/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "./aom_scale_rtcd.h" #include "./aom_dsp_rtcd.h" #include "./aom_config.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/blockd.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #if CONFIG_MOTION_VAR #include "av1/common/onyxc_int.h" #include "av1/common/obmc.h" #endif // CONFIG_MOTION_VAR #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION // This function will determine whether or not to create a warped // prediction and return the appropriate motion model depending // on the configuration. Behavior will change with different // combinations of GLOBAL_MOTION, WARPED_MOTION and MOTION_VAR. static INLINE int allow_warp(const MODE_INFO *const mi, const WarpTypesAllowed *const warp_types, #if CONFIG_GLOBAL_MOTION const WarpedMotionParams *const gm_params, #endif // CONFIG_GLOBAL_MOTION #if CONFIG_MOTION_VAR int build_for_obmc, #endif // CONFIG_MOTION_VAR WarpedMotionParams *final_warp_params) { const MB_MODE_INFO *const mbmi = &mi->mbmi; *final_warp_params = default_warp_params; // Only global motion configured #if CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR (void)mbmi; if (warp_types->global_warp_allowed) { memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); return 1; } #endif // CONFIG_GLOBAL_MOTION && !CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR // Only warped motion configured #if CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR if (warp_types->local_warp_allowed) { memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); return 1; } #endif // CONFIG_WARPED_MOTION && !CONFIG_GLOBAL_MOTION && !CONFIG_MOTION_VAR // Warped and global motion configured #if CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR // When both are enabled, warped will take priority. The global parameters // will only be used to compute projection samples to find the warped model. // Note that when a block chooses global, it will not be possible to // select WARPED_CAUSAL. if (warp_types->local_warp_allowed) { memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); return 1; } else if (warp_types->global_warp_allowed) { memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); return 1; } #endif // CONFIG_GLOBAL_MOTION && CONFIG_WARPED_MOTION && !CONFIG_MOTION_VAR // Motion var and global motion configured #if CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION // We warp if either case is true: // 1.) We are predicting a block which uses global motion // 2.) We are predicting a neighboring block of a block using OBMC, // the neighboring block uses global motion, and we have enabled // WARP_GM_NEIGHBORS_WITH_OBMC (void)mbmi; if (warp_types->global_warp_allowed && (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) { memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); return 1; } #endif // CONFIG_GLOBAL_MOTION && CONFIG_MOTION_VAR && !CONFIG_WARPED_MOTION // Motion var and warped motion configured #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION // We warp if either case is true: // 1.) We are predicting a block with motion mode WARPED_CAUSAL // 2.) We are predicting a neighboring block of a block using OBMC, // the neighboring block has mode WARPED_CAUSAL, and we have enabled // WARP_WM_NEIGHBORS_WITH_OBMC if (warp_types->local_warp_allowed) { if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) { memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); return 1; } } #endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && !CONFIG_GLOBAL_MOTION // Motion var, warped motion and global motion all configured #if CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION if (warp_types->local_warp_allowed) { if ((build_for_obmc && WARP_WM_NEIGHBORS_WITH_OBMC) || (!build_for_obmc)) { memcpy(final_warp_params, &mbmi->wm_params[0], sizeof(*final_warp_params)); return 1; } } else if (warp_types->global_warp_allowed && (WARP_GM_NEIGHBORS_WITH_OBMC || !build_for_obmc)) { memcpy(final_warp_params, gm_params, sizeof(*final_warp_params)); return 1; } #endif // CONFIG_WARPED_MOTION && CONFIG_MOTION_VAR && CONFIG_GLOBAL_MOTION return 0; } #endif // CONFIG_GLOBAL_MOTION ||CONFIG_WARPED_MOTION static INLINE void av1_make_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR const MODE_INFO *mi, int build_for_obmc, #endif int xs, int ys, const MACROBLOCKD *xd) { (void)xd; #if !CONFIG_MOTION_VAR const MODE_INFO *mi = xd->mi[0]; (void)mi; #endif // CONFIG_MOTION_VAR // Make sure the selected motion mode is valid for this configuration #if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION assert_motion_mode_valid(mi->mbmi.motion_mode, #if CONFIG_GLOBAL_MOTION 0, xd->global_motion, #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION xd, #endif mi); #endif // CONFIG MOTION_VAR || CONFIG_WARPED_MOTION #if CONFIG_WARPED_MOTION || CONFIG_GLOBAL_MOTION WarpedMotionParams final_warp_params; const int do_warp = allow_warp( mi, warp_types, #if CONFIG_GLOBAL_MOTION #if CONFIG_COMPOUND_SINGLEREF // TODO(zoeliu): To further check the single // ref comp mode to work together with // global motion. has_second_ref(&mi->mbmi) ? &xd->global_motion[mi->mbmi.ref_frame[ref]] : &xd->global_motion[mi->mbmi.ref_frame[0]], #else // !(CONFIG_COMPOUND_SINGLEREF) &xd->global_motion[mi->mbmi.ref_frame[ref]], #endif // CONFIG_COMPOUND_SINGLEREF #endif // CONFIG_GLOBAL_MOTION #if CONFIG_MOTION_VAR build_for_obmc, #endif // CONFIG_MOTION_VAR &final_warp_params); if (do_warp #if CONFIG_AMVR && xd->cur_frame_mv_precision_level == 0 #endif ) { const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const pre_buf = &pd->pre[ref]; av1_warp_plane(&final_warp_params, #if CONFIG_HIGHBITDEPTH xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, #endif // CONFIG_HIGHBITDEPTH pre_buf->buf0, pre_buf->width, pre_buf->height, pre_buf->stride, dst, p_col, p_row, w, h, dst_stride, pd->subsampling_x, pd->subsampling_y, xs, ys, conv_params); return; } #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params, interp_filters, xs, ys, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params, interp_filters, xs, ys); } #define NSMOOTHERS 1 // [smoother][negative][direction] DECLARE_ALIGNED(16, static uint8_t, wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS] [MASK_MASTER_SIZE * MASK_MASTER_SIZE]); DECLARE_ALIGNED(16, static uint8_t, wedge_signflip_lookup[BLOCK_SIZES_ALL][MAX_WEDGE_TYPES]); // 4 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. DECLARE_ALIGNED(16, static uint8_t, wedge_mask_buf[2 * MAX_WEDGE_TYPES * 4 * MAX_WEDGE_SQUARE]); static wedge_masks_type wedge_masks[BLOCK_SIZES_ALL][2]; // Some unused wedge codebooks left temporarily to facilitate experiments. // To be removed when settled. /* static wedge_code_type wedge_codebook_8_hgtw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, }; static wedge_code_type wedge_codebook_8_hltw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static wedge_code_type wedge_codebook_8_heqw[8] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, }; static const wedge_code_type wedge_codebook_32_hgtw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_hltw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; static const wedge_code_type wedge_codebook_32_heqw[32] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, }; */ static const wedge_code_type wedge_codebook_16_hgtw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_hltw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; static const wedge_code_type wedge_codebook_16_heqw[16] = { { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, }; const wedge_params_type wedge_params_lookup[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #if CONFIG_WEDGE { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0, wedge_masks[BLOCK_8X8] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0, wedge_masks[BLOCK_8X16] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0, wedge_masks[BLOCK_16X8] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0, wedge_masks[BLOCK_16X16] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0, wedge_masks[BLOCK_16X32] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0, wedge_masks[BLOCK_32X16] }, { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0, wedge_masks[BLOCK_32X32] }, #else { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_8X8], 0, wedge_masks[BLOCK_8X8] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X16], 0, wedge_masks[BLOCK_8X16] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X8], 0, wedge_masks[BLOCK_16X8] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_16X16], 0, wedge_masks[BLOCK_16X16] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_16X32], 0, wedge_masks[BLOCK_16X32] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X16], 0, wedge_masks[BLOCK_32X16] }, { 0, wedge_codebook_16_heqw, wedge_signflip_lookup[BLOCK_32X32], 0, wedge_masks[BLOCK_32X32] }, #endif // CONFIG_WEDGE { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #if CONFIG_EXT_PARTITION { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_EXT_PARTITION #if CONFIG_WEDGE { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0, wedge_masks[BLOCK_4X16] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0, wedge_masks[BLOCK_16X4] }, { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0, wedge_masks[BLOCK_8X32] }, { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0, wedge_masks[BLOCK_32X8] }, #else { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_4X16], 0, wedge_masks[BLOCK_4X16] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_16X4], 0, wedge_masks[BLOCK_16X4] }, { 0, wedge_codebook_16_hgtw, wedge_signflip_lookup[BLOCK_8X32], 0, wedge_masks[BLOCK_8X32] }, { 0, wedge_codebook_16_hltw, wedge_signflip_lookup[BLOCK_32X8], 0, wedge_masks[BLOCK_32X8] }, #endif // CONFIG_WEDGE { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #if CONFIG_EXT_PARTITION { 0, NULL, NULL, 0, NULL }, { 0, NULL, NULL, 0, NULL }, #endif // CONFIG_EXT_PARTITION }; static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, BLOCK_SIZE sb_type) { const uint8_t *master; const int bh = block_size_high[sb_type]; const int bw = block_size_wide[sb_type]; const wedge_code_type *a = wedge_params_lookup[sb_type].codebook + wedge_index; const int smoother = wedge_params_lookup[sb_type].smoother; int woff, hoff; const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; assert(wedge_index >= 0 && wedge_index < (1 << get_wedge_bits_lookup(sb_type))); woff = (a->x_offset * bw) >> 3; hoff = (a->y_offset * bh) >> 3; master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] + MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + MASK_MASTER_SIZE / 2 - woff; return master; } const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, BLOCK_SIZE sb_type, int offset_x, int offset_y) { const uint8_t *mask = get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type); if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE); return mask; } #if CONFIG_COMPOUND_SEGMENT static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask, int h, int w, int stride) { int i, j; for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { mask_inv_buffer[i * stride + j] = AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j]; } return mask_inv_buffer; } #endif // CONFIG_COMPOUND_SEGMENT const uint8_t *av1_get_compound_type_mask_inverse( const INTERINTER_COMPOUND_DATA *const comp_data, #if CONFIG_COMPOUND_SEGMENT uint8_t *mask_buffer, int h, int w, int stride, #endif BLOCK_SIZE sb_type) { assert(is_masked_compound_type(comp_data->interinter_compound_type)); (void)sb_type; switch (comp_data->interinter_compound_type) { #if CONFIG_WEDGE case COMPOUND_WEDGE: return av1_get_contiguous_soft_mask(comp_data->wedge_index, !comp_data->wedge_sign, sb_type); #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride); #endif // CONFIG_COMPOUND_SEGMENT default: assert(0); return NULL; } } const uint8_t *av1_get_compound_type_mask( const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { assert(is_masked_compound_type(comp_data->interinter_compound_type)); (void)sb_type; switch (comp_data->interinter_compound_type) { #if CONFIG_WEDGE case COMPOUND_WEDGE: return av1_get_contiguous_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type); #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: return comp_data->seg_mask; #endif // CONFIG_COMPOUND_SEGMENT default: assert(0); return NULL; } } #if CONFIG_COMPOUND_SEGMENT #if COMPOUND_SEGMENT_TYPE == 0 static void uniform_mask(uint8_t *mask, int which_inverse, BLOCK_SIZE sb_type, int h, int w, int mask_val) { int i, j; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) { mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - mask_val : mask_val; } } void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { (void)src0; (void)src1; (void)src0_stride; (void)src1_stride; switch (mask_type) { case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; default: assert(0); } } #if CONFIG_HIGHBITDEPTH void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { (void)src0; (void)src1; (void)src0_stride; (void)src1_stride; (void)bd; switch (mask_type) { case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; default: assert(0); } } #endif // CONFIG_HIGHBITDEPTH #elif COMPOUND_SEGMENT_TYPE == 1 #define DIFF_FACTOR 16 #if CONFIG_CONVOLVE_ROUND static void diffwtd_mask_d32(uint8_t *mask, int which_inverse, int mask_base, const int32_t *src0, int src0_stride, const int32_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, ConvolveParams *conv_params, int bd) { int round = 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1 + (bd - 8); int i, j, m, diff; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs(src0[i * src0_stride + j] - src1[i * src1_stride + j]); diff = ROUND_POWER_OF_TWO(diff, round); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } static void build_compound_seg_mask_d32(uint8_t *mask, SEG_MASK_TYPE mask_type, const int32_t *src0, int src0_stride, const int32_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, ConvolveParams *conv_params, int bd) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask_d32(mask, 0, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w, conv_params, bd); break; case DIFFWTD_38_INV: diffwtd_mask_d32(mask, 1, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w, conv_params, bd); break; default: assert(0); } } #endif static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { int i, j, m, diff; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask(mask, 0, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w); break; case DIFFWTD_38_INV: diffwtd_mask(mask, 1, 38, src0, src0_stride, src1, src1_stride, sb_type, h, w); break; default: assert(0); } } #if CONFIG_HIGHBITDEPTH static void diffwtd_mask_highbd(uint8_t *mask, int which_inverse, int mask_base, const uint16_t *src0, int src0_stride, const uint16_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { int i, j, m, diff; int block_stride = block_size_wide[sb_type]; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { diff = abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]) >> (bd - 8); m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); mask[i * block_stride + j] = which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; } } } void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, BLOCK_SIZE sb_type, int h, int w, int bd) { switch (mask_type) { case DIFFWTD_38: diffwtd_mask_highbd(mask, 0, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, bd); break; case DIFFWTD_38_INV: diffwtd_mask_highbd(mask, 1, 38, CONVERT_TO_SHORTPTR(src0), src0_stride, CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, bd); break; default: assert(0); } } #endif // CONFIG_HIGHBITDEPTH #endif // COMPOUND_SEGMENT_TYPE #endif // CONFIG_COMPOUND_SEGMENT #if MASK_MASTER_SIZE == 64 static const uint8_t wedge_master_oblique_odd[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 18, 37, 53, 60, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static const uint8_t wedge_master_oblique_even[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 11, 27, 46, 58, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static const uint8_t wedge_master_vertical[NSMOOTHERS][MASK_MASTER_SIZE] = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, 43, 57, 62, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, } }; static void shift_copy(const uint8_t *src, uint8_t *dst, int shift, int width) { if (shift >= 0) { memcpy(dst + shift, src, width - shift); memset(dst, src[0], shift); } else { shift = -shift; memcpy(dst, src + shift, width - shift); memset(dst + width - shift, src[width - 1], shift); } } #else static const double smoother_param[NSMOOTHERS] = { 3.0 }; #endif // MASK_MASTER_SIZE == 64 static void init_wedge_master_masks() { int i, j, s; const int w = MASK_MASTER_SIZE; const int h = MASK_MASTER_SIZE; const int stride = MASK_MASTER_STRIDE; for (s = 0; s < NSMOOTHERS; s++) { // Note: index [0] stores the masters, and [1] its complement. #if MASK_MASTER_SIZE == 64 // Generate prototype by shifting the masters int shift = h / 4; for (i = 0; i < h; i += 2) { shift_copy(wedge_master_oblique_even[s], &wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride], shift, MASK_MASTER_SIZE); shift--; shift_copy(wedge_master_oblique_odd[s], &wedge_mask_obl[s][0][WEDGE_OBLIQUE63][(i + 1) * stride], shift, MASK_MASTER_SIZE); memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride], wedge_master_vertical[s], MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0])); memcpy(&wedge_mask_obl[s][0][WEDGE_VERTICAL][(i + 1) * stride], wedge_master_vertical[s], MASK_MASTER_SIZE * sizeof(wedge_master_vertical[s][0])); } #else const int a[2] = { 2, 1 }; const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); for (i = 0; i < h; i++) { for (j = 0; j < w; ++j) { int x = (2 * j + 1 - w); int y = (2 * i + 1 - h); double d = (a[0] * x + a[1] * y) / asqrt; const int msk = (int)rint((1.0 + tanh(d / smoother_param[s])) * 32); wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] = msk; const int mskx = (int)rint((1.0 + tanh(x / smoother_param[s])) * 32); wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] = mskx; } } #endif // MASK_MASTER_SIZE == 64 for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { const int msk = wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j]; wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] = msk; wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - msk; wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = msk; const int mskx = wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j]; wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] = mskx; wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] = wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] = (1 << WEDGE_WEIGHT_BITS) - mskx; } } } } // If the signs for the wedges for various blocksizes are // inconsistent flip the sign flag. Do it only once for every // wedge codebook. static void init_wedge_signs() { BLOCK_SIZE sb_type; memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES_ALL; ++sb_type) { const int bw = block_size_wide[sb_type]; const int bh = block_size_high[sb_type]; const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; const int wbits = wedge_params.bits; const int wtypes = 1 << wbits; int i, w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { // Get the mask master, i.e. index [0] const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); int avg = 0; for (i = 0; i < bw; ++i) avg += mask[i]; for (i = 1; i < bh; ++i) avg += mask[i * MASK_MASTER_STRIDE]; avg = (avg + (bw + bh - 1) / 2) / (bw + bh - 1); // Default sign of this wedge is 1 if the average < 32, 0 otherwise. // If default sign is 1: // If sign requested is 0, we need to flip the sign and return // the complement i.e. index [1] instead. If sign requested is 1 // we need to flip the sign and return index [0] instead. // If default sign is 0: // If sign requested is 0, we need to return index [0] the master // if sign requested is 1, we need to return the complement index [1] // instead. wedge_params.signflip[w] = (avg < 32); // printf("%d[%d] = %d\n", sb_type, w, wedge_params.signflip[w]); } } } static void init_wedge_masks() { uint8_t *dst = wedge_mask_buf; BLOCK_SIZE bsize; memset(wedge_masks, 0, sizeof(wedge_masks)); for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; ++bsize) { const uint8_t *mask; const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; const int wbits = wedge_params->bits; const int wtypes = 1 << wbits; int w; if (wbits == 0) continue; for (w = 0; w < wtypes; ++w) { mask = get_wedge_mask_inplace(w, 0, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[0][w] = dst; dst += bw * bh; mask = get_wedge_mask_inplace(w, 1, bsize); aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, bh); wedge_params->masks[1][w] = dst; dst += bw * bh; } assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); } } // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 void av1_init_wedge_masks() { init_wedge_master_masks(); init_wedge_signs(); init_wedge_masks(); } #if CONFIG_SUPERTX static void build_masked_compound_wedge_extend( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask; size_t mask_stride; switch (comp_data->interinter_compound_type) { case COMPOUND_WEDGE: mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); mask_stride = MASK_MASTER_STRIDE; break; #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: mask = comp_data->seg_mask; mask_stride = block_size_wide[sb_type]; break; #endif default: assert(0); return; } aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, (int)mask_stride, h, w, subh, subw); } #if CONFIG_HIGHBITDEPTH static void build_masked_compound_wedge_extend_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) { const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask; size_t mask_stride; switch (comp_data->interinter_compound_type) { case COMPOUND_WEDGE: mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, sb_type, wedge_offset_x, wedge_offset_y); mask_stride = MASK_MASTER_STRIDE; break; #if CONFIG_COMPOUND_SEGMENT case COMPOUND_SEG: mask = comp_data->seg_mask; mask_stride = block_size_wide[sb_type]; break; #endif default: assert(0); return; } aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, (int)mask_stride, h, w, subh, subw, bd); } #endif // CONFIG_HIGHBITDEPTH #else #if CONFIG_CONVOLVE_ROUND static void build_masked_compound_no_round( CONV_BUF_TYPE *dst, int dst_stride, const CONV_BUF_TYPE *src0, int src0_stride, const CONV_BUF_TYPE *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_d32_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], h, w, subh, subw); } #endif // CONFIG_CONVOLVE_ROUND static void build_masked_compound( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], h, w, subh, subw); } #if CONFIG_HIGHBITDEPTH static void build_masked_compound_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << b_height_log2_lookup[sb_type]) == h; const int subw = (2 << b_width_log2_lookup[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); // const uint8_t *mask = // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, block_size_wide[sb_type], h, w, subh, subw, bd); } #endif // CONFIG_HIGHBITDEPTH #endif // CONFIG_SUPERTX void av1_make_masked_inter_predictor( const uint8_t *pre, int pre_stride, uint8_t *dst, int dst_stride, const int subpel_x, const int subpel_y, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, int xs, int ys, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX int plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION MACROBLOCKD *xd) { const MODE_INFO *mi = xd->mi[0]; const INTERINTER_COMPOUND_DATA comp_data = { #if CONFIG_WEDGE mi->mbmi.wedge_index, mi->mbmi.wedge_sign, #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT mi->mbmi.mask_type, xd->seg_mask, #endif // CONFIG_COMPOUND_SEGMENT mi->mbmi.interinter_compound_type }; // We're going to call av1_make_inter_predictor to generate a prediction into // a temporary buffer, then will blend that temporary buffer with that from // the other reference. // // With CONFIG_CONVOLVE_ROUND, if the rounding mode is CONVOLVE_OPT_NO_ROUND // then the predictions are at 32-bits, so we'll need 32 bits per // pixel. Otherwise, we'll need up to 16 bits per pixel if // CONFIG_HIGHBITDEPTH or just 8 otherwise. #if CONFIG_CONVOLVE_ROUND #define INTER_PRED_BYTES_PER_PIXEL 4 #elif CONFIG_HIGHBITDEPTH #define INTER_PRED_BYTES_PER_PIXEL 2 #else #define INTER_PRED_BYTES_PER_PIXEL 1 #endif DECLARE_ALIGNED(16, uint8_t, tmp_buf[INTER_PRED_BYTES_PER_PIXEL * MAX_SB_SQUARE]); #undef INTER_PRED_BYTES_PER_PIXEL #if CONFIG_HIGHBITDEPTH uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? CONVERT_TO_BYTEPTR(tmp_buf) : tmp_buf; const int bd = xd->bd; #else uint8_t *tmp_dst = tmp_buf; const int bd = 8; #endif #if CONFIG_CONVOLVE_ROUND const int tmp_buf_stride = MAX_SB_SIZE; const int is_conv_no_round = conv_params->round == CONVOLVE_OPT_NO_ROUND; CONV_BUF_TYPE *org_dst = conv_params->dst; int org_dst_stride = conv_params->dst_stride; CONV_BUF_TYPE *tmp_buf32 = (CONV_BUF_TYPE *)tmp_buf; if (is_conv_no_round) { conv_params->dst = tmp_buf32; conv_params->dst_stride = tmp_buf_stride; assert(conv_params->do_average == 0); } #endif // CONFIG_CONVOLVE_ROUND // This will generate a prediction in tmp_buf for the second reference av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, subpel_y, sf, w, h, conv_params, interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi, 0, #endif xs, ys, xd); #if CONFIG_COMPOUND_SEGMENT if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) { #if CONFIG_CONVOLVE_ROUND if (is_conv_no_round) { build_compound_seg_mask_d32( comp_data.seg_mask, comp_data.mask_type, org_dst, org_dst_stride, tmp_buf32, tmp_buf_stride, mi->mbmi.sb_type, h, w, conv_params, bd); } else { #endif // CONFIG_CONVOLVE_ROUND #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { build_compound_seg_mask_highbd(comp_data.seg_mask, comp_data.mask_type, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, h, w, bd); } else { #endif build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, dst, dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, h, w); #if CONFIG_HIGHBITDEPTH } #endif #if CONFIG_CONVOLVE_ROUND } #endif } #endif // CONFIG_COMPOUND_SEGMENT #if CONFIG_SUPERTX #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_extend_highbd( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound_wedge_extend( dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); #else #if CONFIG_CONVOLVE_ROUND if (is_conv_no_round) { build_masked_compound_no_round(org_dst, org_dst_stride, org_dst, org_dst_stride, tmp_buf32, tmp_buf_stride, &comp_data, mi->mbmi.sb_type, h, w); const int convolve_rounding_bits = FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w, h, convolve_rounding_bits, xd->bd); else #endif av1_convolve_rounding(org_dst, org_dst_stride, dst, dst_stride, w, h, convolve_rounding_bits); conv_params->do_post_rounding = 0; } else { #endif // CONFIG_CONVOLVE_ROUND #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, &comp_data, mi->mbmi.sb_type, h, w); #if CONFIG_CONVOLVE_ROUND } #endif // CONFIG_CONVOLVE_ROUND #endif // CONFIG_SUPERTX #if CONFIG_COMPOUND_SEGMENT (void)plane; #endif // CONFIG_COMPOUND_SEGMENT } // TODO(sarahparker) av1_highbd_build_inter_predictor and // av1_build_inter_predictor should be combined with // av1_make_inter_predictor #if CONFIG_HIGHBITDEPTH void av1_highbd_build_inter_predictor( const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, InterpFilters interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION int plane, enum mv_precision precision, int x, int y, const MACROBLOCKD *xd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); mv.col += SCALE_EXTRA_OFF; mv.row += SCALE_EXTRA_OFF; const int subpel_x = mv.col & SCALE_SUBPEL_MASK; const int subpel_y = mv.row & SCALE_SUBPEL_MASK; ConvolveParams conv_params = get_conv_params(ref, ref, plane); src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + (mv.col >> SCALE_SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, &conv_params, interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif sf->x_step_q4, sf->y_step_q4, xd); } #endif // CONFIG_HIGHBITDEPTH void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const MV *src_mv, const struct scale_factors *sf, int w, int h, ConvolveParams *conv_params, InterpFilters interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION const WarpTypesAllowed *warp_types, int p_col, int p_row, int plane, int ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION enum mv_precision precision, int x, int y, const MACROBLOCKD *xd) { const int is_q4 = precision == MV_PRECISION_Q4; const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, is_q4 ? src_mv->col : src_mv->col * 2 }; MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); mv.col += SCALE_EXTRA_OFF; mv.row += SCALE_EXTRA_OFF; const int subpel_x = mv.col & SCALE_SUBPEL_MASK; const int subpel_y = mv.row & SCALE_SUBPEL_MASK; src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride + (mv.col >> SCALE_SUBPEL_BITS); av1_make_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, h, conv_params, interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION warp_types, p_col, p_row, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif sf->x_step_q4, sf->y_step_q4, xd); } typedef struct SubpelParams { int xs; int ys; int subpel_x; int subpel_y; } SubpelParams; static INLINE void build_inter_predictors( const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, #if CONFIG_MOTION_VAR const MODE_INFO *mi, int build_for_obmc, #endif // CONFIG_MOTION_VAR int block, int bw, int bh, int x, int y, int w, int h, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX int mi_x, int mi_y) { struct macroblockd_plane *const pd = &xd->plane[plane]; #if !CONFIG_MOTION_VAR const MODE_INFO *mi = xd->mi[0]; #endif // CONFIG_MOTION_VAR int is_compound = has_second_ref(&mi->mbmi); #if CONFIG_COMPOUND_SINGLEREF int is_comp_mode_pred = is_compound || is_inter_singleref_comp_mode(mi->mbmi.mode); #endif // CONFIG_COMPOUND_SINGLEREF int ref; #if CONFIG_INTRABC const int is_intrabc = is_intrabc_block(&mi->mbmi); assert(IMPLIES(is_intrabc, !is_compound)); #endif // CONFIG_INTRABC #if CONFIG_GLOBAL_MOTION int is_global[2] = { 0, 0 }; for (ref = 0; ref < 1 + is_compound; ++ref) { WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; is_global[ref] = is_global_mv_block(mi, block, wm->wmtype); } #if CONFIG_COMPOUND_SINGLEREF if (!is_compound && is_comp_mode_pred) is_global[1] = is_global[0]; #endif // CONFIG_COMPOUND_SINGLEREF #endif // CONFIG_GLOBAL_MOTION #if CONFIG_CB4X4 (void)block; (void)cm; #endif #if CONFIG_CHROMA_SUB8X8 const BLOCK_SIZE bsize = mi->mbmi.sb_type; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; int sub8x8_inter = bsize < BLOCK_8X8 && (ss_x || ss_y); #if CONFIG_INTRABC if (is_intrabc) { sub8x8_inter = 0; } #endif #if CONFIG_MOTION_VAR sub8x8_inter = sub8x8_inter && !build_for_obmc; #endif // CONFIG_MOTION_VAR const int row_start = (block_size_high[bsize] == 4) && ss_y ? -1 : 0; const int col_start = (block_size_wide[bsize] == 4) && ss_x ? -1 : 0; if (sub8x8_inter) { for (int row = row_start; row <= 0 && sub8x8_inter; ++row) for (int col = col_start; col <= 0; ++col) if (!is_inter_block(&xd->mi[row * xd->mi_stride + col]->mbmi)) sub8x8_inter = 0; } if (sub8x8_inter) { // block size const int b4_w = block_size_wide[bsize] >> ss_x; const int b4_h = block_size_high[bsize] >> ss_y; const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y); const int b8_w = block_size_wide[plane_bsize] >> ss_x; const int b8_h = block_size_high[plane_bsize] >> ss_y; int idx, idy; const int x_base = x; const int y_base = y; const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] }; int row = row_start; for (idy = 0; idy < b8_h; idy += b4_h) { int col = col_start; for (idx = 0; idx < b8_w; idx += b4_w) { MB_MODE_INFO *this_mbmi = &xd->mi[row * xd->mi_stride + col]->mbmi; is_compound = has_second_ref(this_mbmi); #if CONFIG_CONVOLVE_ROUND DECLARE_ALIGNED(16, int32_t, tmp_dst[8 * 8]); int tmp_dst_stride = 8; assert(w <= 8 && h <= 8); #endif // CONFIG_CONVOLVE_ROUND #if CONFIG_CONVOLVE_ROUND ConvolveParams conv_params = get_conv_params_no_round(0, 0, plane, tmp_dst, tmp_dst_stride); #else ConvolveParams conv_params = get_conv_params(0, 0, plane); #endif struct buf_2d *const dst_buf = &pd->dst; x = x_base + idx; y = y_base + idy; uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x; // TODO(zoeliu): If single ref comp modes are considered here, a // mismatch was caused. Need a further investigation. for (ref = 0; ref < 1 + is_compound; ++ref) { const RefBuffer *ref_buf = &cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME]; const int c_offset = (mi_x + MI_SIZE * col_start) >> ss_x; const int r_offset = (mi_y + MI_SIZE * row_start) >> ss_y; pd->pre[ref].buf0 = (plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer; pd->pre[ref].buf = pd->pre[ref].buf0 + scaled_buffer_offset(c_offset, r_offset, ref_buf->buf->uv_stride, &ref_buf->sf); pd->pre[ref].width = ref_buf->buf->uv_crop_width; pd->pre[ref].height = ref_buf->buf->uv_crop_height; pd->pre[ref].stride = ref_buf->buf->uv_stride; #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &ref_buf->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &ref_buf->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC const MV mv = this_mbmi->mv[ref].as_mv; uint8_t *pre; int xs, ys, subpel_x, subpel_y; const int is_scaled = av1_is_scaled(sf); #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION warp_types.global_warp_allowed = is_global[ref]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION if (is_scaled) { int ssx = pd->subsampling_x; int ssy = pd->subsampling_y; int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS); orig_pos_y += mv.row * (1 << (1 - ssy)); int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS); orig_pos_x += mv.col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS); const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_y = pos_y & SCALE_SUBPEL_MASK; xs = sf->x_step_q4; ys = sf->y_step_q4; } else { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); xs = ys = SCALE_SUBPEL_SHIFTS; subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + (x + (mv_q4.col >> SUBPEL_BITS)); } conv_params.ref = ref; conv_params.do_average = ref; if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; #if CONFIG_CONVOLVE_ROUND && CONFIG_COMPOUND_SEGMENT && CONFIG_SUPERTX // TODO(angiebird): convolve_round does not support compound_segment // when supertx is on conv_params = get_conv_params(ref, 0, plane); #endif } if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type)) av1_make_masked_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, b4_w, b4_h, &conv_params, mi->mbmi.interp_filters, xs, ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION xd); else av1_make_inter_predictor( pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, sf, b4_w, b4_h, &conv_params, this_mbmi->interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi, build_for_obmc, #endif // CONFIG_MOTION_VAR xs, ys, xd); } // for (ref = 0; ref < 1 + is_compound; ++ref) #if CONFIG_CONVOLVE_ROUND if (conv_params.do_post_rounding) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_convolve_rounding( tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1, xd->bd); else #endif // CONFIG_HIGHBITDEPTH #if CONFIG_COMPOUND_SINGLEREF av1_convolve_rounding( tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h, FILTER_BITS * 2 + is_comp_mode_pred - conv_params.round_0 - conv_params.round_1); #else // !(CONFIG_COMPOUND_SINGLEREF) av1_convolve_rounding(tmp_dst, tmp_dst_stride, dst, dst_buf->stride, b4_w, b4_h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1); #endif // CONFIG_COMPOUND_SINGLEREF } #endif // CONFIG_CONVOLVE_ROUND ++col; } ++row; } for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref]; return; } #else (void)cm; #endif // CONFIG_CHROMA_SUB8X8 { struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; uint8_t *pre[2]; SubpelParams subpel_params[2]; #if CONFIG_CONVOLVE_ROUND DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]); #endif // CONFIG_CONVOLVE_ROUND #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref) #else for (ref = 0; ref < 1 + is_compound; ++ref) #endif // CONFIG_COMPOUND_SINGLEREF { #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC #if CONFIG_CB4X4 const MV mv = mi->mbmi.mv[ref].as_mv; #else const MV mv = #if CONFIG_MOTION_VAR (mi->mbmi.sb_type < BLOCK_8X8 && !build_for_obmc) ? #else mi->mbmi.sb_type < BLOCK_8X8 ? #endif average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; #endif const int is_scaled = av1_is_scaled(sf); if (is_scaled) { // Note: The various inputs here have different units: // * mi_x/mi_y are in units of luma pixels // * mv is in units of 1/8 luma pixels // * x/y are in units of pixels *in the current plane* // Here we unify these into a q4-format position within the current // plane, then project into the reference frame int ssx = pd->subsampling_x; int ssy = pd->subsampling_y; int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS); orig_pos_y += mv.row * (1 << (1 - ssy)); int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS); orig_pos_x += mv.col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; // Clamp against the reference frame borders, with enough extension // that we don't force the reference block to be partially onscreen. const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS); const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); pre[ref] = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); subpel_params[ref].subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_params[ref].subpel_y = pos_y & SCALE_SUBPEL_MASK; subpel_params[ref].xs = sf->x_step_q4; subpel_params[ref].ys = sf->y_step_q4; } else { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); subpel_params[ref].subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_params[ref].subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_params[ref].xs = SCALE_SUBPEL_SHIFTS; subpel_params[ref].ys = SCALE_SUBPEL_SHIFTS; pre[ref] = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + (x + (mv_q4.col >> SUBPEL_BITS)); } } #if CONFIG_CONVOLVE_ROUND ConvolveParams conv_params = get_conv_params_no_round(ref, ref, plane, tmp_dst, MAX_SB_SIZE); #else ConvolveParams conv_params = get_conv_params(ref, ref, plane); #endif // CONFIG_CONVOLVE_ROUND #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + is_comp_mode_pred; ++ref) #else for (ref = 0; ref < 1 + is_compound; ++ref) #endif // CONFIG_COMPOUND_SINGLEREF { #if CONFIG_INTRABC const struct scale_factors *const sf = is_intrabc ? &xd->sf_identity : &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref]; #else const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #endif // CONFIG_INTRABC #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION warp_types.global_warp_allowed = is_global[ref]; #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION conv_params.ref = ref; conv_params.do_average = ref; if (is_masked_compound_type(mi->mbmi.interinter_compound_type)) { // masked compound type has its own average mechanism conv_params.do_average = 0; #if CONFIG_CONVOLVE_ROUND && CONFIG_COMPOUND_SEGMENT && CONFIG_SUPERTX // TODO(angiebird): convolve_round does not support compound_segment // when supertx is on conv_params = get_conv_params(ref, 0, plane); #endif } if (ref && is_masked_compound_type(mi->mbmi.interinter_compound_type)) av1_make_masked_inter_predictor( pre[ref], pre_buf->stride, dst, dst_buf->stride, subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, &conv_params, mi->mbmi.interp_filters, subpel_params[ref].xs, subpel_params[ref].ys, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX plane, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION xd); else av1_make_inter_predictor( pre[ref], pre_buf->stride, dst, dst_buf->stride, subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, &conv_params, mi->mbmi.interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi, build_for_obmc, #endif // CONFIG_MOTION_VAR subpel_params[ref].xs, subpel_params[ref].ys, xd); } #if CONFIG_CONVOLVE_ROUND // TODO(angiebird): This part needs optimization if (conv_params.do_post_rounding) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) av1_highbd_convolve_rounding( tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1, xd->bd); else #endif // CONFIG_HIGHBITDEPTH #if CONFIG_COMPOUND_SINGLEREF av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, FILTER_BITS * 2 + is_comp_mode_pred - conv_params.round_0 - conv_params.round_1); #else // !(CONFIG_COMPOUND_SINGLEREF) av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, FILTER_BITS * 2 + is_compound - conv_params.round_0 - conv_params.round_1); #endif // CONFIG_COMPOUND_SINGLEREF } #endif // CONFIG_CONVOLVE_ROUND } } static void build_inter_predictors_for_planes(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int mi_row, int mi_col, int plane_from, int plane_to) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; #if CONFIG_CB4X4 const int unify_bsize = 1; #else const int unify_bsize = 0; #endif for (plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = pd->width; const int bh = pd->height; #if CONFIG_CB4X4 if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; #endif if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !unify_bsize) { const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); const int pw = 8 >> (have_vsplit | pd->subsampling_x); const int ph = 8 >> (have_hsplit | pd->subsampling_y); int x, y; assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); assert(bsize == BLOCK_8X8); assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif // CONFIG_MOTION_VAR y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } else { build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif // CONFIG_MOTION_VAR 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } } void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 0, 0); #if CONFIG_INTERINTRA if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, { xd->plane[0].dst.stride, 0, 0 } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sby(cm, xd, xd->plane[0].dst.buf, xd->plane[0].dst.stride, ctx, bsize); } #else (void)ctx; #endif // CONFIG_INTERINTRA } void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, 1, MAX_MB_PLANE - 1); #if CONFIG_INTERINTRA if (is_interintra_pred(&xd->mi[0]->mbmi)) { BUFFER_SET default_ctx = { { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; if (!ctx) ctx = &default_ctx; av1_build_interintra_predictors_sbuv( cm, xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, xd->plane[2].dst.stride, ctx, bsize); } #else (void)ctx; #endif // CONFIG_INTERINTRA } void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize); } void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], BLOCK_SIZE bsize, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; int i; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &planes[i]; setup_pred_plane(&pd->dst, bsize, src->buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } } void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *sf) { if (src != NULL) { int i; uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, src->v_buffer }; const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, src->uv_crop_width }; const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, src->uv_crop_height }; const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, src->uv_stride }; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->pre[idx], xd->mi[0]->mbmi.sb_type, buffers[i], widths[i], heights[i], strides[i], mi_row, mi_col, sf, pd->subsampling_x, pd->subsampling_y); } } } #if CONFIG_SUPERTX #if CONFIG_CB4X4 static const uint8_t mask_4[4] = { 64, 52, 12, 0 }; static const uint8_t mask_4_uv[4] = { 64, 52, 12, 0 }; #endif // CONFIG_CB4X4 static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, 28, 21, 14, 9, 6, 4, 2, 1 }; static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, 28, 19, 11, 3, 0, 0, 0, 0 }; static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 60, 54, 46, 36, 28, 18, 10, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static const uint8_t *get_supertx_mask(int length, int plane) { switch (length) { #if CONFIG_CB4X4 case 4: return plane ? mask_4_uv : mask_4; #endif // CONFIG_CB4X4 case 8: return plane ? mask_8_uv : mask_8; case 16: return plane ? mask_16_uv : mask_16; case 32: return plane ? mask_32_uv : mask_32; default: assert(0); } return NULL; } void av1_build_masked_inter_predictor_complex( MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, int plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int ssx = pd->subsampling_x; const int ssy = pd->subsampling_y; const int top_w = block_size_wide[top_bsize] >> ssx; const int top_h = block_size_high[top_bsize] >> ssy; const int w = block_size_wide[bsize] >> ssx; const int h = block_size_high[bsize] >> ssy; const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx; const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy; int w_remain, h_remain; #if CONFIG_HIGHBITDEPTH const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH assert(bsize <= BLOCK_32X32); assert(IMPLIES(plane == 0, ssx == 0)); assert(IMPLIES(plane == 0, ssy == 0)); switch (partition) { case PARTITION_HORZ: { const uint8_t *const mask = get_supertx_mask(h, ssy); w_remain = top_w; h_remain = top_h - h_offset - h; dst += h_offset * dst_stride; pre += h_offset * pre_stride; #if CONFIG_HIGHBITDEPTH if (is_hdb) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, h, top_w); dst += h * dst_stride; pre += h * pre_stride; break; } case PARTITION_VERT: { const uint8_t *const mask = get_supertx_mask(w, ssx); w_remain = top_w - w_offset - w; h_remain = top_h; dst += w_offset; pre += w_offset; #if CONFIG_HIGHBITDEPTH if (is_hdb) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, mask, top_h, w); dst += w; pre += w; break; } default: { assert(0); return; } } if (w_remain == 0 || h_remain == 0) { return; } #if CONFIG_HIGHBITDEPTH if (is_hdb) { dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst); pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre); dst_stride *= 2; pre_stride *= 2; w_remain *= 2; } #endif // CONFIG_HIGHBITDEPTH do { memcpy(dst, pre, w_remain * sizeof(uint8_t)); dst += dst_stride; pre += pre_stride; } while (--h_remain); } void av1_build_inter_predictor_sb_sub8x8_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row_ori, int mi_col_ori, int mi_row, int mi_col, int plane, BLOCK_SIZE bsize, int block) { // Prediction function used in supertx: // Use the mv at current block (which is less than 8x8) // to get prediction of a block located at (mi_row, mi_col) at size of bsize // bsize can be larger than 8x8. // block (0-3): the sub8x8 location of current block const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; // For sub8x8 uv: // Skip uv prediction in supertx except the first block (block = 0) int max_plane = block ? 1 : MAX_MB_PLANE; if (plane >= max_plane) return; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif // CONFIG_MOTION_VAR block, bw, bh, 0, 0, bw, bh, wedge_offset_x, wedge_offset_y, mi_x, mi_y); } void av1_build_inter_predictor_sb_extend(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row_ori, int mi_col_ori, int mi_row, int mi_col, int plane, BLOCK_SIZE bsize) { const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_inter_predictors(cm, xd, plane, #if CONFIG_MOTION_VAR xd->mi[0], 0, #endif // CONFIG_MOTION_VAR 0, bw, bh, 0, 0, bw, bh, wedge_offset_x, wedge_offset_y, mi_x, mi_y); } #endif // CONFIG_SUPERTX #if CONFIG_MOTION_VAR // obmc_mask_N[overlap_position] static const uint8_t obmc_mask_1[1] = { 64 }; static const uint8_t obmc_mask_2[2] = { 45, 64 }; static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 64, 64 }; static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, 56, 58, 60, 61, 64, 64, 64, 64 }; static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 60, 61, 62, 64, 64, 64, 64, 64, 64, 64, 64 }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_64[64] = { 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; #endif // CONFIG_EXT_PARTITION const uint8_t *av1_get_obmc_mask(int length) { switch (length) { case 1: return obmc_mask_1; case 2: return obmc_mask_2; case 4: return obmc_mask_4; case 8: return obmc_mask_8; case 16: return obmc_mask_16; case 32: return obmc_mask_32; #if CONFIG_EXT_PARTITION case 64: return obmc_mask_64; #endif // CONFIG_EXT_PARTITION default: assert(0); return NULL; } } #if CONFIG_NCOBMC // obmc_mask_flipN[overlap_position] static const uint8_t obmc_mask_flip1[1] = { 55 }; static const uint8_t obmc_mask_flip2[2] = { 62, 45 }; static const uint8_t obmc_mask_flip4[4] = { 64, 59, 50, 39 }; static const uint8_t obmc_mask_flip8[8] = { 64, 63, 61, 57, 53, 48, 42, 36 }; static const uint8_t obmc_mask_flip16[16] = { 64, 64, 64, 63, 61, 60, 58, 56, 54, 52, 49, 46, 43, 40, 37, 34 }; static const uint8_t obmc_mask_flip32[32] = { 64, 64, 64, 64, 64, 63, 63, 62, 62, 61, 60, 60, 59, 58, 57, 56, 55, 53, 52, 51, 50, 48, 47, 45, 44, 43, 41, 40, 38, 36, 35, 33 }; #if CONFIG_EXT_PARTITION static const uint8_t obmc_mask_flip64[64] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 62, 62, 62, 62, 62, 61, 60, 60, 60, 60, 60, 59, 58, 58, 57, 57, 56, 56, 56, 55, 54, 53, 52, 52, 51, 51, 51, 50, 49, 48, 47, 47, 46, 45, 44, 44, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, }; #endif // CONFIG_EXT_PARTITION const uint8_t *av1_get_obmc_mask_flipped(int length) { switch (length) { case 1: return obmc_mask_flip1; case 2: return obmc_mask_flip2; case 4: return obmc_mask_flip4; case 8: return obmc_mask_flip8; case 16: return obmc_mask_flip16; case 32: return obmc_mask_flip32; #if CONFIG_EXT_PARTITION case 64: return obmc_mask_flip64; #endif // CONFIG_EXT_PARTITION default: assert(0); return NULL; } } #endif // CONFIG_NCOBMC static INLINE void increment_int_ptr(MACROBLOCKD *xd, int rel_mi_rc, uint8_t mi_hw, MODE_INFO *mi, void *fun_ctxt) { (void)xd; (void)rel_mi_rc; (void)mi_hw; (void)mi; ++*(int *)fun_ctxt; } void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; mbmi->overlappable_neighbors[0] = 0; mbmi->overlappable_neighbors[1] = 0; if (!is_motion_variation_allowed_bsize(mbmi->sb_type)) return; foreach_overlappable_nb_above(cm, xd, mi_col, INT_MAX, increment_int_ptr, &mbmi->overlappable_neighbors[0]); foreach_overlappable_nb_left(cm, xd, mi_row, INT_MAX, increment_int_ptr, &mbmi->overlappable_neighbors[1]); } // HW does not support < 4x4 prediction. To limit the bandwidth requirement, for // small blocks, only blend with neighbors from one side. If block-size of // current plane is 4x4 or 8x4, the above neighbor (dir = 0) will be skipped. If // it is 4x8, the left neighbor (dir = 1) will be skipped. #define DISABLE_CHROMA_U8X8_OBMC 0 // 0: one-sided obmc; 1: disable int skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize, const struct macroblockd_plane *pd, int dir) { assert(is_motion_variation_allowed_bsize(bsize)); BLOCK_SIZE bsize_plane = ss_size_lookup[bsize][pd->subsampling_x][pd->subsampling_y]; #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 if (bsize_plane < BLOCK_4X4) return 1; #endif switch (bsize_plane) { #if DISABLE_CHROMA_U8X8_OBMC case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return 1; break; #else case BLOCK_4X4: case BLOCK_8X4: case BLOCK_4X8: return dir == 0; break; #endif default: return 0; } } struct obmc_inter_pred_ctxt { uint8_t **adjacent; int *adjacent_stride; }; static INLINE void build_obmc_inter_pred_above(MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MODE_INFO *above_mi, void *fun_ctxt) { (void)above_mi; struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; #if CONFIG_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH const int overlap = AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; const int plane_col = (rel_mi_col * MI_SIZE) >> pd->subsampling_x; if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[plane_col]; const int tmp_stride = ctxt->adjacent_stride[plane]; const uint8_t *const tmp = &ctxt->adjacent[plane][plane_col]; const uint8_t *const mask = av1_get_obmc_mask(bh); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } static INLINE void build_obmc_inter_pred_left(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MODE_INFO *left_mi, void *fun_ctxt) { (void)left_mi; struct obmc_inter_pred_ctxt *ctxt = (struct obmc_inter_pred_ctxt *)fun_ctxt; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; const int overlap = AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; #if CONFIG_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (left_mi_height * MI_SIZE) >> pd->subsampling_y; const int plane_row = (rel_mi_row * MI_SIZE) >> pd->subsampling_y; if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; const int dst_stride = pd->dst.stride; uint8_t *const dst = &pd->dst.buf[plane_row * dst_stride]; const int tmp_stride = ctxt->adjacent_stride[plane]; const uint8_t *const tmp = &ctxt->adjacent[plane][plane_row * tmp_stride]; const uint8_t *const mask = av1_get_obmc_mask(bw); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } // This function combines motion compensated predictions that are generated by // top/left neighboring blocks' inter predictors with the regular inter // prediction. We assume the original prediction (bmc) is stored in // xd->plane[].dst.buf void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *above[MAX_MB_PLANE], int above_stride[MAX_MB_PLANE], uint8_t *left[MAX_MB_PLANE], int left_stride[MAX_MB_PLANE]) { const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; // handle above row struct obmc_inter_pred_ctxt ctxt_above = { above, above_stride }; foreach_overlappable_nb_above(cm, xd, mi_col, max_neighbor_obmc[b_width_log2_lookup[bsize]], build_obmc_inter_pred_above, &ctxt_above); // handle left column struct obmc_inter_pred_ctxt ctxt_left = { left, left_stride }; foreach_overlappable_nb_left(cm, xd, mi_row, max_neighbor_obmc[b_height_log2_lookup[bsize]], build_obmc_inter_pred_left, &ctxt_left); } void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { if (is_interintra_pred(mbmi)) { mbmi->ref_frame[1] = NONE_FRAME; } else if (has_second_ref(mbmi) && is_masked_compound_type(mbmi->interinter_compound_type)) { mbmi->interinter_compound_type = COMPOUND_AVERAGE; mbmi->ref_frame[1] = NONE_FRAME; #if CONFIG_COMPOUND_SINGLEREF } else if (!has_second_ref(mbmi) && is_inter_singleref_comp_mode(mbmi->mode)) { // mbmi->mode = compound_ref0_mode(mbmi->mode); mbmi->mode = compound_ref1_mode(mbmi->mode); assert(is_inter_singleref_mode(mbmi->mode)); mbmi->mv[0].as_int = mbmi->mv[1].as_int; #endif // CONFIG_COMPOUND_SINGLEREF } if (has_second_ref(mbmi)) mbmi->ref_frame[1] = NONE_FRAME; return; } struct build_prediction_ctxt { const AV1_COMMON *cm; int mi_row; int mi_col; uint8_t **tmp_buf; int *tmp_width; int *tmp_height; int *tmp_stride; int mb_to_far_edge; }; static INLINE void build_prediction_by_above_pred(MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width, MODE_INFO *above_mi, void *fun_ctxt) { MB_MODE_INFO *above_mbmi = &above_mi->mbmi; const BLOCK_SIZE a_bsize = AOMMAX(BLOCK_8X8, above_mbmi->sb_type); struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int above_mi_col = ctxt->mi_col + rel_mi_col; MB_MODE_INFO backup_mbmi = *above_mbmi; modify_neighbor_predictor_for_obmc(above_mbmi); for (int j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, a_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], ctxt->tmp_height[j], ctxt->tmp_stride[j], 0, rel_mi_col, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF const int num_refs = 1 + is_inter_anyref_comp_mode(above_mbmi->mode); #else const int num_refs = 1 + has_second_ref(above_mbmi); #endif for (int ref = 0; ref < num_refs; ++ref) { #if CONFIG_COMPOUND_SINGLEREF const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[ref] : above_mbmi->ref_frame[0]; #else const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, ctxt->mi_row, above_mi_col, &ref_buf->sf); } xd->mb_to_left_edge = 8 * MI_SIZE * (-above_mi_col); xd->mb_to_right_edge = ctxt->mb_to_far_edge + (xd->n8_w - rel_mi_col - above_mi_width) * MI_SIZE * 8; int mi_x = above_mi_col << MI_SIZE_LOG2; int mi_y = ctxt->mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; for (int j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x; int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); if (skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue; build_inter_predictors(ctxt->cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *above_mbmi = backup_mbmi; } void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->up_available) return; // Adjust mb_to_bottom_edge to have the correct value for the OBMC // prediction block. This is half the height of the original block, // except for 128-wide blocks, where we only use a height of 32. int this_height = xd->n8_h * MI_SIZE; int pred_height = AOMMIN(this_height / 2, 32); xd->mb_to_bottom_edge += (this_height - pred_height) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge }; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; foreach_overlappable_nb_above(cm, xd, mi_col, max_neighbor_obmc[b_width_log2_lookup[bsize]], build_prediction_by_above_pred, &ctxt); xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ctxt.mb_to_far_edge; xd->mb_to_bottom_edge -= (this_height - pred_height) * 8; } static INLINE void build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height, MODE_INFO *left_mi, void *fun_ctxt) { MB_MODE_INFO *left_mbmi = &left_mi->mbmi; const BLOCK_SIZE l_bsize = AOMMAX(BLOCK_8X8, left_mbmi->sb_type); struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; const int left_mi_row = ctxt->mi_row + rel_mi_row; MB_MODE_INFO backup_mbmi = *left_mbmi; modify_neighbor_predictor_for_obmc(left_mbmi); for (int j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, l_bsize, ctxt->tmp_buf[j], ctxt->tmp_width[j], ctxt->tmp_height[j], ctxt->tmp_stride[j], rel_mi_row, 0, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF const int num_refs = 1 + is_inter_anyref_comp_mode(left_mbmi->mode); #else const int num_refs = 1 + has_second_ref(left_mbmi); #endif for (int ref = 0; ref < num_refs; ++ref) { #if CONFIG_COMPOUND_SINGLEREF const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi) ? left_mbmi->ref_frame[ref] : left_mbmi->ref_frame[0]; #else const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &ctxt->cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, left_mi_row, ctxt->mi_col, &ref_buf->sf); } xd->mb_to_top_edge = 8 * MI_SIZE * (-left_mi_row); xd->mb_to_bottom_edge = ctxt->mb_to_far_edge + (xd->n8_h - rel_mi_row - left_mi_height) * MI_SIZE * 8; int mi_x = ctxt->mi_col << MI_SIZE_LOG2; int mi_y = left_mi_row << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; for (int j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y; if (skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue; build_inter_predictors(ctxt->cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *left_mbmi = backup_mbmi; } void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->left_available) return; // Adjust mb_to_right_edge to have the correct value for the OBMC // prediction block. This is half the width of the original block, // except for 128-wide blocks, where we only use a width of 32. int this_width = xd->n8_w * MI_SIZE; int pred_width = AOMMIN(this_width / 2, 32); xd->mb_to_right_edge += (this_width - pred_width) * 8; struct build_prediction_ctxt ctxt = { cm, mi_row, mi_col, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge }; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; foreach_overlappable_nb_left(cm, xd, mi_row, max_neighbor_obmc[b_height_log2_lookup[bsize]], build_prediction_by_left_pred, &ctxt); xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_right_edge -= (this_width - pred_width) * 8; xd->mb_to_bottom_edge = ctxt.mb_to_far_edge; } void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_HIGHBITDEPTH uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { #endif // CONFIG_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, xd->mi[0]->mbmi.sb_type, get_frame_new_buffer(cm), mi_row, mi_col); av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } #if CONFIG_NCOBMC void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; #if CONFIG_DEBUG BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; #endif int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); int mb_to_right_edge_base = xd->mb_to_right_edge; if (mi_row + xd->n8_h >= tile->mi_row_end || (mi_row + xd->n8_h) % MI_SIZE == 0 || (mi_row + xd->n8_h) >= cm->mi_rows) return; assert(bsize >= BLOCK_8X8); xd->mb_to_top_edge -= xd->n8_h * 32; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = xd->n8_h; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; MB_MODE_INFO backup_mbmi; mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; backup_mbmi = *mbmi; modify_neighbor_predictor_for_obmc(mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], (xd->n8_h >> 1), i, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (xd->n8_h >> 1), mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64; mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * (MI_SIZE >> 1); for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x; bh = (xd->n8_h << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_y; if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> (!have_vsplit); const int num_4x4_h = 2 >> (!have_hsplit); const int pw = 8 >> (have_vsplit + pd->subsampling_x); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0) continue; build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh, (4 * x) >> pd->subsampling_x, xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, pw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } else { build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh, 0, xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } *mbmi = backup_mbmi; } xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base; xd->mb_to_top_edge += xd->n8_h * 32; } void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], const int tmp_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; #if CONFIG_DEBUG BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; #endif int i, j, mi_step, ref; const int ilimit = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; if (mi_col + xd->n8_w >= tile->mi_col_end || (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) return; assert(bsize >= BLOCK_8X8); xd->mb_to_left_edge -= xd->n8_w / 2 * MI_SIZE * 8; for (i = 0; i < ilimit; i += mi_step) { int mi_row_offset = i; int mi_col_offset = xd->n8_w; int mi_x, mi_y, bw, bh; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; MB_MODE_INFO backup_mbmi; mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; backup_mbmi = *mbmi; modify_neighbor_predictor_for_obmc(mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, AOMMAX(mbmi->sb_type, BLOCK_8X8), tmp_buf[j], tmp_width[j], tmp_height[j], tmp_stride[j], i, xd->n8_w >> 1, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col + (xd->n8_w >> 1), &ref_buf->sf); } xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * MI_SIZE * 8; mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * (MI_SIZE >> 1); mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = (xd->n8_w << (MI_SIZE_LOG2 - 1)) >> pd->subsampling_x; bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; const int have_vsplit = bp != PARTITION_HORZ; const int have_hsplit = bp != PARTITION_VERT; const int num_4x4_w = 2 >> (!have_vsplit); const int num_4x4_h = 2 >> (!have_hsplit); const int ph = 8 >> (have_hsplit + pd->subsampling_y); int x, y; for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) { if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0) continue; build_inter_predictors(cm, xd, j, mi, 1, y * 2 + x, bw, bh, xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, (4 * y) >> pd->subsampling_y, bw, ph, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } else { build_inter_predictors(cm, xd, j, mi, 1, 0, bw, bh, xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } *mbmi = backup_mbmi; } xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_left_edge += xd->n8_w / 2 * MI_SIZE * 8; } // This function combines motion compensated predictions that is generated by // bottom/right neighboring blocks' inter predictors with prediction in dst // buffer. void av1_merge_dst_bottom_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, uint8_t *bottom[MAX_MB_PLANE], const int bottom_stride[MAX_MB_PLANE], uint8_t *right[MAX_MB_PLANE], const int right_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; int plane, i, mi_step; const int bottom_available = mi_row + xd->n8_h < tile->mi_row_end && (mi_row + xd->n8_h) % MI_SIZE != 0 && (mi_row + xd->n8_h) < cm->mi_rows; #if CONFIG_HIGHBITDEPTH int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #endif // CONFIG_HIGHBITDEPTH // handle bottom row for (i = 0; bottom_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { int mi_row_offset = xd->n8_h; int mi_col_offset = i; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; int overlap; mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; overlap = num_4x4_blocks_high_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; const int bh = overlap >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[((i * MI_SIZE) >> pd->subsampling_x) + (((xd->n8_h * MI_SIZE - overlap) * dst_stride) >> pd->subsampling_y)]; const int tmp_stride = bottom_stride[plane]; const uint8_t *const tmp = &bottom[plane][((i * MI_SIZE) >> pd->subsampling_x) + (((xd->n8_h * MI_SIZE - overlap) * tmp_stride) >> pd->subsampling_y)]; const uint8_t *const mask = av1_get_obmc_mask_flipped(bh); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } // each mi in the bottom row // handle right column if (mi_col + xd->n8_w >= tile->mi_col_end || (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) return; for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { int mi_row_offset = i; int mi_col_offset = xd->n8_w; int overlap; MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; MB_MODE_INFO *mbmi = &mi->mbmi; mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); if (!is_neighbor_overlappable(mbmi)) continue; overlap = num_4x4_blocks_wide_lookup[bsize] << 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const int bw = overlap >> pd->subsampling_x; const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; const int dst_stride = pd->dst.stride; uint8_t *dst = &pd->dst.buf[((i * MI_SIZE * dst_stride) >> pd->subsampling_y) + ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; const int tmp_stride = right_stride[plane]; const uint8_t *const tmp = &right[plane][((i * MI_SIZE * tmp_stride) >> pd->subsampling_y) + ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; const uint8_t *const mask = av1_get_obmc_mask_flipped(bw); #if CONFIG_HIGHBITDEPTH if (is_hbd) aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, mask, bh, bw); } } // each mi in the right column } // This function generates 4 sided obmc. (1) Prediction blocks generated by // bottom and right motion vectors are calculated. (2) Combine them with the // original prediction block (which should be pre-stored in xd->plane[].dst.buf // before calling this function). The results is updated in xd->plane[].dst.buf // (3) Call causal obmc prediction function, which will generate left and above // preds, and then merge them and xd->plane[].dst.buf. void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col) { #if CONFIG_HIGHBITDEPTH DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); #else DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); #endif // CONFIG_HIGHBITDEPTH uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { int len = sizeof(uint16_t); dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); } else { #endif // CONFIG_HIGHBITDEPTH dst_buf1[0] = tmp_buf1; dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; dst_buf2[0] = tmp_buf2; dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; #if CONFIG_HIGHBITDEPTH } #endif // CONFIG_HIGHBITDEPTH const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; // TODO(zoeliu): COMPOUND_SINGLEREF has not worked with NCOBMC yet. av1_build_prediction_by_bottom_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_right_preds(cm, xd, mi_row, mi_col, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); av1_merge_dst_bottom_right_preds(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, dst_buf2, dst_stride2); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, mi_col); } #endif // CONFIG_NCOBMC #if CONFIG_NCOBMC_ADAPT_WEIGHT void reset_xd_boundary(MACROBLOCKD *xd, int mi_row, int bh, int mi_col, int bw, int mi_rows, int mi_cols) { xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8; xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8; } void set_sb_mi_boundaries(const AV1_COMMON *const cm, MACROBLOCKD *const xd, const int mi_row, const int mi_col) { const BLOCK_SIZE sb = cm->sb_size; const int num_mi_w = mi_size_wide[sb]; const int num_mi_h = mi_size_high[sb]; xd->sb_mi_bd.mi_col_begin = mi_col; xd->sb_mi_bd.mi_row_begin = mi_row; // points to the last mi xd->sb_mi_bd.mi_col_end = mi_col + num_mi_w > cm->mi_cols ? cm->mi_cols - 1 : mi_col + num_mi_w - 1; xd->sb_mi_bd.mi_row_end = mi_row + num_mi_h > cm->mi_rows ? cm->mi_rows - 1 : mi_row + num_mi_h - 1; } #endif #endif // CONFIG_MOTION_VAR /* clang-format off */ #if CONFIG_INTERINTRA #if CONFIG_EXT_PARTITION static const int ii_weights1d[MAX_SB_SIZE] = { 60, 58, 56, 54, 52, 50, 48, 47, 45, 44, 42, 41, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 22, 21, 20, 19, 19, 18, 18, 17, 16, 16, 15, 15, 14, 14, 13, 13, 12, 12, 12, 11, 11, 10, 10, 10, 9, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static int ii_size_scales[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 32, 32, 32, #endif 32, 16, 16, 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1, 16, 16, 8, 8, 4, 4, 2, 2 }; #else static const int ii_weights1d[MAX_SB_SIZE] = { 60, 56, 52, 48, 45, 42, 39, 37, 34, 32, 30, 28, 26, 24, 22, 21, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 10, 9, 8, 8, 7, 7, 6, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; static int ii_size_scales[BLOCK_SIZES_ALL] = { #if CONFIG_CHROMA_2X2 || CONFIG_CHROMA_SUB8X8 16, 16, 16, #endif 16, 8, 8, 8, 4, 4, 4, 2, 2, 2, 1, 1, 1, 8, 8, 4, 4, 2, 2, }; /* clang-format on */ #endif // CONFIG_EXT_PARTITION static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred, int compstride, const uint8_t *interpred, int interstride, const uint8_t *intrapred, int intrastride) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, interpred, interstride, mask, block_size_wide[bsize], bh, bw, subh, subw); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_SMOOTH_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = AOM_BLEND_AVG( intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; } } #if CONFIG_HIGHBITDEPTH static void combine_interintra_highbd( INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, uint8_t *comppred8, int compstride, const uint8_t *interpred8, int interstride, const uint8_t *intrapred8, int intrastride, int bd) { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; const int size_scale = ii_size_scales[plane_bsize]; int i, j; uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); if (use_wedge_interintra) { if (is_interintra_wedge_used(bsize)) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, interpred8, interstride, mask, block_size_wide[bsize], bh, bw, subh, subw, bd); } return; } switch (mode) { case II_V_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[i * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_H_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[j * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_SMOOTH_PRED: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { int scale = ii_weights1d[(i < j ? i : j) * size_scale]; comppred[i * compstride + j] = AOM_BLEND_A64(scale, intrapred[i * intrastride + j], interpred[i * interstride + j]); } } break; case II_DC_PRED: default: for (i = 0; i < bh; ++i) { for (j = 0; j < bw; ++j) { comppred[i * compstride + j] = AOM_BLEND_AVG( interpred[i * interstride + j], intrapred[i * intrastride + j]); } } break; } } #endif // CONFIG_HIGHBITDEPTH void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, BUFFER_SET *ctx, uint8_t *dst, int dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); PREDICTION_MODE mode = interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode]; av1_predict_intra_block(cm, xd, pd->width, pd->height, plane_bsize, mode, ctx->plane[plane], ctx->stride[plane], dst, dst_stride, 0, 0, plane); } void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, const uint8_t *inter_pred, int inter_stride, const uint8_t *intra_pred, int intra_stride) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { combine_interintra_highbd( xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride, xd->bd); return; } #endif // CONFIG_HIGHBITDEPTH combine_interintra(xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, xd->mi[0]->mbmi.interintra_wedge_index, xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, inter_stride, intra_pred, intra_stride); } void av1_build_interintra_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *ypred, int ystride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra( cm, xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); av1_combine_interintra(xd, bsize, 0, ypred, ystride, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, ctx, intrapredictor, MAX_SB_SIZE); av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, MAX_SB_SIZE); } } void av1_build_interintra_predictors_sbc(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, int ustride, BUFFER_SET *ctx, int plane, BLOCK_SIZE bsize) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra( cm, xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, upred, ustride, CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); return; } #endif // CONFIG_HIGHBITDEPTH { DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); av1_build_intra_predictors_for_interintra(cm, xd, bsize, plane, ctx, uintrapredictor, MAX_SB_SIZE); av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, MAX_SB_SIZE); } } void av1_build_interintra_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *upred, uint8_t *vpred, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sbc(cm, xd, upred, ustride, ctx, 1, bsize); av1_build_interintra_predictors_sbc(cm, xd, vpred, vstride, ctx, 2, bsize); } void av1_build_interintra_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *ypred, uint8_t *upred, uint8_t *vpred, int ystride, int ustride, int vstride, BUFFER_SET *ctx, BLOCK_SIZE bsize) { av1_build_interintra_predictors_sby(cm, xd, ypred, ystride, ctx, bsize); av1_build_interintra_predictors_sbuv(cm, xd, upred, vpred, ustride, vstride, ctx, bsize); } #endif // CONFIG_INTERINTRA // Builds the inter-predictor for the single ref case // for use in the encoder to search the wedges efficiently. static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, int block, int bw, int bh, int x, int y, int w, int h, int mi_x, int mi_y, int ref, uint8_t *const ext_dst, int ext_dst_stride) { struct macroblockd_plane *const pd = &xd->plane[plane]; const MODE_INFO *mi = xd->mi[0]; const struct scale_factors *const sf = &xd->block_refs[ref]->sf; struct buf_2d *const pre_buf = &pd->pre[ref]; #if CONFIG_HIGHBITDEPTH uint8_t *const dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) : ext_dst) + ext_dst_stride * y + x; #else uint8_t *const dst = ext_dst + ext_dst_stride * y + x; #endif const MV mv = mi->mbmi.sb_type < BLOCK_8X8 ? average_split_mvs(pd, mi, ref, block) : mi->mbmi.mv[ref].as_mv; uint8_t *pre; int xs, ys, subpel_x, subpel_y; const int is_scaled = av1_is_scaled(sf); ConvolveParams conv_params = get_conv_params(ref, 0, plane); #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION WarpTypesAllowed warp_types; #if CONFIG_GLOBAL_MOTION #if CONFIG_COMPOUND_SINGLEREF WarpedMotionParams *const wm = mi->mbmi.ref_frame[ref] > 0 ? &xd->global_motion[mi->mbmi.ref_frame[ref]] : &xd->global_motion[mi->mbmi.ref_frame[0]]; #else // !(CONFIG_COMPOUND_SINGLEREF) WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; #endif // CONFIG_COMPOUND_SINGLEREF warp_types.global_warp_allowed = is_global_mv_block(mi, block, wm->wmtype); #endif // CONFIG_GLOBAL_MOTION #if CONFIG_WARPED_MOTION warp_types.local_warp_allowed = mi->mbmi.motion_mode == WARPED_CAUSAL; #endif // CONFIG_WARPED_MOTION #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION if (is_scaled) { int ssx = pd->subsampling_x; int ssy = pd->subsampling_y; int orig_pos_y = (mi_y << (SUBPEL_BITS - ssy)) + (y << SUBPEL_BITS); orig_pos_y += mv.row * (1 << (1 - ssy)); int orig_pos_x = (mi_x << (SUBPEL_BITS - ssx)) + (x << SUBPEL_BITS); orig_pos_x += mv.col * (1 << (1 - ssx)); int pos_y = sf->scale_value_y(orig_pos_y, sf); int pos_x = sf->scale_value_x(orig_pos_x, sf); pos_x += SCALE_EXTRA_OFF; pos_y += SCALE_EXTRA_OFF; const int top = -((AOM_INTERP_EXTEND + bh) << SCALE_SUBPEL_BITS); const int bottom = (pre_buf->height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; const int left = -((AOM_INTERP_EXTEND + bw) << SCALE_SUBPEL_BITS); const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS; pos_y = clamp(pos_y, top, bottom); pos_x = clamp(pos_x, left, right); pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (pos_x >> SCALE_SUBPEL_BITS); subpel_x = pos_x & SCALE_SUBPEL_MASK; subpel_y = pos_y & SCALE_SUBPEL_MASK; xs = sf->x_step_q4; ys = sf->y_step_q4; } else { const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); xs = ys = SCALE_SUBPEL_SHIFTS; subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride + (x + (mv_q4.col >> SUBPEL_BITS)); } av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, subpel_y, sf, w, h, &conv_params, mi->mbmi.interp_filters, #if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION &warp_types, (mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y, plane, ref, #endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION #if CONFIG_MOTION_VAR mi, 0, #endif xs, ys, xd); } void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) { int plane; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { int x, y; const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; assert(bsize == BLOCK_8X8); #if CONFIG_COMPOUND_SINGLEREF assert(has_second_ref(&xd->mi[0]->mbmi) || !is_inter_singleref_comp_mode(xd->mi[0]->mbmi.mode)); #endif // CONFIG_COMPOUND_SINGLEREF for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_inter_predictors_single_buf( xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } else { build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, mi_x, mi_y, ref, ext_dst[plane], ext_dst_stride[plane]); } } } static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; const INTERINTER_COMPOUND_DATA comp_data = { #if CONFIG_WEDGE mbmi->wedge_index, mbmi->wedge_sign, #endif // CONFIG_WEDGE #if CONFIG_COMPOUND_SEGMENT mbmi->mask_type, xd->seg_mask, #endif // CONFIG_COMPOUND_SEGMENT mbmi->interinter_compound_type }; #if CONFIG_COMPOUND_SINGLEREF if ((is_compound || is_inter_singleref_comp_mode(mbmi->mode)) && is_masked_compound_type(mbmi->interinter_compound_type)) #else // !CONFIG_COMPOUND_SINGLEREF if (is_compound && is_masked_compound_type(mbmi->interinter_compound_type)) #endif // CONFIG_COMPOUND_SINGLEREF { #if CONFIG_COMPOUND_SEGMENT if (!plane && comp_data.interinter_compound_type == COMPOUND_SEG) { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_compound_seg_mask_highbd( comp_data.seg_mask, comp_data.mask_type, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->sb_type, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_compound_seg_mask(comp_data.seg_mask, comp_data.mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, mbmi->sb_type, h, w); } #endif // CONFIG_COMPOUND_SEGMENT #if CONFIG_SUPERTX #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_wedge_extend_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data, mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound_wedge_extend( dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, &comp_data, mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w); #else // !CONFIG_SUPERTX #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) build_masked_compound_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, &comp_data, mbmi->sb_type, h, w, xd->bd); else #endif // CONFIG_HIGHBITDEPTH build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, &comp_data, mbmi->sb_type, h, w); #endif // CONFIG_SUPERTX } else { #if CONFIG_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, xd->bd); else #endif // CONFIG_HIGHBITDEPTH aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, 0, NULL, 0, w, h); } } void av1_build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, #if CONFIG_SUPERTX int wedge_offset_x, int wedge_offset_y, #endif // CONFIG_SUPERTX uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], int ext_dst_stride1[3]) { int plane; for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { int x, y; const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; assert(bsize == BLOCK_8X8); for (y = 0; y < num_4x4_h; ++y) for (x = 0; x < num_4x4_w; ++x) build_wedge_inter_predictor_from_buf( xd, plane, 4 * x, 4 * y, 4, 4, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } else { const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, #if CONFIG_SUPERTX wedge_offset_x, wedge_offset_y, #endif // CONFIG_SUPERTX ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } } } #if CONFIG_NCOBMC_ADAPT_WEIGHT void alloc_ncobmc_pred_buffer(MACROBLOCKD *const xd) { int i; // allocate interpolated prediction buffer for (i = 0; i < MAX_MB_PLANE; ++i) { xd->ncobmc_pred_buf[i] = (uint8_t *)malloc(sizeof(uint8_t) * MAX_SB_SQUARE); av1_zero_array(xd->ncobmc_pred_buf[i], MAX_SB_SQUARE); xd->ncobmc_pred_buf_stride[i] = MAX_SB_SIZE; } } void free_ncobmc_pred_buffer(MACROBLOCKD *const xd) { for (int i = 0; i < MAX_MB_PLANE; ++i) free(xd->ncobmc_pred_buf[i]); } void get_pred_from_intrpl_buf(MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize, int plane) { uint8_t *dst = xd->plane[plane].dst.buf; int ds = xd->plane[plane].dst.stride; int ss_x = xd->plane[plane].subsampling_x; int ss_y = xd->plane[plane].subsampling_y; const int ip_wide = mi_size_wide[bsize] * MI_SIZE >> ss_x; const int ip_high = mi_size_high[bsize] * MI_SIZE >> ss_y; // relative coordinates of this MI in the superblock int row_rlt = (mi_row - xd->sb_mi_bd.mi_row_begin) * MI_SIZE >> ss_y; int col_rlt = (mi_col - xd->sb_mi_bd.mi_col_begin) * MI_SIZE >> ss_x; int s = xd->ncobmc_pred_buf_stride[plane]; int r, c; for (r = 0; r < ip_high; ++r) { for (c = 0; c < ip_wide; ++c) { dst[r * ds + c] = xd->ncobmc_pred_buf[plane][(r + row_rlt) * s + c + col_rlt]; } } } // scaling factors for ncobmc kernels #define KERNEL_SCALE_LOG 14 void build_ncobmc_intrpl_pred(const AV1_COMMON *const cm, MACROBLOCKD *xd, int plane, int pxl_row, int pxl_col, BLOCK_SIZE bsize, uint8_t *preds[][MAX_MB_PLANE], int stride[MAX_MB_PLANE], // pred buffer strides int mode) { const ADAPT_OVERLAP_BLOCK ao_block = adapt_overlap_block_lookup[bsize]; const NCOBMC_KERNELS *const knls = &cm->ncobmc_kernels[ao_block][mode]; const int wide = mi_size_wide[bsize] * MI_SIZE; const int high = mi_size_high[bsize] * MI_SIZE; const int s = stride[plane]; const int ss_x = xd->plane[plane].subsampling_x; const int ss_y = xd->plane[plane].subsampling_y; int row_offset = (pxl_row - xd->sb_mi_bd.mi_row_begin * MI_SIZE) >> ss_y; int col_offset = (pxl_col - xd->sb_mi_bd.mi_col_begin * MI_SIZE) >> ss_x; int dst_stride = xd->ncobmc_pred_buf_stride[plane]; int dst_offset = row_offset * dst_stride + col_offset; #if CONFIG_HIGHBITDEPTH const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; #else const int is_hbd = 0; #endif // CONFIG_HIGHBITDEPTH int r, c, k_r, k_c; int64_t tmp; for (r = 0; r < (high >> ss_x); ++r) { for (c = 0; c < (wide >> ss_y); ++c) { int pos = r * s + c; int q_tmp; uint8_t val; // TODO(weitinglin): find out the optimal sub-sampling patterns for // chroma k_r = (r << ss_y) + ss_y; k_c = (c << ss_x) + ss_x; if (ss_y && k_r >= high) k_r -= 1; if (ss_x && k_c >= wide) k_c -= 1; if (!is_hbd) { uint8_t *tmp_p[4]; int i; for (i = 0; i < 4; ++i) tmp_p[i] = preds[i][plane]; tmp = 0; for (i = 0; i < 4; ++i) tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos]; } else { uint16_t *tmp_p[4]; int i; for (i = 0; i < 4; ++i) tmp_p[i] = CONVERT_TO_SHORTPTR(preds[i][plane]); tmp = 0; for (i = 0; i < 4; ++i) tmp += knls->KERNEL[i][k_r][k_c] * tmp_p[i][pos]; } q_tmp = (tmp <= 0) ? 0 : ROUND_POWER_OF_TWO(tmp, KERNEL_SCALE_LOG); val = clip_pixel(q_tmp); xd->ncobmc_pred_buf[plane][r * dst_stride + c + dst_offset] = val; assert(r * dst_stride + c + dst_offset < MAX_SB_SQUARE); } } } void get_pred_by_horz_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; const int mb_to_top_edge_base = xd->mb_to_top_edge; const int mb_to_left_edge_base = xd->mb_to_left_edge; const int mb_to_right_edge_base = xd->mb_to_right_edge; int overlappable_offset = -1; const int mi_nums = AOMMIN(mi_size_high[bsize], cm->mi_rows - mi_row); int i, j, mi_step, ref; xd->mb_to_right_edge += mi_size_wide[bsize] * MI_SIZE * 4; // build from left neighbors for (i = 0; i < mi_nums; i += mi_step) { int mi_row_offset = i; int mi_col_offset = -1; int mi_x, mi_y, bw, bh; MODE_INFO *left_mi; MB_MODE_INFO *left_mbmi, backup_mbmi; BLOCK_SIZE l_bsize; // create the original prediction if offset exceeds the boundary if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) mi_col_offset = 0; left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; left_mbmi = &left_mi->mbmi; l_bsize = AOMMAX(left_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(xd->n8_h, mi_size_high[l_bsize]); // reset the mi if it is not overlappble if (!is_neighbor_overlappable(left_mbmi)) { // use left_mbmi->sb_type instead of l_bsize to handle // sub8x8 cases int search_mi_step = mi_size_high[left_mbmi->sb_type]; while (!is_neighbor_overlappable(left_mbmi)) { mi_row_offset += search_mi_step; if (mi_row_offset < mi_nums) { left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; left_mbmi = &left_mi->mbmi; search_mi_step = mi_size_high[left_mbmi->sb_type]; } else { if (overlappable_offset >= 0) { mi_row_offset = overlappable_offset; } else { mi_row_offset = 0; mi_col_offset = 0; } left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; left_mbmi = &left_mi->mbmi; break; } } } else { // update the available overlappable mi overlappable_offset = mi_row_offset; } backup_mbmi = *left_mbmi; modify_neighbor_predictor_for_obmc(left_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, l_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[j], i, 0, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(left_mbmi->mode)); ++ref) { const MV_REFERENCE_FRAME frame = has_second_ref(left_mbmi) ? left_mbmi->ref_frame[ref] : left_mbmi->ref_frame[0]; #else // !(CONFIG_COMPOUND_SINGLEREF) for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, &ref_buf->sf); } xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8; mi_x = mi_col << MI_SIZE_LOG2; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x; bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; build_inter_predictors(cm, xd, j, left_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *left_mbmi = backup_mbmi; } // build from right neighbors xd->mb_to_right_edge = mb_to_right_edge_base; xd->mb_to_left_edge -= mi_size_wide[bsize] * MI_SIZE * 4; overlappable_offset = -1; for (i = 0; i < mi_nums; i += mi_step) { int mi_row_offset = i; int mi_col_offset = mi_size_wide[bsize]; int mi_x, mi_y, bw, bh; int mi_col_shift = mi_size_wide[bsize] >> 1; MODE_INFO *right_mi; MB_MODE_INFO *right_mbmi, backup_mbmi; BLOCK_SIZE r_bsize; // create the original prediction if offset exceeds the boundary if (mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end) mi_col_offset = 0; right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; right_mbmi = &right_mi->mbmi; r_bsize = AOMMAX(right_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(mi_nums, mi_size_high[r_bsize]); if (!is_neighbor_overlappable(right_mbmi)) { int search_mi_step = mi_size_high[right_mbmi->sb_type]; while (!is_neighbor_overlappable(right_mbmi)) { mi_row_offset += search_mi_step; if (mi_row_offset < mi_nums) { right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; right_mbmi = &right_mi->mbmi; search_mi_step = mi_size_high[right_mbmi->sb_type]; } else { if (overlappable_offset >= 0) { mi_row_offset = overlappable_offset; } else { mi_row_offset = 0; mi_col_offset = 0; } right_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; right_mbmi = &right_mi->mbmi; break; } } } else { overlappable_offset = mi_row_offset; } backup_mbmi = *right_mbmi; modify_neighbor_predictor_for_obmc(right_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, r_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[j], i, mi_col_shift, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(right_mbmi->mode)); ++ref) { const MV_REFERENCE_FRAME frame = has_second_ref(right_mbmi) ? right_mbmi->ref_frame[ref] : right_mbmi->ref_frame[0]; #else // !(CONFIG_COMPOUND_SINGLEREF) for (ref = 0; ref < 1 + has_second_ref(right_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = right_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col + mi_col_shift, &ref_buf->sf); } xd->mb_to_top_edge = -((mi_row + i) * MI_SIZE * 8); xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8; mi_x = (mi_col + mi_col_shift) << MI_SIZE_LOG2; mi_y = (mi_row + i) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bw = mi_size_wide[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x; bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; build_inter_predictors(cm, xd, j, right_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *right_mbmi = backup_mbmi; } // restore the boundaries xd->mb_to_top_edge = mb_to_top_edge_base; xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_left_edge = mb_to_left_edge_base; xd->mb_to_right_edge = mb_to_right_edge_base; } void get_pred_by_vert_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; const int mb_to_top_edge_base = xd->mb_to_top_edge; const int mb_to_left_edge_base = xd->mb_to_left_edge; const int mb_to_right_edge_base = xd->mb_to_right_edge; int overlappable_offset = -1; const int mi_nums = AOMMIN(mi_size_wide[bsize], cm->mi_cols - mi_col); int i, j, mi_step, ref; xd->mb_to_bottom_edge += mi_nums * MI_SIZE * 4; // build from above neighbors for (i = 0; i < mi_nums; i += mi_step) { int mi_row_offset = -1; int mi_col_offset = i; int mi_x, mi_y, bw, bh; MODE_INFO *above_mi; MB_MODE_INFO *above_mbmi, backup_mbmi; BLOCK_SIZE a_bsize; // create the original prediction if offset exceeds the boundary if (mi_row <= tile->mi_row_start) mi_row_offset = 0; above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; above_mbmi = &above_mi->mbmi; a_bsize = AOMMAX(above_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(mi_nums, mi_size_high[a_bsize]); // reset the mi if it is not overlappble if (!is_neighbor_overlappable(above_mbmi)) { int search_mi_step = mi_size_high[above_mbmi->sb_type]; // backward search while (!is_neighbor_overlappable(above_mbmi)) { mi_col_offset += search_mi_step; if (mi_col_offset < mi_nums) { above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; above_mbmi = &above_mi->mbmi; search_mi_step = mi_size_high[above_mbmi->sb_type]; } else { if (overlappable_offset >= 0) { mi_col_offset = overlappable_offset; } else { mi_row_offset = 0; mi_col_offset = 0; } above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; above_mbmi = &above_mi->mbmi; break; } } } else { // update the available overlappable mi overlappable_offset = mi_col_offset; } backup_mbmi = *above_mbmi; modify_neighbor_predictor_for_obmc(above_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, a_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[j], 0, i, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(above_mbmi->mode)); ++ref) { const MV_REFERENCE_FRAME frame = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[ref] : above_mbmi->ref_frame[0]; #else // !(CONFIG_COMPOUND_SINGLEREF) for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8; mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = mi_row << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x; bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; build_inter_predictors(cm, xd, j, above_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *above_mbmi = backup_mbmi; } // build from bottom neighbors xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_top_edge -= mi_size_high[bsize] * MI_SIZE * 4; overlappable_offset = -1; for (i = 0; i < mi_nums; i += mi_step) { int mi_row_offset = mi_size_high[bsize]; int mi_col_offset = i; int mi_x, mi_y, bw, bh; int mi_row_shift = mi_size_high[bsize] >> 1; MODE_INFO *bottom_mi; MB_MODE_INFO *bottom_mbmi, backup_mbmi; BLOCK_SIZE b_bsize; // create the original prediction if offset exceeds the boundary if (mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end) mi_row_offset = 0; bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; bottom_mbmi = &bottom_mi->mbmi; b_bsize = AOMMAX(bottom_mbmi->sb_type, BLOCK_8X8); mi_step = AOMMIN(mi_nums, mi_size_high[b_bsize]); // reset the mi if it is not overlappble if (!is_neighbor_overlappable(bottom_mbmi)) { int search_mi_step = mi_size_high[bottom_mbmi->sb_type]; while (!is_neighbor_overlappable(bottom_mbmi)) { mi_col_offset += search_mi_step; if (mi_col_offset < mi_nums) { bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; bottom_mbmi = &bottom_mi->mbmi; search_mi_step = mi_size_high[bottom_mbmi->sb_type]; } else { if (overlappable_offset >= 0) { mi_col_offset = overlappable_offset; } else { mi_col_offset = 0; mi_row_offset = 0; } bottom_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; bottom_mbmi = &bottom_mi->mbmi; break; } } } else { // update the available overlappable mi overlappable_offset = mi_col_offset; } backup_mbmi = *bottom_mbmi; modify_neighbor_predictor_for_obmc(bottom_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, b_bsize, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[j], mi_row_shift, i, NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(bottom_mbmi->mode)); ++ref) { const MV_REFERENCE_FRAME frame = has_second_ref(bottom_mbmi) ? bottom_mbmi->ref_frame[ref] : bottom_mbmi->ref_frame[0]; #else // !(CONFIG_COMPOUND_SINGLEREF) for (ref = 0; ref < 1 + has_second_ref(bottom_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = bottom_mbmi->ref_frame[ref]; #endif // CONFIG_COMPOUND_SINGLEREF const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + mi_row_shift, mi_col + i, &ref_buf->sf); } xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); xd->mb_to_right_edge = mb_to_right_edge_base + (mi_nums - i - mi_step) * MI_SIZE * 8; mi_x = (mi_col + i) << MI_SIZE_LOG2; mi_y = (mi_row + mi_row_shift) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bh = mi_size_high[bsize] << (MI_SIZE_LOG2 - 1) >> pd->subsampling_x; bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; build_inter_predictors(cm, xd, j, bottom_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *bottom_mbmi = backup_mbmi; } // restore the boundaries xd->mb_to_top_edge = mb_to_top_edge_base; xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_left_edge = mb_to_left_edge_base; xd->mb_to_right_edge = mb_to_right_edge_base; } void get_pred_by_corner_neighbor(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]) { const TileInfo *const tile = &xd->tile; const int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; const int mb_to_top_edge_base = xd->mb_to_top_edge; const int mb_to_left_edge_base = xd->mb_to_left_edge; const int mb_to_right_edge_base = xd->mb_to_right_edge; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; // location of four mi sources const int mi_row_offsets[4] = { -1, -1, mi_high, mi_high }; const int mi_col_offsets[4] = { -1, mi_wide, -1, mi_wide }; MB_MODE_INFO backup_mbmi; int mi_x, mi_y, bh, bw; int i, j, ref; assert(bsize >= BLOCK_8X8); for (i = 0; i < 4; ++i) { int mi_row_offset = mi_row_offsets[i]; int mi_col_offset = mi_col_offsets[i]; MODE_INFO *corner_mi; MB_MODE_INFO *corner_mbmi; if (mi_col + mi_col_offset < tile->mi_col_start || mi_col + mi_col_offset > xd->sb_mi_bd.mi_col_end) mi_col_offset = 0; if (mi_row + mi_row_offset < tile->mi_row_start || mi_row + mi_row_offset > xd->sb_mi_bd.mi_row_end) mi_row_offset = 0; corner_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; corner_mbmi = &corner_mi->mbmi; // reset the mi if it is not overlappble if (!is_neighbor_overlappable(corner_mbmi)) { mi_row_offset = 0; mi_col_offset = 0; corner_mi = xd->mi[0]; corner_mbmi = &corner_mi->mbmi; } backup_mbmi = *corner_mbmi; modify_neighbor_predictor_for_obmc(corner_mbmi); for (j = 0; j < MAX_MB_PLANE; ++j) { struct macroblockd_plane *const pd = &xd->plane[j]; setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[j], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[j], (i / 2) * (mi_high >> 1), (i % 2) * (mi_wide >> 1), NULL, pd->subsampling_x, pd->subsampling_y); } #if CONFIG_COMPOUND_SINGLEREF for (ref = 0; ref < 1 + (is_inter_anyref_comp_mode(corner_mbmi->mode)); ++ref) { const MV_REFERENCE_FRAME frame = has_second_ref(corner_mbmi) ? corner_mbmi->ref_frame[ref] : corner_mbmi->ref_frame[0]; #else for (ref = 0; ref < 1 + has_second_ref(corner_mbmi); ++ref) { const MV_REFERENCE_FRAME frame = corner_mbmi->ref_frame[ref]; #endif const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if ((!av1_is_valid_scale(&ref_buf->sf))) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (i / 2) * (mi_high >> 1), mi_col + (i % 2) * (mi_wide >> 1), &ref_buf->sf); } // adjust mi boundaries of this block xd->mb_to_bottom_edge = mb_to_bottom_edge_base + (1 - (i / 2)) * mi_high * MI_SIZE * 4; xd->mb_to_top_edge = mb_to_top_edge_base - (i / 2) * mi_high * MI_SIZE * 4; xd->mb_to_right_edge = mb_to_right_edge_base + (1 - (i % 2)) * mi_wide * MI_SIZE * 4; xd->mb_to_left_edge = mb_to_left_edge_base - (i % 2) * mi_wide * MI_SIZE * 4; mi_x = (mi_col + (i % 2) * mi_wide / 2) << MI_SIZE_LOG2; mi_y = (mi_row + (i / 2) * mi_high / 2) << MI_SIZE_LOG2; for (j = 0; j < MAX_MB_PLANE; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; bh = mi_high << MI_SIZE_LOG2 >> (pd->subsampling_x + 1); bw = mi_wide << MI_SIZE_LOG2 >> (pd->subsampling_y + 1); build_inter_predictors(cm, xd, j, corner_mi, 1, 0, bw, bh, 0, 0, bw, bh, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } *corner_mbmi = backup_mbmi; } // restore the boundaries xd->mb_to_bottom_edge = mb_to_bottom_edge_base; xd->mb_to_top_edge = mb_to_top_edge_base; xd->mb_to_right_edge = mb_to_right_edge_base; xd->mb_to_left_edge = mb_to_left_edge_base; } // get the stitched extra prediction for this block void av1_get_ext_blk_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[][MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]) { get_pred_by_corner_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[0], dst_stride); get_pred_by_vert_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[1], dst_stride); get_pred_by_horz_neighbor(cm, xd, bsize, mi_row, mi_col, dst_buf[2], dst_stride); } void av1_get_ori_blk_pred(const AV1_COMMON *cm, MACROBLOCKD *xd, int bsize, int mi_row, int mi_col, uint8_t *dst_buf[MAX_MB_PLANE], int dst_stride[MAX_MB_PLANE]) { MODE_INFO *const mi = xd->mi[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; int mi_x = mi_col << MI_SIZE_LOG2; int mi_y = mi_row << MI_SIZE_LOG2; int bw = block_size_wide[bsize]; int bh = block_size_high[bsize]; int i, ref; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblockd_plane *const pd = &xd->plane[i]; setup_pred_plane(&pd->dst, BLOCK_8X8, dst_buf[i], MAX_SB_SIZE, MAX_SB_SIZE, dst_stride[i], 0, 0, NULL, pd->subsampling_x, pd->subsampling_y); } for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; xd->block_refs[ref] = ref_buf; if (!av1_is_valid_scale(&ref_buf->sf)) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col, &ref_buf->sf); } for (i = 0; i < MAX_MB_PLANE; ++i) { const struct macroblockd_plane *pd = &xd->plane[i]; build_inter_predictors(cm, xd, i, mi, 1, 0, bw >> pd->subsampling_x, bh >> pd->subsampling_y, 0, 0, bw >> pd->subsampling_x, bh >> pd->subsampling_y, #if CONFIG_SUPERTX 0, 0, #endif // CONFIG_SUPERTX mi_x, mi_y); } } #endif