/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "aom_dsp/aom_dsp_common.h" #include "av1/encoder/ml.h" void av1_nn_output_prec_reduce(float *const output, int num_output) { const int prec_bits = 11; const int prec = 1 << prec_bits; const float inv_prec = (float)(1.0 / prec); for (int i = 0; i < num_output; i++) { output[i] = ((int)(output[i] * prec + 0.5)) * inv_prec; } } // Calculate prediction based on the given input features and neural net config. // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden // layer. void av1_nn_predict_c(const float *input_nodes, const NN_CONFIG *const nn_config, int reduce_prec, float *const output) { int num_input_nodes = nn_config->num_inputs; int buf_index = 0; float buf[2][NN_MAX_NODES_PER_LAYER]; // Propagate hidden layers. const int num_layers = nn_config->num_hidden_layers; assert(num_layers <= NN_MAX_HIDDEN_LAYERS); for (int layer = 0; layer < num_layers; ++layer) { const float *layer_weights = nn_config->weights[layer]; const float *layer_bias = nn_config->bias[layer]; float *output_nodes = buf[buf_index]; const int num_output_nodes = nn_config->num_hidden_nodes[layer]; assert(num_output_nodes < NN_MAX_NODES_PER_LAYER); for (int node = 0; node < num_output_nodes; ++node) { float val = layer_bias[node]; for (int i = 0; i < num_input_nodes; ++i) val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; // ReLU as activation function. val = val > 0.0f ? val : 0.0f; // Could use AOMMAX(). output_nodes[node] = val; } num_input_nodes = num_output_nodes; input_nodes = output_nodes; buf_index = 1 - buf_index; } // Final output layer. const float *layer_weights = nn_config->weights[num_layers]; const float *layer_bias = nn_config->bias[num_layers]; for (int node = 0; node < nn_config->num_outputs; ++node) { float val = layer_bias[node]; for (int i = 0; i < num_input_nodes; ++i) val += layer_weights[node * num_input_nodes + i] * input_nodes[i]; output[node] = val; } if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); } #if CONFIG_NN_V2 // Applies the ReLu activation to one fc layer // output[i] = Max(input[i],0.0f) static float *nn_relu(const float *input, FC_LAYER *layer) { for (int i = 0; i < layer->num_outputs; ++i) { layer->output[i] = AOMMAX(input[i], 0.0f); } return layer->output; } // Applies the Sigmoid activation to one fc layer // output[i] = 1/(1+exp(input[i])) static float *nn_sigmoid(const float *input, FC_LAYER *layer) { for (int i = 0; i < layer->num_outputs; ++i) { const float tmp = AOMMIN(AOMMAX(input[i], -10.0f), 10.0f); layer->output[i] = 1.0f / (1.0f + expf(-tmp)); } return layer->output; } // Forward prediction in one fc layer, used in function av1_nn_predict_V2 static float *nn_fc_forward(const float *input, FC_LAYER *layer) { const float *weights = layer->weights; const float *bias = layer->bias; assert(layer->num_outputs < NN_MAX_NODES_PER_LAYER); // fc for (int node = 0; node < layer->num_outputs; ++node) { float val = bias[node]; for (int i = 0; i < layer->num_inputs; ++i) val += weights[i] * input[i]; layer->output[node] = val; weights += layer->num_inputs; } // activation switch (layer->activation) { case NONE: return layer->output; case RELU: return nn_relu(layer->output, layer); case SIGMOID: return nn_sigmoid(layer->output, layer); case SOFTSIGN: assert(0 && "Softsign has not been supported in NN."); // TO DO return NULL; default: assert(0 && "Unknown activation"); // Unknown activation return NULL; } } void av1_nn_predict_v2(const float *feature, NN_CONFIG_V2 *nn_config, int reduce_prec, float *output) { const float *input_nodes = feature; // Propagate the layers. const int num_layers = nn_config->num_hidden_layers; assert(num_layers <= NN_MAX_HIDDEN_LAYERS); for (int i = 0; i < num_layers; ++i) { input_nodes = nn_fc_forward(input_nodes, nn_config->layer + i); assert(nn_config->layer[i + 1].num_inputs == nn_config->layer[i].num_outputs); } // Final layer input_nodes = nn_fc_forward(input_nodes, nn_config->layer + num_layers); assert(nn_config->layer[num_layers].num_outputs == nn_config->num_logits); // Copy the final layer output memcpy(output, input_nodes, sizeof(*input_nodes) * nn_config->num_logits); if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_logits); } #endif // CONFIG_NN_V2 void av1_nn_softmax(const float *input, float *output, int n) { // Softmax function is invariant to adding the same constant // to all input values, so we subtract the maximum input to avoid // possible overflow. float max_inp = input[0]; for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]); float sum_out = 0.0f; for (int i = 0; i < n; i++) { // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors. const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f); output[i] = (float)exp(normalized_input); sum_out += output[i]; } for (int i = 0; i < n; i++) output[i] /= sum_out; }