {
      // On the final pass we short circuit this filter totally.
      return mNext.AdvanceRow();
    }

    const int32_t lastImportantRow = LastImportantRow(InputSize().height, mPass);
    if (currentRow > lastImportantRow) {
      return nullptr;  // This pass is already complete.
    }

    if (!IsImportantRow(currentRow, mPass)) {
      // We just ignore whatever the caller gives us for these rows. We'll
      // interpolate them in later.
      return mCurrentRow.get();
    }

    // This is an important row. We need to perform horizontal interpolation for
    // these rows.
    InterpolateHorizontally(mCurrentRow.get(), InputSize().width, mPass);

    // Interpolate vertically between the previous important row and the current
    // important row. We skip this if the current row is 0 (which is always an
    // important row), because in that case there is no previous important row
    // to interpolate with.
    if (currentRow != 0) {
      InterpolateVertically(mPreviousRow.get(), mCurrentRow.get(), mPass, mNext);
    }

    // Write out the current row itself, which, being an important row, does not
    // need vertical interpolation.
    uint32_t* currentRowAsPixels = reinterpret_cast<uint32_t*>(mCurrentRow.get());
    mNext.WriteBuffer(currentRowAsPixels);

    if (currentRow == lastImportantRow) {
      // This is the last important row, which completes this pass. Note that
      // for very small images, this may be the first row! Since there won't be
      // another important row, there's nothing to interpolate with vertically,
      // so we just duplicate this row until the end of the image.
      while (mNext.WriteBuffer(currentRowAsPixels) == WriteState::NEED_MORE_DATA) { }

      // All of the remaining rows in the image were determined above, so we're done.
      return nullptr;
    }

    // The current row is now the previous important row; save it.
    Swap(mPreviousRow, mCurrentRow);

    MOZ_ASSERT(mRow < InputSize().height, "Reached the end of the surface without "
                                          "hitting the last important row?");

    return mCurrentRow.get();
  }

private:
  static void InterpolateVertically(uint8_t* aPreviousRow,
                                    uint8_t* aCurrentRow,
                                    uint8_t aPass,
                                    SurfaceFilter& aNext)
  {
    const float* weights = InterpolationWeights(ImportantRowStride(aPass));

    // We need to interpolate vertically to generate the rows between the
    // previous important row and the next one. Recall that important rows are
    // rows which contain at least some final pixels; see
    // InterpolateHorizontally() for some additional explanation as to what that
    // means. Note that we've already written out the previous important row, so
    // we start the iteration at 1.
    for (int32_t outRow = 1; outRow < ImportantRowStride(aPass); ++outRow) {
      const float weight = weights[outRow];

      // We iterate through the previous and current important row every time we
      // write out an interpolated row, so we need to copy the pointers.
      uint8_t* prevRowBytes = aPreviousRow;
      uint8_t* currRowBytes = aCurrentRow;

      // Write out the interpolated pixels. Interpolation is componentwise.
      aNext.template WritePixelsToRow<uint32_t>([&]{
        uint32_t pixel = 0;
        auto* component = reinterpret_cast<uint8_t*>(&pixel);
        *component++ = InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ = InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ = InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        *component++ = InterpolateByte(*prevRowBytes++, *currRowBytes++, weight);
        return AsVariant(pixel);
      });
    }
  }

  static void InterpolateHorizontally(uint8_t* aRow, int32_t aWidth, uint8_t aPass)
  {
    // Collect the data we'll need to perform horizontal interpolation. The
    // terminology here bears some explanation: a "final pixel" is a pixel which
    // has received its final value. On each pass, a new set of pixels receives
    // their final value; see the diagram above of the 8x8 pattern that ADAM7
    // uses. Any pixel which hasn't received its final value on this pass
    // derives its value from either horizontal or vertical interpolation
    // instead.
    const size_t finalPixelStride = FinalPixelStride(aPass);
    const size_t finalPixelStrideBytes = finalPixelStride * sizeof(uint32_t);
    const size_t lastFinalPixel = LastFinalPixel(aWidth, aPass);
    const size_t lastFinalPixelBytes = lastFinalPixel * sizeof(uint32_t);
    const float* weights = InterpolationWeights(finalPixelStride);

    // Interpolate blocks of pixels which lie between two final pixels.
    // Horizontal interpolation is done in place, as we'll need the results
    // later when we vertically interpolate.
    for (size_t blockBytes = 0;
         blockBytes < lastFinalPixelBytes;
         blockBytes += finalPixelStrideBytes) {
      uint8_t* finalPixelA = aRow + blockBytes;
      uint8_t* finalPixelB = aRow + blockBytes + finalPixelStrideBytes;

      MOZ_ASSERT(finalPixelA < aRow + aWidth * sizeof(uint32_t),
                 "Running off end of buffer");
      MOZ_ASSERT(finalPixelB < aRow + aWidth * sizeof(uint32_t),
                 "Running off end of buffer");

      // Interpolate the individual pixels componentwise. Note that we start
      // iteration at 1 since we don't need to apply any interpolation to the
      // first pixel in the block, which has its final value.
      for (size_t pixelIndex = 1; pixelIndex < finalPixelStride; ++pixelIndex) {
        const float weight = weights[pixelIndex];
        uint8_t* pixel = aRow + blockBytes + pixelIndex * sizeof(uint32_t);

        MOZ_ASSERT(pixel < aRow + aWidth * sizeof(uint32_t), "Running off end of buffer");

        for (size_t component = 0; component < sizeof(uint32_t); ++component) {
          pixel[component] =
            InterpolateByte(finalPixelA[component], finalPixelB[component], weight);
        }
      }
    }

    // For the pixels after the last final pixel in the row, there isn't a
    // second final pixel to interpolate with, so just duplicate.
    uint32_t* rowPixels = reinterpret_cast<uint32_t*>(aRow);
    uint32_t pixelToDuplicate = rowPixels[lastFinalPixel];
    for (int32_t pixelIndex = lastFinalPixel + 1;
         pixelIndex < aWidth;
         ++pixelIndex) {
      MOZ_ASSERT(pixelIndex < aWidth, "Running off end of buffer");
      rowPixels[pixelIndex] = pixelToDuplicate;
    }
  }

  static uint8_t InterpolateByte(uint8_t aByteA, uint8_t aByteB, float aWeight)
  {
    return uint8_t(aByteA * aWeight + aByteB * (1.0f - aWeight));
  }

  static int32_t ImportantRowStride(uint8_t aPass)
  {
    MOZ_ASSERT(0 < aPass && aPass <= 7, "Invalid pass");

    // The stride between important rows for each pass, with a dummy value for
    // the nonexistent pass 0.
    static int32_t strides[] = { 1, 8, 8, 4, 4, 2, 2, 1 };

    return strides[aPass];
  }

  static bool IsImportantRow(int32_t aRow, uint8_t aPass)
  {
    MOZ_ASSERT(aRow >= 0);

    // Whether the row is important comes down to divisibility by the stride for
    // this pass, which is always a power of 2, so we can check using a mask.
    int32_t mask = ImportantRowStride(aPass) - 1;
    return (aRow & mask) == 0;
  }

  static int32_t LastImportantRow(int32_t aHeight, uint8_t aPass)
  {
    MOZ_ASSERT(aHeight > 0);

    // We can find the last important row using the same mask trick as above.
    int32_t lastRow = aHeight - 1;
    int32_t mask = ImportantRowStride(aPass) - 1;
    return lastRow - (lastRow & mask);
  }

  static size_t FinalPixelStride(uint8_t aPass)
  {
    MOZ_ASSERT(0 < aPass && aPass <= 7, "Invalid pass");

    // The stride between the final pixels in important rows for each pass, with
    // a dummy value for the nonexistent pass 0.
    static size_t strides[] = { 1, 8, 4, 4, 2, 2, 1, 1 };

    return strides[aPass];
  }

  static size_t LastFinalPixel(int32_t aWidth, uint8_t aPass)
  {
    MOZ_ASSERT(aWidth >= 0);

    // Again, we can use the mask trick above to find the last important pixel.
    int32_t lastColumn = aWidth - 1;
    size_t mask = FinalPixelStride(aPass) - 1;
    return lastColumn - (lastColumn & mask);
  }

  static const float* InterpolationWeights(int32_t aStride)
  {
    // Precalculated interpolation weights. These are used to interpolate
    // between final pixels or between important rows. Although no interpolation
    // is actually applied to the previous final pixel or important row value,
    // the arrays still start with 1.0f, which is always skipped, primarily
    // because otherwise |stride1Weights| would have zero elements.
    static float stride8Weights[] =
      { 1.0f, 7 / 8.0f, 6 / 8.0f, 5 / 8.0f, 4 / 8.0f, 3 / 8.0f, 2 / 8.0f, 1 / 8.0f };
    static float stride4Weights[] = { 1.0f, 3 / 4.0f, 2 / 4.0f, 1 / 4.0f };
    static float stride2Weights[] = { 1.0f, 1 / 2.0f };
    static float stride1Weights[] = { 1.0f };

    switch (aStride) {
      case 8:  return stride8Weights;
      case 4:  return stride4Weights;
      case 2:  return stride2Weights;
      case 1:  return stride1Weights;
      default: MOZ_CRASH();
    }
  }

  Next mNext;                         /// The next SurfaceFilter in the chain.

  UniquePtr<uint8_t[]> mPreviousRow;  /// The last important row (i.e., row with
                                      /// final pixel values) that got written to.
  UniquePtr<uint8_t[]> mCurrentRow;   /// The row that's being written to right
                                      /// now.
  uint8_t mPass;                      /// Which ADAM7 pass we're on. Valid passes
                                      /// are 1..7 during processing and 0 prior
                                      /// to configuraiton.
  int32_t mRow;                       /// The row we're currently reading.
};

} // namespace image
} // namespace mozilla

#endif // mozilla_image_SurfaceFilters_h