summaryrefslogtreecommitdiff
path: root/gfx/cairo/cairo/src/cairo-wideint.c
blob: 78dedcdf0cf0c9f1bbcaf7b19562f08a9b432247 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/* cairo - a vector graphics library with display and print output
 *
 * Copyright © 2004 Keith Packard
 *
 * This library is free software; you can redistribute it and/or
 * modify it either under the terms of the GNU Lesser General Public
 * License version 2.1 as published by the Free Software Foundation
 * (the "LGPL") or, at your option, under the terms of the Mozilla
 * Public License Version 1.1 (the "MPL"). If you do not alter this
 * notice, a recipient may use your version of this file under either
 * the MPL or the LGPL.
 *
 * You should have received a copy of the LGPL along with this library
 * in the file COPYING-LGPL-2.1; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335, USA
 * You should have received a copy of the MPL along with this library
 * in the file COPYING-MPL-1.1
 *
 * The contents of this file are subject to the Mozilla Public License
 * Version 1.1 (the "License"); you may not use this file except in
 * compliance with the License. You may obtain a copy of the License at
 * http://www.mozilla.org/MPL/
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
 * OF ANY KIND, either express or implied. See the LGPL or the MPL for
 * the specific language governing rights and limitations.
 *
 * The Original Code is the cairo graphics library.
 *
 * The Initial Developer of the Original Code is Keith Packard
 *
 * Contributor(s):
 *	Keith R. Packard <keithp@keithp.com>
 */

#include "cairoint.h"

#if HAVE_UINT64_T

#define uint64_lo32(i)	((i) & 0xffffffff)
#define uint64_hi32(i)	((i) >> 32)
#define uint64_lo(i)	((i) & 0xffffffff)
#define uint64_hi(i)	((i) >> 32)
#define uint64_shift32(i)   ((i) << 32)
#define uint64_carry32	(((uint64_t) 1) << 32)

#define _cairo_uint32s_to_uint64(h,l) ((uint64_t) (h) << 32 | (l))

#else

#define uint64_lo32(i)	((i).lo)
#define uint64_hi32(i)	((i).hi)

static cairo_uint64_t
uint64_lo (cairo_uint64_t i)
{
    cairo_uint64_t  s;

    s.lo = i.lo;
    s.hi = 0;
    return s;
}

static cairo_uint64_t
uint64_hi (cairo_uint64_t i)
{
    cairo_uint64_t  s;

    s.lo = i.hi;
    s.hi = 0;
    return s;
}

static cairo_uint64_t
uint64_shift32 (cairo_uint64_t i)
{
    cairo_uint64_t  s;

    s.lo = 0;
    s.hi = i.lo;
    return s;
}

static const cairo_uint64_t uint64_carry32 = { 0, 1 };

cairo_uint64_t
_cairo_uint32_to_uint64 (uint32_t i)
{
    cairo_uint64_t	q;

    q.lo = i;
    q.hi = 0;
    return q;
}

cairo_int64_t
_cairo_int32_to_int64 (int32_t i)
{
    cairo_uint64_t	q;

    q.lo = i;
    q.hi = i < 0 ? -1 : 0;
    return q;
}

static cairo_uint64_t
_cairo_uint32s_to_uint64 (uint32_t h, uint32_t l)
{
    cairo_uint64_t	q;

    q.lo = l;
    q.hi = h;
    return q;
}

cairo_uint64_t
_cairo_uint64_add (cairo_uint64_t a, cairo_uint64_t b)
{
    cairo_uint64_t	s;

    s.hi = a.hi + b.hi;
    s.lo = a.lo + b.lo;
    if (s.lo < a.lo)
	s.hi++;
    return s;
}

cairo_uint64_t
_cairo_uint64_sub (cairo_uint64_t a, cairo_uint64_t b)
{
    cairo_uint64_t	s;

    s.hi = a.hi - b.hi;
    s.lo = a.lo - b.lo;
    if (s.lo > a.lo)
	s.hi--;
    return s;
}

#define uint32_lo(i)	((i) & 0xffff)
#define uint32_hi(i)	((i) >> 16)
#define uint32_carry16	((1) << 16)

cairo_uint64_t
_cairo_uint32x32_64_mul (uint32_t a, uint32_t b)
{
    cairo_uint64_t  s;

    uint16_t	ah, al, bh, bl;
    uint32_t	r0, r1, r2, r3;

    al = uint32_lo (a);
    ah = uint32_hi (a);
    bl = uint32_lo (b);
    bh = uint32_hi (b);

    r0 = (uint32_t) al * bl;
    r1 = (uint32_t) al * bh;
    r2 = (uint32_t) ah * bl;
    r3 = (uint32_t) ah * bh;

    r1 += uint32_hi(r0);    /* no carry possible */
    r1 += r2;		    /* but this can carry */
    if (r1 < r2)	    /* check */
	r3 += uint32_carry16;

    s.hi = r3 + uint32_hi(r1);
    s.lo = (uint32_lo (r1) << 16) + uint32_lo (r0);
    return s;
}

cairo_int64_t
_cairo_int32x32_64_mul (int32_t a, int32_t b)
{
    cairo_int64_t s;
    s = _cairo_uint32x32_64_mul ((uint32_t) a, (uint32_t) b);
    if (a < 0)
	s.hi -= b;
    if (b < 0)
	s.hi -= a;
    return s;
}

cairo_uint64_t
_cairo_uint64_mul (cairo_uint64_t a, cairo_uint64_t b)
{
    cairo_uint64_t	s;

    s = _cairo_uint32x32_64_mul (a.lo, b.lo);
    s.hi += a.lo * b.hi + a.hi * b.lo;
    return s;
}

cairo_uint64_t
_cairo_uint64_lsl (cairo_uint64_t a, int shift)
{
    if (shift >= 32)
    {
	a.hi = a.lo;
	a.lo = 0;
	shift -= 32;
    }
    if (shift)
    {
	a.hi = a.hi << shift | a.lo >> (32 - shift);
	a.lo = a.lo << shift;
    }
    return a;
}

cairo_uint64_t
_cairo_uint64_rsl (cairo_uint64_t a, int shift)
{
    if (shift >= 32)
    {
	a.lo = a.hi;
	a.hi = 0;
	shift -= 32;
    }
    if (shift)
    {
	a.lo = a.lo >> shift | a.hi << (32 - shift);
	a.hi = a.hi >> shift;
    }
    return a;
}

#define _cairo_uint32_rsa(a,n)	((uint32_t) (((int32_t) (a)) >> (n)))

cairo_int64_t
_cairo_uint64_rsa (cairo_int64_t a, int shift)
{
    if (shift >= 32)
    {
	a.lo = a.hi;
	a.hi = _cairo_uint32_rsa (a.hi, 31);
	shift -= 32;
    }
    if (shift)
    {
	a.lo = a.lo >> shift | a.hi << (32 - shift);
	a.hi = _cairo_uint32_rsa (a.hi, shift);
    }
    return a;
}

int
_cairo_uint64_lt (cairo_uint64_t a, cairo_uint64_t b)
{
    return (a.hi < b.hi ||
	    (a.hi == b.hi && a.lo < b.lo));
}

int
_cairo_uint64_eq (cairo_uint64_t a, cairo_uint64_t b)
{
    return a.hi == b.hi && a.lo == b.lo;
}

int
_cairo_int64_lt (cairo_int64_t a, cairo_int64_t b)
{
    if (_cairo_int64_negative (a) && !_cairo_int64_negative (b))
	return 1;
    if (!_cairo_int64_negative (a) && _cairo_int64_negative (b))
	return 0;
    return _cairo_uint64_lt (a, b);
}

int
_cairo_uint64_cmp (cairo_uint64_t a, cairo_uint64_t b)
{
    if (a.hi < b.hi)
	return -1;
    else if (a.hi > b.hi)
	return 1;
    else if (a.lo < b.lo)
	return -1;
    else if (a.lo > b.lo)
	return 1;
    else
	return 0;
}

int
_cairo_int64_cmp (cairo_int64_t a, cairo_int64_t b)
{
    if (_cairo_int64_negative (a) && !_cairo_int64_negative (b))
	return -1;
    if (!_cairo_int64_negative (a) && _cairo_int64_negative (b))
	return 1;

    return _cairo_uint64_cmp (a, b);
}

cairo_uint64_t
_cairo_uint64_not (cairo_uint64_t a)
{
    a.lo = ~a.lo;
    a.hi = ~a.hi;
    return a;
}

cairo_uint64_t
_cairo_uint64_negate (cairo_uint64_t a)
{
    a.lo = ~a.lo;
    a.hi = ~a.hi;
    if (++a.lo == 0)
	++a.hi;
    return a;
}

/*
 * Simple bit-at-a-time divide.
 */
cairo_uquorem64_t
_cairo_uint64_divrem (cairo_uint64_t num, cairo_uint64_t den)
{
    cairo_uquorem64_t	qr;
    cairo_uint64_t	bit;
    cairo_uint64_t	quo;

    bit = _cairo_uint32_to_uint64 (1);

    /* normalize to make den >= num, but not overflow */
    while (_cairo_uint64_lt (den, num) && (den.hi & 0x80000000) == 0)
    {
	bit = _cairo_uint64_lsl (bit, 1);
	den = _cairo_uint64_lsl (den, 1);
    }
    quo = _cairo_uint32_to_uint64 (0);

    /* generate quotient, one bit at a time */
    while (bit.hi | bit.lo)
    {
	if (_cairo_uint64_le (den, num))
	{
	    num = _cairo_uint64_sub (num, den);
	    quo = _cairo_uint64_add (quo, bit);
	}
	bit = _cairo_uint64_rsl (bit, 1);
	den = _cairo_uint64_rsl (den, 1);
    }
    qr.quo = quo;
    qr.rem = num;
    return qr;
}

#endif /* !HAVE_UINT64_T */

#if HAVE_UINT128_T
cairo_uquorem128_t
_cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den)
{
    cairo_uquorem128_t	qr;

    qr.quo = num / den;
    qr.rem = num % den;
    return qr;
}

#else

cairo_uint128_t
_cairo_uint32_to_uint128 (uint32_t i)
{
    cairo_uint128_t	q;

    q.lo = _cairo_uint32_to_uint64 (i);
    q.hi = _cairo_uint32_to_uint64 (0);
    return q;
}

cairo_int128_t
_cairo_int32_to_int128 (int32_t i)
{
    cairo_int128_t	q;

    q.lo = _cairo_int32_to_int64 (i);
    q.hi = _cairo_int32_to_int64 (i < 0 ? -1 : 0);
    return q;
}

cairo_uint128_t
_cairo_uint64_to_uint128 (cairo_uint64_t i)
{
    cairo_uint128_t	q;

    q.lo = i;
    q.hi = _cairo_uint32_to_uint64 (0);
    return q;
}

cairo_int128_t
_cairo_int64_to_int128 (cairo_int64_t i)
{
    cairo_int128_t	q;

    q.lo = i;
    q.hi = _cairo_int32_to_int64 (_cairo_int64_negative(i) ? -1 : 0);
    return q;
}

cairo_uint128_t
_cairo_uint128_add (cairo_uint128_t a, cairo_uint128_t b)
{
    cairo_uint128_t	s;

    s.hi = _cairo_uint64_add (a.hi, b.hi);
    s.lo = _cairo_uint64_add (a.lo, b.lo);
    if (_cairo_uint64_lt (s.lo, a.lo))
	s.hi = _cairo_uint64_add (s.hi, _cairo_uint32_to_uint64 (1));
    return s;
}

cairo_uint128_t
_cairo_uint128_sub (cairo_uint128_t a, cairo_uint128_t b)
{
    cairo_uint128_t	s;

    s.hi = _cairo_uint64_sub (a.hi, b.hi);
    s.lo = _cairo_uint64_sub (a.lo, b.lo);
    if (_cairo_uint64_gt (s.lo, a.lo))
	s.hi = _cairo_uint64_sub (s.hi, _cairo_uint32_to_uint64(1));
    return s;
}

cairo_uint128_t
_cairo_uint64x64_128_mul (cairo_uint64_t a, cairo_uint64_t b)
{
    cairo_uint128_t	s;
    uint32_t		ah, al, bh, bl;
    cairo_uint64_t	r0, r1, r2, r3;

    al = uint64_lo32 (a);
    ah = uint64_hi32 (a);
    bl = uint64_lo32 (b);
    bh = uint64_hi32 (b);

    r0 = _cairo_uint32x32_64_mul (al, bl);
    r1 = _cairo_uint32x32_64_mul (al, bh);
    r2 = _cairo_uint32x32_64_mul (ah, bl);
    r3 = _cairo_uint32x32_64_mul (ah, bh);

    r1 = _cairo_uint64_add (r1, uint64_hi (r0));    /* no carry possible */
    r1 = _cairo_uint64_add (r1, r2);	    	    /* but this can carry */
    if (_cairo_uint64_lt (r1, r2))		    /* check */
	r3 = _cairo_uint64_add (r3, uint64_carry32);

    s.hi = _cairo_uint64_add (r3, uint64_hi(r1));
    s.lo = _cairo_uint64_add (uint64_shift32 (r1),
				uint64_lo (r0));
    return s;
}

cairo_int128_t
_cairo_int64x64_128_mul (cairo_int64_t a, cairo_int64_t b)
{
    cairo_int128_t  s;
    s = _cairo_uint64x64_128_mul (_cairo_int64_to_uint64(a),
				  _cairo_int64_to_uint64(b));
    if (_cairo_int64_negative (a))
	s.hi = _cairo_uint64_sub (s.hi,
				  _cairo_int64_to_uint64 (b));
    if (_cairo_int64_negative (b))
	s.hi = _cairo_uint64_sub (s.hi,
				  _cairo_int64_to_uint64 (a));
    return s;
}

cairo_uint128_t
_cairo_uint128_mul (cairo_uint128_t a, cairo_uint128_t b)
{
    cairo_uint128_t	s;

    s = _cairo_uint64x64_128_mul (a.lo, b.lo);
    s.hi = _cairo_uint64_add (s.hi,
				_cairo_uint64_mul (a.lo, b.hi));
    s.hi = _cairo_uint64_add (s.hi,
				_cairo_uint64_mul (a.hi, b.lo));
    return s;
}

cairo_uint128_t
_cairo_uint128_lsl (cairo_uint128_t a, int shift)
{
    if (shift >= 64)
    {
	a.hi = a.lo;
	a.lo = _cairo_uint32_to_uint64 (0);
	shift -= 64;
    }
    if (shift)
    {
	a.hi = _cairo_uint64_add (_cairo_uint64_lsl (a.hi, shift),
				    _cairo_uint64_rsl (a.lo, (64 - shift)));
	a.lo = _cairo_uint64_lsl (a.lo, shift);
    }
    return a;
}

cairo_uint128_t
_cairo_uint128_rsl (cairo_uint128_t a, int shift)
{
    if (shift >= 64)
    {
	a.lo = a.hi;
	a.hi = _cairo_uint32_to_uint64 (0);
	shift -= 64;
    }
    if (shift)
    {
	a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift),
				    _cairo_uint64_lsl (a.hi, (64 - shift)));
	a.hi = _cairo_uint64_rsl (a.hi, shift);
    }
    return a;
}

cairo_uint128_t
_cairo_uint128_rsa (cairo_int128_t a, int shift)
{
    if (shift >= 64)
    {
	a.lo = a.hi;
	a.hi = _cairo_uint64_rsa (a.hi, 64-1);
	shift -= 64;
    }
    if (shift)
    {
	a.lo = _cairo_uint64_add (_cairo_uint64_rsl (a.lo, shift),
				    _cairo_uint64_lsl (a.hi, (64 - shift)));
	a.hi = _cairo_uint64_rsa (a.hi, shift);
    }
    return a;
}

int
_cairo_uint128_lt (cairo_uint128_t a, cairo_uint128_t b)
{
    return (_cairo_uint64_lt (a.hi, b.hi) ||
	    (_cairo_uint64_eq (a.hi, b.hi) &&
	     _cairo_uint64_lt (a.lo, b.lo)));
}

int
_cairo_int128_lt (cairo_int128_t a, cairo_int128_t b)
{
    if (_cairo_int128_negative (a) && !_cairo_int128_negative (b))
	return 1;
    if (!_cairo_int128_negative (a) && _cairo_int128_negative (b))
	return 0;
    return _cairo_uint128_lt (a, b);
}

int
_cairo_uint128_cmp (cairo_uint128_t a, cairo_uint128_t b)
{
    int cmp;

    cmp = _cairo_uint64_cmp (a.hi, b.hi);
    if (cmp)
	return cmp;
    return _cairo_uint64_cmp (a.lo, b.lo);
}

int
_cairo_int128_cmp (cairo_int128_t a, cairo_int128_t b)
{
    if (_cairo_int128_negative (a) && !_cairo_int128_negative (b))
	return -1;
    if (!_cairo_int128_negative (a) && _cairo_int128_negative (b))
	return 1;

    return _cairo_uint128_cmp (a, b);
}

int
_cairo_uint128_eq (cairo_uint128_t a, cairo_uint128_t b)
{
    return (_cairo_uint64_eq (a.hi, b.hi) &&
	    _cairo_uint64_eq (a.lo, b.lo));
}

#if HAVE_UINT64_T
#define _cairo_msbset64(q)  (q & ((uint64_t) 1 << 63))
#else
#define _cairo_msbset64(q)  (q.hi & ((uint32_t) 1 << 31))
#endif

cairo_uquorem128_t
_cairo_uint128_divrem (cairo_uint128_t num, cairo_uint128_t den)
{
    cairo_uquorem128_t	qr;
    cairo_uint128_t	bit;
    cairo_uint128_t	quo;

    bit = _cairo_uint32_to_uint128 (1);

    /* normalize to make den >= num, but not overflow */
    while (_cairo_uint128_lt (den, num) && !_cairo_msbset64(den.hi))
    {
	bit = _cairo_uint128_lsl (bit, 1);
	den = _cairo_uint128_lsl (den, 1);
    }
    quo = _cairo_uint32_to_uint128 (0);

    /* generate quotient, one bit at a time */
    while (_cairo_uint128_ne (bit, _cairo_uint32_to_uint128(0)))
    {
	if (_cairo_uint128_le (den, num))
	{
	    num = _cairo_uint128_sub (num, den);
	    quo = _cairo_uint128_add (quo, bit);
	}
	bit = _cairo_uint128_rsl (bit, 1);
	den = _cairo_uint128_rsl (den, 1);
    }
    qr.quo = quo;
    qr.rem = num;
    return qr;
}

cairo_int128_t
_cairo_int128_negate (cairo_int128_t a)
{
    a.lo = _cairo_uint64_not (a.lo);
    a.hi = _cairo_uint64_not (a.hi);
    return _cairo_uint128_add (a, _cairo_uint32_to_uint128 (1));
}

cairo_int128_t
_cairo_int128_not (cairo_int128_t a)
{
    a.lo = _cairo_uint64_not (a.lo);
    a.hi = _cairo_uint64_not (a.hi);
    return a;
}

#endif /* !HAVE_UINT128_T */

cairo_quorem128_t
_cairo_int128_divrem (cairo_int128_t num, cairo_int128_t den)
{
    int			num_neg = _cairo_int128_negative (num);
    int			den_neg = _cairo_int128_negative (den);
    cairo_uquorem128_t	uqr;
    cairo_quorem128_t	qr;

    if (num_neg)
	num = _cairo_int128_negate (num);
    if (den_neg)
	den = _cairo_int128_negate (den);
    uqr = _cairo_uint128_divrem (num, den);
    if (num_neg)
	qr.rem = _cairo_int128_negate (uqr.rem);
    else
	qr.rem = uqr.rem;
    if (num_neg != den_neg)
	qr.quo = _cairo_int128_negate (uqr.quo);
    else
	qr.quo = uqr.quo;
    return qr;
}

/**
 * _cairo_uint_96by64_32x64_divrem:
 *
 * Compute a 32 bit quotient and 64 bit remainder of a 96 bit unsigned
 * dividend and 64 bit divisor.  If the quotient doesn't fit into 32
 * bits then the returned remainder is equal to the divisor, and the
 * quotient is the largest representable 64 bit integer.  It is an
 * error to call this function with the high 32 bits of @num being
 * non-zero. */
cairo_uquorem64_t
_cairo_uint_96by64_32x64_divrem (cairo_uint128_t num,
				 cairo_uint64_t den)
{
    cairo_uquorem64_t result;
    cairo_uint64_t B = _cairo_uint32s_to_uint64 (1, 0);

    /* These are the high 64 bits of the *96* bit numerator.  We're
     * going to represent the numerator as xB + y, where x is a 64,
     * and y is a 32 bit number. */
    cairo_uint64_t x = _cairo_uint128_to_uint64 (_cairo_uint128_rsl(num, 32));

    /* Initialise the result to indicate overflow. */
    result.quo = _cairo_uint32s_to_uint64 (-1U, -1U);
    result.rem = den;

    /* Don't bother if the quotient is going to overflow. */
    if (_cairo_uint64_ge (x, den)) {
	return /* overflow */ result;
    }

    if (_cairo_uint64_lt (x, B)) {
	/* When the final quotient is known to fit in 32 bits, then
	 * num < 2^64 if and only if den < 2^32. */
	return _cairo_uint64_divrem (_cairo_uint128_to_uint64 (num), den);
    }
    else {
	/* Denominator is >= 2^32. the numerator is >= 2^64, and the
	 * division won't overflow: need two divrems.  Write the
	 * numerator and denominator as
	 *
	 *	num = xB + y		x : 64 bits, y : 32 bits
	 *	den = uB + v		u, v : 32 bits
	 */
	uint32_t y = _cairo_uint128_to_uint32 (num);
	uint32_t u = uint64_hi32 (den);
	uint32_t v = _cairo_uint64_to_uint32 (den);

	/* Compute a lower bound approximate quotient of num/den
	 * from x/(u+1).  Then we have
	 *
	 * x	= q(u+1) + r	; q : 32 bits, r <= u : 32 bits.
	 *
	 * xB + y	= q(u+1)B	+ (rB+y)
	 *		= q(uB + B + v - v) + (rB+y)
	 *		= q(uB + v)	+ qB - qv + (rB+y)
	 *		= q(uB + v)	+ q(B-v) + (rB+y)
	 *
	 * The true quotient of num/den then is q plus the
	 * contribution of q(B-v) + (rB+y).  The main contribution
	 * comes from the term q(B-v), with the term (rB+y) only
	 * contributing at most one part.
	 *
	 * The term q(B-v) must fit into 64 bits, since q fits into 32
	 * bits on account of being a lower bound to the true
	 * quotient, and as B-v <= 2^32, we may safely use a single
	 * 64/64 bit division to find its contribution. */

	cairo_uquorem64_t quorem;
	cairo_uint64_t remainder; /* will contain final remainder */
	uint32_t quotient;	/* will contain final quotient. */
	uint32_t q;
	uint32_t r;

	/* Approximate quotient by dividing the high 64 bits of num by
	 * u+1. Watch out for overflow of u+1. */
	if (u+1) {
	    quorem = _cairo_uint64_divrem (x, _cairo_uint32_to_uint64 (u+1));
	    q = _cairo_uint64_to_uint32 (quorem.quo);
	    r = _cairo_uint64_to_uint32 (quorem.rem);
	}
	else {
	    q = uint64_hi32 (x);
	    r = _cairo_uint64_to_uint32 (x);
	}
	quotient = q;

	/* Add the main term's contribution to quotient.  Note B-v =
	 * -v as an uint32 (unless v = 0) */
	if (v)
	    quorem = _cairo_uint64_divrem (_cairo_uint32x32_64_mul (q, -v), den);
	else
	    quorem = _cairo_uint64_divrem (_cairo_uint32s_to_uint64 (q, 0), den);
	quotient += _cairo_uint64_to_uint32 (quorem.quo);

	/* Add the contribution of the subterm and start computing the
	 * true remainder. */
	remainder = _cairo_uint32s_to_uint64 (r, y);
	if (_cairo_uint64_ge (remainder, den)) {
	    remainder = _cairo_uint64_sub (remainder, den);
	    quotient++;
	}

	/* Add the contribution of the main term's remainder. The
	 * funky test here checks that remainder + main_rem >= den,
	 * taking into account overflow of the addition. */
	remainder = _cairo_uint64_add (remainder, quorem.rem);
	if (_cairo_uint64_ge (remainder, den) ||
	    _cairo_uint64_lt (remainder, quorem.rem))
	{
	    remainder = _cairo_uint64_sub (remainder, den);
	    quotient++;
	}

	result.quo = _cairo_uint32_to_uint64 (quotient);
	result.rem = remainder;
    }
    return result;
}

cairo_quorem64_t
_cairo_int_96by64_32x64_divrem (cairo_int128_t num, cairo_int64_t den)
{
    int			num_neg = _cairo_int128_negative (num);
    int			den_neg = _cairo_int64_negative (den);
    cairo_uint64_t	nonneg_den;
    cairo_uquorem64_t	uqr;
    cairo_quorem64_t	qr;

    if (num_neg)
	num = _cairo_int128_negate (num);
    if (den_neg)
	nonneg_den = _cairo_int64_negate (den);
    else
	nonneg_den = den;

    uqr = _cairo_uint_96by64_32x64_divrem (num, nonneg_den);
    if (_cairo_uint64_eq (uqr.rem, nonneg_den)) {
	/* bail on overflow. */
	qr.quo = _cairo_uint32s_to_uint64 (0x7FFFFFFF, -1U);
	qr.rem = den;
	return qr;
    }

    if (num_neg)
	qr.rem = _cairo_int64_negate (uqr.rem);
    else
	qr.rem = uqr.rem;
    if (num_neg != den_neg)
	qr.quo = _cairo_int64_negate (uqr.quo);
    else
	qr.quo = uqr.quo;
    return qr;
}