/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/av1_rtcd.h" #include "test/acm_random.h" #include "test/av1_txfm_test.h" #include "test/clear_system_state.h" #include "test/register_state_check.h" #include "test/util.h" #include "av1/common/enums.h" #include "av1/common/scan.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem.h" namespace { using libaom_test::ACMRandom; using std::tuple; typedef void (*HbdHtFunc)(const int16_t *input, int32_t *output, int stride, TX_TYPE tx_type, int bd); typedef void (*IHbdHtFunc)(const int32_t *coeff, uint16_t *output, int stride, TX_TYPE tx_type, int bd); static const char *tx_type_name[] = { "DCT_DCT", "ADST_DCT", "DCT_ADST", "ADST_ADST", "FLIPADST_DCT", "DCT_FLIPADST", "FLIPADST_FLIPADST", "ADST_FLIPADST", "FLIPADST_ADST", "IDTX", "V_DCT", "H_DCT", "V_ADST", "H_ADST", "V_FLIPADST", "H_FLIPADST", }; // Test parameter argument list: // typedef tuple IHbdHtParam; class AV1HighbdInvHTNxN : public ::testing::TestWithParam { public: virtual ~AV1HighbdInvHTNxN() {} virtual void SetUp() { txfm_ref_ = GET_PARAM(0); inv_txfm_ = GET_PARAM(1); inv_txfm_ref_ = GET_PARAM(2); num_coeffs_ = GET_PARAM(3); tx_type_ = GET_PARAM(4); bit_depth_ = GET_PARAM(5); input_ = reinterpret_cast( aom_memalign(16, sizeof(input_[0]) * num_coeffs_)); // Note: // Inverse transform input buffer is 32-byte aligned // Refer to /av1/encoder/context_tree.c, function, // void alloc_mode_context(). coeffs_ = reinterpret_cast( aom_memalign(32, sizeof(coeffs_[0]) * num_coeffs_)); output_ = reinterpret_cast( aom_memalign(32, sizeof(output_[0]) * num_coeffs_)); output_ref_ = reinterpret_cast( aom_memalign(32, sizeof(output_ref_[0]) * num_coeffs_)); } virtual void TearDown() { aom_free(input_); aom_free(coeffs_); aom_free(output_); aom_free(output_ref_); libaom_test::ClearSystemState(); } protected: void RunBitexactCheck(); private: int GetStride() const { if (16 == num_coeffs_) { return 4; } else if (64 == num_coeffs_) { return 8; } else if (256 == num_coeffs_) { return 16; } else if (1024 == num_coeffs_) { return 32; } else if (4096 == num_coeffs_) { return 64; } else { return 0; } } HbdHtFunc txfm_ref_; IHbdHtFunc inv_txfm_; IHbdHtFunc inv_txfm_ref_; int num_coeffs_; TX_TYPE tx_type_; int bit_depth_; int16_t *input_; int32_t *coeffs_; uint16_t *output_; uint16_t *output_ref_; }; void AV1HighbdInvHTNxN::RunBitexactCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); const int stride = GetStride(); const int num_tests = 20000; const uint16_t mask = (1 << bit_depth_) - 1; for (int i = 0; i < num_tests; ++i) { for (int j = 0; j < num_coeffs_; ++j) { input_[j] = (rnd.Rand16() & mask) - (rnd.Rand16() & mask); output_ref_[j] = rnd.Rand16() & mask; output_[j] = output_ref_[j]; } txfm_ref_(input_, coeffs_, stride, tx_type_, bit_depth_); inv_txfm_ref_(coeffs_, output_ref_, stride, tx_type_, bit_depth_); ASM_REGISTER_STATE_CHECK( inv_txfm_(coeffs_, output_, stride, tx_type_, bit_depth_)); for (int j = 0; j < num_coeffs_; ++j) { EXPECT_EQ(output_ref_[j], output_[j]) << "Not bit-exact result at index: " << j << " At test block: " << i; } } } TEST_P(AV1HighbdInvHTNxN, InvTransResultCheck) { RunBitexactCheck(); } using std::make_tuple; #if HAVE_SSE4_1 #define PARAM_LIST_4X4 \ &av1_fwd_txfm2d_4x4_c, &av1_inv_txfm2d_add_4x4_sse4_1, \ &av1_inv_txfm2d_add_4x4_c, 16 const IHbdHtParam kArrayIhtParam[] = { // 4x4 make_tuple(PARAM_LIST_4X4, DCT_DCT, 10), make_tuple(PARAM_LIST_4X4, DCT_DCT, 12), make_tuple(PARAM_LIST_4X4, ADST_DCT, 10), make_tuple(PARAM_LIST_4X4, ADST_DCT, 12), make_tuple(PARAM_LIST_4X4, DCT_ADST, 10), make_tuple(PARAM_LIST_4X4, DCT_ADST, 12), make_tuple(PARAM_LIST_4X4, ADST_ADST, 10), make_tuple(PARAM_LIST_4X4, ADST_ADST, 12), make_tuple(PARAM_LIST_4X4, FLIPADST_DCT, 10), make_tuple(PARAM_LIST_4X4, FLIPADST_DCT, 12), make_tuple(PARAM_LIST_4X4, DCT_FLIPADST, 10), make_tuple(PARAM_LIST_4X4, DCT_FLIPADST, 12), make_tuple(PARAM_LIST_4X4, FLIPADST_FLIPADST, 10), make_tuple(PARAM_LIST_4X4, FLIPADST_FLIPADST, 12), make_tuple(PARAM_LIST_4X4, ADST_FLIPADST, 10), make_tuple(PARAM_LIST_4X4, ADST_FLIPADST, 12), make_tuple(PARAM_LIST_4X4, FLIPADST_ADST, 10), make_tuple(PARAM_LIST_4X4, FLIPADST_ADST, 12), }; INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdInvHTNxN, ::testing::ValuesIn(kArrayIhtParam)); #endif // HAVE_SSE4_1 typedef void (*HighbdInvTxfm2dFunc)(const int32_t *input, uint8_t *output, int stride, const TxfmParam *txfm_param); typedef std::tuple AV1HighbdInvTxfm2dParam; class AV1HighbdInvTxfm2d : public ::testing::TestWithParam { public: virtual void SetUp() { target_func_ = GET_PARAM(0); } void RunAV1InvTxfm2dTest(TX_TYPE tx_type, TX_SIZE tx_size, int run_times, int bit_depth, int gt_int16 = 0); private: HighbdInvTxfm2dFunc target_func_; }; void AV1HighbdInvTxfm2d::RunAV1InvTxfm2dTest(TX_TYPE tx_type_, TX_SIZE tx_size_, int run_times, int bit_depth_, int gt_int16) { FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size_]; TxfmParam txfm_param; const int BLK_WIDTH = 64; const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH; DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(32, uint16_t, output[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(32, uint16_t, ref_output[BLK_SIZE]) = { 0 }; int stride = BLK_WIDTH; int rows = tx_size_high[tx_size_]; int cols = tx_size_wide[tx_size_]; const int rows_nonezero = AOMMIN(32, rows); const int cols_nonezero = AOMMIN(32, cols); const uint16_t mask = (1 << bit_depth_) - 1; run_times /= (rows * cols); run_times = AOMMAX(1, run_times); const SCAN_ORDER *scan_order = get_default_scan(tx_size_, tx_type_); const int16_t *scan = scan_order->scan; const int16_t eobmax = rows_nonezero * cols_nonezero; ACMRandom rnd(ACMRandom::DeterministicSeed()); int randTimes = run_times == 1 ? (eobmax) : 1; txfm_param.tx_type = tx_type_; txfm_param.tx_size = tx_size_; txfm_param.lossless = 0; txfm_param.bd = bit_depth_; txfm_param.is_hbd = 1; txfm_param.tx_set_type = EXT_TX_SET_ALL16; for (int cnt = 0; cnt < randTimes; ++cnt) { for (int r = 0; r < BLK_WIDTH; ++r) { for (int c = 0; c < BLK_WIDTH; ++c) { input[r * cols + c] = (rnd.Rand16() & mask) - (rnd.Rand16() & mask); output[r * stride + c] = rnd.Rand16() & mask; ref_output[r * stride + c] = output[r * stride + c]; } } fwd_func_(input, inv_input, stride, tx_type_, bit_depth_); // produce eob input by setting high freq coeffs to zero const int eob = AOMMIN(cnt + 1, eobmax); for (int i = eob; i < eobmax; i++) { inv_input[scan[i]] = 0; } txfm_param.eob = eob; if (gt_int16) { const uint16_t inv_input_mask = static_cast((1 << (bit_depth_ + 7)) - 1); for (int i = 0; i < eob; i++) { inv_input[scan[i]] = (rnd.Rand31() & inv_input_mask); } } aom_usec_timer ref_timer, test_timer; aom_usec_timer_start(&ref_timer); for (int i = 0; i < run_times; ++i) { av1_highbd_inv_txfm_add_c(inv_input, CONVERT_TO_BYTEPTR(ref_output), stride, &txfm_param); } aom_usec_timer_mark(&ref_timer); const int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int i = 0; i < run_times; ++i) { target_func_(inv_input, CONVERT_TO_BYTEPTR(output), stride, &txfm_param); } aom_usec_timer_mark(&test_timer); const int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); if (run_times > 10) { printf( "txfm_size[%d] \t txfm_type[%d] \t c_time=%d \t simd_time=%d \t " "gain=%d \n", tx_size_, tx_type_, elapsed_time_c, elapsed_time_simd, (elapsed_time_c / elapsed_time_simd)); } else { for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { ASSERT_EQ(ref_output[r * stride + c], output[r * stride + c]) << "[" << r << "," << c << "] " << cnt << " tx_size: " << static_cast(tx_size_) << " bit_depth_: " << bit_depth_ << " tx_type: " << tx_type_name[tx_type_] << " eob " << eob; } } } } } TEST_P(AV1HighbdInvTxfm2d, match) { int bitdepth_ar[3] = { 8, 10, 12 }; for (int k = 0; k < 3; ++k) { int bd = bitdepth_ar[k]; for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { for (int i = 0; i < (int)TX_TYPES; ++i) { if (libaom_test::IsTxSizeTypeValid(static_cast(j), static_cast(i))) { RunAV1InvTxfm2dTest(static_cast(i), static_cast(j), 1, bd); } } } } } TEST_P(AV1HighbdInvTxfm2d, gt_int16) { int bitdepth_ar[3] = { 8, 10, 12 }; static const TX_TYPE types[] = { DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX, V_DCT, H_DCT, H_ADST, H_FLIPADST }; for (int k = 0; k < 3; ++k) { int bd = bitdepth_ar[k]; for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { const TX_SIZE sz = static_cast(j); for (uint8_t i = 0; i < sizeof(types) / sizeof(TX_TYPE); ++i) { const TX_TYPE tp = types[i]; if (libaom_test::IsTxSizeTypeValid(sz, tp)) { RunAV1InvTxfm2dTest(tp, sz, 1, bd, 1); } } } } } TEST_P(AV1HighbdInvTxfm2d, DISABLED_Speed) { int bitdepth_ar[2] = { 10, 12 }; for (int k = 0; k < 2; ++k) { int bd = bitdepth_ar[k]; for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { for (int i = 0; i < (int)TX_TYPES; ++i) { if (libaom_test::IsTxSizeTypeValid(static_cast(j), static_cast(i))) { RunAV1InvTxfm2dTest(static_cast(i), static_cast(j), 1000000, bd); } } } } } #if HAVE_SSE4_1 INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdInvTxfm2d, ::testing::Values(av1_highbd_inv_txfm_add_sse4_1)); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdInvTxfm2d, ::testing::Values(av1_highbd_inv_txfm_add_avx2)); #endif } // namespace