1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#if !defined(MediaData_h)
#define MediaData_h
#include "AudioSampleFormat.h"
#include "ImageTypes.h"
#include "nsSize.h"
#include "mozilla/gfx/Rect.h"
#include "nsRect.h"
#include "nsIMemoryReporter.h"
#include "SharedBuffer.h"
#include "mozilla/RefPtr.h"
#include "mozilla/Span.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/UniquePtrExtensions.h"
#include "nsTArray.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/PodOperations.h"
namespace mozilla {
// Maximum channel number we can currently handle (7.1)
#define MAX_AUDIO_CHANNELS 8
class AudioConfig {
public:
// Channel definition is conveniently defined to be in the same order as
// WAVEFORMAT && SMPTE, even though this is unused for now.
enum Channel {
CHANNEL_INVALID = -1,
CHANNEL_FRONT_LEFT = 0,
CHANNEL_FRONT_RIGHT,
CHANNEL_FRONT_CENTER,
CHANNEL_LFE,
CHANNEL_BACK_LEFT,
CHANNEL_BACK_RIGHT,
CHANNEL_FRONT_LEFT_OF_CENTER,
CHANNEL_FRONT_RIGHT_OF_CENTER,
CHANNEL_BACK_CENTER,
CHANNEL_SIDE_LEFT,
CHANNEL_SIDE_RIGHT,
// From WAVEFORMAT definition.
CHANNEL_TOP_CENTER,
CHANNEL_TOP_FRONT_LEFT,
CHANNEL_TOP_FRONT_CENTER,
CHANNEL_TOP_FRONT_RIGHT,
CHANNEL_TOP_BACK_LEFT,
CHANNEL_TOP_BACK_CENTER,
CHANNEL_TOP_BACK_RIGHT
};
class ChannelLayout {
public:
ChannelLayout()
: mChannelMap(0)
, mValid(false)
{}
explicit ChannelLayout(uint32_t aChannels)
: ChannelLayout(aChannels, DefaultLayoutForChannels(aChannels))
{}
ChannelLayout(uint32_t aChannels, const Channel* aConfig)
: ChannelLayout()
{
if (aChannels == 0 || !aConfig) {
mValid = false;
return;
}
mChannels.AppendElements(aConfig, aChannels);
UpdateChannelMap();
}
ChannelLayout(std::initializer_list<Channel> aChannelList)
: ChannelLayout(aChannelList.size(), aChannelList.begin())
{
}
bool operator==(const ChannelLayout& aOther) const
{
return mChannels == aOther.mChannels;
}
bool operator!=(const ChannelLayout& aOther) const
{
return mChannels != aOther.mChannels;
}
const Channel& operator[](uint32_t aIndex) const
{
return mChannels[aIndex];
}
uint32_t Count() const
{
return mChannels.Length();
}
uint32_t Map() const;
// Calculate the mapping table from the current layout to aOther such that
// one can easily go from one layout to the other by doing:
// out[channel] = in[map[channel]].
// Returns true if the reordering is possible or false otherwise.
// If true, then aMap, if set, will be updated to contain the mapping table
// allowing conversion from the current layout to aOther.
// If aMap is nullptr, then MappingTable can be used to simply determine if
// the current layout can be easily reordered to aOther.
// aMap must be an array of size MAX_AUDIO_CHANNELS.
bool MappingTable(const ChannelLayout& aOther, uint8_t* aMap = nullptr) const;
bool IsValid() const {
return mValid;
}
bool HasChannel(Channel aChannel) const
{
return mChannelMap & (1 << aChannel);
}
static ChannelLayout SMPTEDefault(
const ChannelLayout& aChannelLayout);
static ChannelLayout SMPTEDefault(uint32_t aMap);
static constexpr uint32_t UNKNOWN_MAP = 0;
// Common channel layout definitions.
static ChannelLayout LMONO;
static constexpr uint32_t LMONO_MAP = 1 << CHANNEL_FRONT_CENTER;
static ChannelLayout LMONO_LFE;
static constexpr uint32_t LMONO_LFE_MAP =
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE;
static ChannelLayout LSTEREO;
static constexpr uint32_t LSTEREO_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT;
static ChannelLayout LSTEREO_LFE;
static constexpr uint32_t LSTEREO_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT | 1 << CHANNEL_LFE;
static ChannelLayout L3F;
static constexpr uint32_t L3F_MAP = 1 << CHANNEL_FRONT_LEFT |
1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER;
static ChannelLayout L3F_LFE;
static constexpr uint32_t L3F_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE;
static ChannelLayout L2F1;
static constexpr uint32_t L2F1_MAP = 1 << CHANNEL_FRONT_LEFT |
1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_BACK_CENTER;
static ChannelLayout L2F1_LFE;
static constexpr uint32_t L2F1_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT | 1 << CHANNEL_LFE |
1 << CHANNEL_BACK_CENTER;
static ChannelLayout L3F1;
static constexpr uint32_t L3F1_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_BACK_CENTER;
static ChannelLayout LSURROUND; // Same as 3F1
static constexpr uint32_t LSURROUND_MAP = L3F1_MAP;
static ChannelLayout L3F1_LFE;
static constexpr uint32_t L3F1_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE | 1 << CHANNEL_BACK_CENTER;
static ChannelLayout L2F2;
static constexpr uint32_t L2F2_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_SIDE_LEFT | 1 << CHANNEL_SIDE_RIGHT;
static ChannelLayout L2F2_LFE;
static constexpr uint32_t L2F2_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT | 1 << CHANNEL_LFE |
1 << CHANNEL_SIDE_LEFT | 1 << CHANNEL_SIDE_RIGHT;
static ChannelLayout LQUAD;
static constexpr uint32_t LQUAD_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_BACK_LEFT | 1 << CHANNEL_BACK_RIGHT;
static ChannelLayout LQUAD_LFE;
static constexpr uint32_t LQUAD_MAP_LFE =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT | 1 << CHANNEL_LFE |
1 << CHANNEL_BACK_LEFT | 1 << CHANNEL_BACK_RIGHT;
static ChannelLayout L3F2;
static constexpr uint32_t L3F2_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_SIDE_LEFT |
1 << CHANNEL_SIDE_RIGHT;
static ChannelLayout L3F2_LFE;
static constexpr uint32_t L3F2_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE | 1 << CHANNEL_SIDE_LEFT |
1 << CHANNEL_SIDE_RIGHT;
// 3F2_LFE Alias
static ChannelLayout L5POINT1_SURROUND;
static constexpr uint32_t L5POINT1_SURROUND_MAP = L3F2_LFE_MAP;
static ChannelLayout L3F3R_LFE;
static constexpr uint32_t L3F3R_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE | 1 << CHANNEL_BACK_CENTER |
1 << CHANNEL_SIDE_LEFT | 1 << CHANNEL_SIDE_RIGHT;
static ChannelLayout L3F4_LFE;
static constexpr uint32_t L3F4_LFE_MAP =
1 << CHANNEL_FRONT_LEFT | 1 << CHANNEL_FRONT_RIGHT |
1 << CHANNEL_FRONT_CENTER | 1 << CHANNEL_LFE | 1 << CHANNEL_BACK_LEFT |
1 << CHANNEL_BACK_RIGHT | 1 << CHANNEL_SIDE_LEFT |
1 << CHANNEL_SIDE_RIGHT;
// 3F4_LFE Alias
static ChannelLayout L7POINT1_SURROUND;
static constexpr uint32_t L7POINT1_SURROUND_MAP = L3F4_LFE_MAP;
private:
void UpdateChannelMap();
const Channel* DefaultLayoutForChannels(uint32_t aChannels) const;
AutoTArray<Channel, MAX_AUDIO_CHANNELS> mChannels;
uint32_t mChannelMap;
bool mValid;
};
enum SampleFormat {
FORMAT_NONE = 0,
FORMAT_U8,
FORMAT_S16,
FORMAT_S24LSB,
FORMAT_S24,
FORMAT_S32,
FORMAT_FLT,
#if defined(MOZ_SAMPLE_TYPE_FLOAT32)
FORMAT_DEFAULT = FORMAT_FLT
#elif defined(MOZ_SAMPLE_TYPE_S16)
FORMAT_DEFAULT = FORMAT_S16
#else
#error "Not supported audio type"
#endif
};
AudioConfig(const ChannelLayout& aChannelLayout, uint32_t aRate,
AudioConfig::SampleFormat aFormat = FORMAT_DEFAULT,
bool aInterleaved = true);
// Will create a channel configuration from default SMPTE ordering.
AudioConfig(uint32_t aChannels, uint32_t aRate,
AudioConfig::SampleFormat aFormat = FORMAT_DEFAULT,
bool aInterleaved = true);
const ChannelLayout& Layout() const
{
return mChannelLayout;
}
uint32_t Channels() const
{
if (!mChannelLayout.IsValid()) {
return mChannels;
}
return mChannelLayout.Count();
}
uint32_t Rate() const
{
return mRate;
}
SampleFormat Format() const
{
return mFormat;
}
bool Interleaved() const
{
return mInterleaved;
}
bool operator==(const AudioConfig& aOther) const
{
return mChannelLayout == aOther.mChannelLayout &&
mRate == aOther.mRate && mFormat == aOther.mFormat &&
mInterleaved == aOther.mInterleaved;
}
bool operator!=(const AudioConfig& aOther) const
{
return !(*this == aOther);
}
bool IsValid() const
{
return mChannelLayout.IsValid() && Format() != FORMAT_NONE && Rate() > 0;
}
static const char* FormatToString(SampleFormat aFormat);
static uint32_t SampleSize(SampleFormat aFormat);
static uint32_t FormatToBits(SampleFormat aFormat);
private:
// Channels configuration.
ChannelLayout mChannelLayout;
// Channel count.
uint32_t mChannels;
// Sample rate.
uint32_t mRate;
// Sample format.
SampleFormat mFormat;
bool mInterleaved;
};
namespace layers {
class Image;
class ImageContainer;
} // namespace layers
class MediaByteBuffer;
class SharedTrackInfo;
// AlignedBuffer:
// Memory allocations are fallibles. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// AlignedBuffer::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be Alignment bytes aligned and the
// underlying buffer will always have a size such that Alignment bytes blocks
// can be used to read the content, regardless of the mSize value. Buffer is
// zeroed on creation, elements are not individually constructed.
// An Alignment value of 0 means that the data isn't aligned.
//
// Type must be trivially copyable.
//
// AlignedBuffer can typically be used in place of UniquePtr<Type[]> however
// care must be taken as all memory allocations are fallible.
// Example:
// auto buffer = MakeUniqueFallible<float[]>(samples)
// becomes: AlignedFloatBuffer buffer(samples)
//
// auto buffer = MakeUnique<float[]>(samples)
// becomes:
// AlignedFloatBuffer buffer(samples);
// if (!buffer) { return NS_ERROR_OUT_OF_MEMORY; }
template <typename Type, int Alignment = 32>
class AlignedBuffer
{
public:
AlignedBuffer()
: mData(nullptr)
, mLength(0)
, mBuffer(nullptr)
, mCapacity(0)
{}
explicit AlignedBuffer(size_t aLength)
: mData(nullptr)
, mLength(0)
, mBuffer(nullptr)
, mCapacity(0)
{
if (EnsureCapacity(aLength)) {
mLength = aLength;
}
}
AlignedBuffer(const Type* aData, size_t aLength)
: AlignedBuffer(aLength)
{
if (!mData) {
return;
}
PodCopy(mData, aData, aLength);
}
AlignedBuffer(const AlignedBuffer& aOther)
: AlignedBuffer(aOther.Data(), aOther.Length())
{}
AlignedBuffer(AlignedBuffer&& aOther)
: mData(aOther.mData)
, mLength(aOther.mLength)
, mBuffer(Move(aOther.mBuffer))
, mCapacity(aOther.mCapacity)
{
aOther.mData = nullptr;
aOther.mLength = 0;
aOther.mCapacity = 0;
}
AlignedBuffer& operator=(AlignedBuffer&& aOther)
{
this->~AlignedBuffer();
new (this) AlignedBuffer(Move(aOther));
return *this;
}
Type* Data() const { return mData; }
size_t Length() const { return mLength; }
size_t Size() const { return mLength * sizeof(Type); }
Type& operator[](size_t aIndex)
{
MOZ_ASSERT(aIndex < mLength);
return mData[aIndex];
}
const Type& operator[](size_t aIndex) const
{
MOZ_ASSERT(aIndex < mLength);
return mData[aIndex];
}
// Set length of buffer, allocating memory as required.
// If length is increased, new buffer area is filled with 0.
bool SetLength(size_t aLength)
{
if (aLength > mLength && !EnsureCapacity(aLength)) {
return false;
}
mLength = aLength;
return true;
}
// Add aData at the beginning of buffer.
bool Prepend(const Type* aData, size_t aLength)
{
if (!EnsureCapacity(aLength + mLength)) {
return false;
}
// Shift the data to the right by aLength to leave room for the new data.
PodMove(mData + aLength, mData, mLength);
PodCopy(mData, aData, aLength);
mLength += aLength;
return true;
}
// Add aData at the end of buffer.
bool Append(const Type* aData, size_t aLength)
{
if (!EnsureCapacity(aLength + mLength)) {
return false;
}
PodCopy(mData + mLength, aData, aLength);
mLength += aLength;
return true;
}
// Replace current content with aData.
bool Replace(const Type* aData, size_t aLength)
{
// If aLength is smaller than our current length, we leave the buffer as is,
// only adjusting the reported length.
if (!EnsureCapacity(aLength)) {
return false;
}
PodCopy(mData, aData, aLength);
mLength = aLength;
return true;
}
// Clear the memory buffer. Will set target mData and mLength to 0.
void Clear()
{
mLength = 0;
mData = nullptr;
}
// Methods for reporting memory.
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const
{
size_t size = aMallocSizeOf(this);
size += aMallocSizeOf(mBuffer.get());
return size;
}
// AlignedBuffer is typically allocated on the stack. As such, you likely
// want to use SizeOfExcludingThis
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const
{
return aMallocSizeOf(mBuffer.get());
}
size_t ComputedSizeOfExcludingThis() const
{
return mCapacity;
}
// For backward compatibility with UniquePtr<Type[]>
Type* get() const { return mData; }
explicit operator bool() const { return mData != nullptr; }
// Size in bytes of extra space allocated for padding.
static size_t AlignmentPaddingSize()
{
return AlignmentOffset() * 2;
}
private:
static size_t AlignmentOffset()
{
return Alignment ? Alignment - 1 : 0;
}
// Ensure that the backend buffer can hold aLength data. Will update mData.
// Will enforce that the start of allocated data is always Alignment bytes
// aligned and that it has sufficient end padding to allow for Alignment bytes
// block read as required by some data decoders.
// Returns false if memory couldn't be allocated.
bool EnsureCapacity(size_t aLength)
{
if (!aLength) {
// No need to allocate a buffer yet.
return true;
}
const CheckedInt<size_t> sizeNeeded =
CheckedInt<size_t>(aLength) * sizeof(Type) + AlignmentPaddingSize();
if (!sizeNeeded.isValid() || sizeNeeded.value() >= INT32_MAX) {
// overflow or over an acceptable size.
return false;
}
if (mData && mCapacity >= sizeNeeded.value()) {
return true;
}
auto newBuffer = MakeUniqueFallible<uint8_t[]>(sizeNeeded.value());
if (!newBuffer) {
return false;
}
// Find alignment address.
const uintptr_t alignmask = AlignmentOffset();
Type* newData = reinterpret_cast<Type*>(
(reinterpret_cast<uintptr_t>(newBuffer.get()) + alignmask) & ~alignmask);
MOZ_ASSERT(uintptr_t(newData) % (AlignmentOffset()+1) == 0);
MOZ_ASSERT(!mLength || mData);
PodZero(newData + mLength, aLength - mLength);
if (mLength) {
PodCopy(newData, mData, mLength);
}
mBuffer = Move(newBuffer);
mCapacity = sizeNeeded.value();
mData = newData;
return true;
}
Type* mData;
size_t mLength;
UniquePtr<uint8_t[]> mBuffer;
size_t mCapacity;
};
typedef AlignedBuffer<uint8_t> AlignedByteBuffer;
typedef AlignedBuffer<float> AlignedFloatBuffer;
typedef AlignedBuffer<int16_t> AlignedShortBuffer;
typedef AlignedBuffer<AudioDataValue> AlignedAudioBuffer;
// Container that holds media samples.
class MediaData {
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaData)
enum Type {
AUDIO_DATA = 0,
VIDEO_DATA,
RAW_DATA,
NULL_DATA
};
MediaData(Type aType,
int64_t aOffset,
int64_t aTimestamp,
int64_t aDuration,
uint32_t aFrames)
: mType(aType)
, mOffset(aOffset)
, mTime(aTimestamp)
, mTimecode(aTimestamp)
, mDuration(aDuration)
, mFrames(aFrames)
, mKeyframe(false)
{}
// Type of contained data.
const Type mType;
// Approximate byte offset where this data was demuxed from its media.
int64_t mOffset;
// Start time of sample, in microseconds.
int64_t mTime;
// Codec specific internal time code. For Ogg based codecs this is the
// granulepos.
int64_t mTimecode;
// Duration of sample, in microseconds.
int64_t mDuration;
// Amount of frames for contained data.
const uint32_t mFrames;
bool mKeyframe;
int64_t GetEndTime() const { return mTime + mDuration; }
bool AdjustForStartTime(int64_t aStartTime)
{
mTime = mTime - aStartTime;
return mTime >= 0;
}
template <typename ReturnType>
const ReturnType* As() const
{
MOZ_ASSERT(this->mType == ReturnType::sType);
return static_cast<const ReturnType*>(this);
}
template <typename ReturnType>
ReturnType* As()
{
MOZ_ASSERT(this->mType == ReturnType::sType);
return static_cast<ReturnType*>(this);
}
protected:
MediaData(Type aType, uint32_t aFrames)
: mType(aType)
, mOffset(0)
, mTime(0)
, mTimecode(0)
, mDuration(0)
, mFrames(aFrames)
, mKeyframe(false)
{}
virtual ~MediaData() {}
};
// NullData is for decoder generating a sample which doesn't need to be
// rendered.
class NullData : public MediaData {
public:
NullData(int64_t aOffset, int64_t aTime, int64_t aDuration)
: MediaData(NULL_DATA, aOffset, aTime, aDuration, 0)
{}
static const Type sType = NULL_DATA;
};
// Holds chunk a decoded audio frames.
class AudioData : public MediaData {
public:
AudioData(int64_t aOffset,
int64_t aTime,
int64_t aDuration,
uint32_t aFrames,
AlignedAudioBuffer&& aData,
uint32_t aChannels,
uint32_t aRate,
uint32_t aChannelMap = AudioConfig::ChannelLayout::UNKNOWN_MAP)
: MediaData(sType, aOffset, aTime, aDuration, aFrames)
, mChannels(aChannels)
, mChannelMap(aChannelMap)
, mRate(aRate)
, mAudioData(Move(aData)) {}
static const Type sType = AUDIO_DATA;
static const char* sTypeName;
// Creates a new AudioData identical to aOther, but with a different
// specified timestamp and duration. All data from aOther is copied
// into the new AudioData but the audio data which is transferred.
// After such call, the original aOther is unusable.
static already_AddRefed<AudioData>
TransferAndUpdateTimestampAndDuration(AudioData* aOther,
int64_t aTimestamp,
int64_t aDuration);
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
// If mAudioBuffer is null, creates it from mAudioData.
void EnsureAudioBuffer();
// To check whether mAudioData has audible signal, it's used to distinguish
// the audiable data and silent data.
bool IsAudible() const;
const uint32_t mChannels;
// The AudioConfig::ChannelLayout map. Channels are ordered as per SMPTE
// definition. A value of UNKNOWN_MAP indicates unknown layout.
// ChannelMap is an unsigned bitmap compatible with Windows' WAVE and FFmpeg
// channel map.
const uint32_t mChannelMap;
const uint32_t mRate;
// At least one of mAudioBuffer/mAudioData must be non-null.
// mChannels channels, each with mFrames frames
RefPtr<SharedBuffer> mAudioBuffer;
// mFrames frames, each with mChannels values
AlignedAudioBuffer mAudioData;
protected:
~AudioData() {}
};
namespace layers {
class TextureClient;
class PlanarYCbCrImage;
} // namespace layers
class VideoInfo;
// Holds a decoded video frame, in YCbCr format. These are queued in the reader.
class VideoData : public MediaData {
public:
typedef gfx::IntRect IntRect;
typedef gfx::IntSize IntSize;
typedef layers::ImageContainer ImageContainer;
typedef layers::Image Image;
typedef layers::PlanarYCbCrImage PlanarYCbCrImage;
static const Type sType = VIDEO_DATA;
static const char* sTypeName;
// YCbCr data obtained from decoding the video. The index's are:
// 0 = Y
// 1 = Cb
// 2 = Cr
struct YCbCrBuffer {
struct Plane {
uint8_t* mData;
uint32_t mWidth;
uint32_t mHeight;
uint32_t mStride;
uint32_t mOffset;
uint32_t mSkip;
};
Plane mPlanes[3];
YUVColorSpace mYUVColorSpace = YUVColorSpace::BT601;
};
// Constructs a VideoData object. If aImage is nullptr, creates a new Image
// holding a copy of the YCbCr data passed in aBuffer. If aImage is not
// nullptr, it's stored as the underlying video image and aBuffer is assumed
// to point to memory within aImage so no copy is made. aTimecode is a codec
// specific number representing the timestamp of the frame of video data.
// Returns nsnull if an error occurs. This may indicate that memory couldn't
// be allocated to create the VideoData object, or it may indicate some
// problem with the input data (e.g. negative stride).
// Creates a new VideoData containing a deep copy of aBuffer. May use aContainer
// to allocate an Image to hold the copied data.
static already_AddRefed<VideoData> CreateAndCopyData(const VideoInfo& aInfo,
ImageContainer* aContainer,
int64_t aOffset,
int64_t aTime,
int64_t aDuration,
const YCbCrBuffer &aBuffer,
bool aKeyframe,
int64_t aTimecode,
const IntRect& aPicture);
static already_AddRefed<VideoData> CreateAndCopyIntoTextureClient(const VideoInfo& aInfo,
int64_t aOffset,
int64_t aTime,
int64_t aDuration,
layers::TextureClient* aBuffer,
bool aKeyframe,
int64_t aTimecode,
const IntRect& aPicture);
static already_AddRefed<VideoData> CreateFromImage(const VideoInfo& aInfo,
int64_t aOffset,
int64_t aTime,
int64_t aDuration,
const RefPtr<Image>& aImage,
bool aKeyframe,
int64_t aTimecode,
const IntRect& aPicture);
// Creates a new VideoData identical to aOther, but with a different
// specified duration. All data from aOther is copied into the new
// VideoData. The new VideoData's mImage field holds a reference to
// aOther's mImage, i.e. the Image is not copied. This function is useful
// in reader backends that can't determine the duration of a VideoData
// until the next frame is decoded, i.e. it's a way to change the const
// duration field on a VideoData.
static already_AddRefed<VideoData> ShallowCopyUpdateDuration(const VideoData* aOther,
int64_t aDuration);
// Creates a new VideoData identical to aOther, but with a different
// specified timestamp. All data from aOther is copied into the new
// VideoData, as ShallowCopyUpdateDuration() does.
static already_AddRefed<VideoData> ShallowCopyUpdateTimestamp(const VideoData* aOther,
int64_t aTimestamp);
// Creates a new VideoData identical to aOther, but with a different
// specified timestamp and duration. All data from aOther is copied
// into the new VideoData, as ShallowCopyUpdateDuration() does.
static already_AddRefed<VideoData>
ShallowCopyUpdateTimestampAndDuration(const VideoData* aOther, int64_t aTimestamp,
int64_t aDuration);
// Initialize PlanarYCbCrImage. Only When aCopyData is true,
// video data is copied to PlanarYCbCrImage.
static bool SetVideoDataToImage(PlanarYCbCrImage* aVideoImage,
const VideoInfo& aInfo,
const YCbCrBuffer &aBuffer,
const IntRect& aPicture,
bool aCopyData);
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
// Dimensions at which to display the video frame. The picture region
// will be scaled to this size. This is should be the picture region's
// dimensions scaled with respect to its aspect ratio.
const IntSize mDisplay;
// This frame's image.
RefPtr<Image> mImage;
int32_t mFrameID;
bool mSentToCompositor;
VideoData(int64_t aOffset,
int64_t aTime,
int64_t aDuration,
bool aKeyframe,
int64_t aTimecode,
IntSize aDisplay,
uint32_t aFrameID);
protected:
~VideoData();
};
class CryptoTrack
{
public:
CryptoTrack() : mValid(false), mMode(0), mIVSize(0) {}
bool mValid;
int32_t mMode;
int32_t mIVSize;
nsTArray<uint8_t> mKeyId;
};
class CryptoSample : public CryptoTrack
{
public:
nsTArray<uint16_t> mPlainSizes;
nsTArray<uint32_t> mEncryptedSizes;
nsTArray<uint8_t> mIV;
nsTArray<nsCString> mSessionIds;
};
// MediaRawData is a MediaData container used to store demuxed, still compressed
// samples.
// Use MediaRawData::CreateWriter() to obtain a MediaRawDataWriter object that
// provides methods to modify and manipulate the data.
// Memory allocations are fallible. Methods return a boolean indicating if
// memory allocations were successful. Return values should always be checked.
// MediaRawData::mData will be nullptr if no memory has been allocated or if
// an error occurred during construction.
// Existing data is only ever modified if new memory allocation has succeeded
// and preserved if not.
//
// The memory referenced by mData will always be 32 bytes aligned and the
// underlying buffer will always have a size such that 32 bytes blocks can be
// used to read the content, regardless of the mSize value. Buffer is zeroed
// on creation.
//
// Typical usage: create new MediaRawData; create the associated
// MediaRawDataWriter, call SetSize() to allocate memory, write to mData,
// up to mSize bytes.
class MediaRawData;
class MediaRawDataWriter
{
public:
// Pointer to data or null if not-yet allocated
uint8_t* Data();
// Writeable size of buffer.
size_t Size();
// Writeable reference to MediaRawData::mCryptoInternal
CryptoSample& mCrypto;
// Data manipulation methods. mData and mSize may be updated accordingly.
// Set size of buffer, allocating memory as required.
// If size is increased, new buffer area is filled with 0.
bool SetSize(size_t aSize);
// Add aData at the beginning of buffer.
bool Prepend(const uint8_t* aData, size_t aSize);
// Replace current content with aData.
bool Replace(const uint8_t* aData, size_t aSize);
// Clear the memory buffer. Will set target mData and mSize to 0.
void Clear();
private:
friend class MediaRawData;
explicit MediaRawDataWriter(MediaRawData* aMediaRawData);
bool EnsureSize(size_t aSize);
MediaRawData* mTarget;
};
class MediaRawData : public MediaData {
public:
MediaRawData();
MediaRawData(const uint8_t* aData, size_t mSize);
// Pointer to data or null if not-yet allocated
const uint8_t* Data() const { return mBuffer.Data(); }
// Size of buffer.
size_t Size() const { return mBuffer.Length(); }
size_t ComputedSizeOfIncludingThis() const
{
return sizeof(*this) + mBuffer.ComputedSizeOfExcludingThis();
}
// Access the buffer as a Span.
operator Span<const uint8_t>() { return MakeSpan(Data(), Size()); }
const CryptoSample& mCrypto;
RefPtr<MediaByteBuffer> mExtraData;
// Used by the Vorbis decoder and Ogg demuxer.
// Indicates that this is the last packet of the stream.
bool mEOS = false;
// Indicate to the audio decoder that mDiscardPadding frames should be
// trimmed.
uint32_t mDiscardPadding = 0;
RefPtr<SharedTrackInfo> mTrackInfo;
// Return a deep copy or nullptr if out of memory.
virtual already_AddRefed<MediaRawData> Clone() const;
// Create a MediaRawDataWriter for this MediaRawData. The caller must
// delete the writer once done. The writer is not thread-safe.
virtual MediaRawDataWriter* CreateWriter();
virtual size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const;
protected:
~MediaRawData();
private:
friend class MediaRawDataWriter;
AlignedByteBuffer mBuffer;
CryptoSample mCryptoInternal;
MediaRawData(const MediaRawData&); // Not implemented
};
// MediaByteBuffer is a ref counted infallible TArray.
class MediaByteBuffer : public nsTArray<uint8_t> {
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(MediaByteBuffer);
MediaByteBuffer() = default;
explicit MediaByteBuffer(size_t aCapacity) : nsTArray<uint8_t>(aCapacity) {}
private:
~MediaByteBuffer() {}
};
} // namespace mozilla
#endif // MediaData_h
|