/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsLayoutUtils.h" #include "mozilla/ArrayUtils.h" #include "mozilla/BasicEvents.h" #include "mozilla/ClearOnShutdown.h" #include "mozilla/EffectCompositor.h" #include "mozilla/EffectSet.h" #include "mozilla/EventDispatcher.h" #include "mozilla/FloatingPoint.h" #include "mozilla/gfx/gfxVars.h" #include "mozilla/gfx/PathHelpers.h" #include "mozilla/layers/PAPZ.h" #include "mozilla/Likely.h" #include "mozilla/Maybe.h" #include "mozilla/MemoryReporting.h" #include "mozilla/dom/ContentChild.h" #include "mozilla/Unused.h" #include "nsCharTraits.h" #include "nsFontMetrics.h" #include "nsPresContext.h" #include "nsIContent.h" #include "nsIDOMHTMLDocument.h" #include "nsIDOMHTMLElement.h" #include "nsFrameList.h" #include "nsGkAtoms.h" #include "nsHtml5Atoms.h" #include "nsIAtom.h" #include "nsCaret.h" #include "nsCSSPseudoElements.h" #include "nsCSSAnonBoxes.h" #include "nsCSSColorUtils.h" #include "nsView.h" #include "nsViewManager.h" #include "nsPlaceholderFrame.h" #include "nsIScrollableFrame.h" #include "nsIDOMEvent.h" #include "nsDisplayList.h" #include "nsRegion.h" #include "nsFrameManager.h" #include "nsBlockFrame.h" #include "nsBidiPresUtils.h" #include "imgIContainer.h" #include "ImageOps.h" #include "ImageRegion.h" #include "gfxRect.h" #include "gfxContext.h" #include "nsRenderingContext.h" #include "nsIInterfaceRequestorUtils.h" #include "nsCSSRendering.h" #include "nsTextFragment.h" #include "nsThemeConstants.h" #include "nsPIDOMWindow.h" #include "nsIDocShell.h" #include "nsIWidget.h" #include "gfxMatrix.h" #include "gfxPrefs.h" #include "gfxTypes.h" #include "nsTArray.h" #include "mozilla/dom/HTMLCanvasElement.h" #include "nsICanvasRenderingContextInternal.h" #include "gfxPlatform.h" #include #include #include "mozilla/dom/HTMLVideoElement.h" #include "mozilla/dom/HTMLImageElement.h" #include "mozilla/dom/DOMRect.h" #include "mozilla/dom/DOMStringList.h" #include "mozilla/dom/KeyframeEffectReadOnly.h" #include "mozilla/layers/APZCCallbackHelper.h" #include "imgIRequest.h" #include "nsIImageLoadingContent.h" #include "nsCOMPtr.h" #include "nsCSSProps.h" #include "nsListControlFrame.h" #include "mozilla/dom/Element.h" #include "nsCanvasFrame.h" #include "gfxDrawable.h" #include "gfxEnv.h" #include "gfxUtils.h" #include "nsDataHashtable.h" #include "nsTableWrapperFrame.h" #include "nsTextFrame.h" #include "nsFontFaceList.h" #include "nsFontInflationData.h" #include "nsSVGUtils.h" #include "SVGImageContext.h" #include "SVGTextFrame.h" #include "nsStyleStructInlines.h" #include "nsStyleTransformMatrix.h" #include "nsIFrameInlines.h" #include "ImageContainer.h" #include "nsComputedDOMStyle.h" #include "ActiveLayerTracker.h" #include "mozilla/gfx/2D.h" #include "gfx2DGlue.h" #include "mozilla/LookAndFeel.h" #include "UnitTransforms.h" #include "TiledLayerBuffer.h" // For TILEDLAYERBUFFER_TILE_SIZE #include "ClientLayerManager.h" #include "nsRefreshDriver.h" #include "nsIContentViewer.h" #include "LayersLogging.h" #include "mozilla/Preferences.h" #include "nsFrameSelection.h" #include "FrameLayerBuilder.h" #include "mozilla/layers/APZCTreeManager.h" #include "mozilla/layers/CompositorBridgeChild.h" #include "mozilla/EventDispatcher.h" #include "mozilla/EventStateManager.h" #include "mozilla/RuleNodeCacheConditions.h" #include "mozilla/StyleSetHandle.h" #include "mozilla/StyleSetHandleInlines.h" #include "RegionBuilder.h" #include "SVGSVGElement.h" #include "nsDocument.h" #include "nsXULPopupManager.h" #include "GeckoProfiler.h" #include "nsAnimationManager.h" #include "nsTransitionManager.h" #include "mozilla/RestyleManagerHandle.h" #include "mozilla/RestyleManagerHandleInlines.h" #include "LayoutLogging.h" // Make sure getpid() works. #ifdef XP_WIN #include #define getpid _getpid #else #include #endif using namespace mozilla; using namespace mozilla::dom; using namespace mozilla::image; using namespace mozilla::layers; using namespace mozilla::layout; using namespace mozilla::gfx; #define GRID_ENABLED_PREF_NAME "layout.css.grid.enabled" #define GRID_TEMPLATE_SUBGRID_ENABLED_PREF_NAME "layout.css.grid-template-subgrid-value.enabled" #define WEBKIT_PREFIXES_ENABLED_PREF_NAME "layout.css.prefixes.webkit" #define DISPLAY_FLOW_ROOT_ENABLED_PREF_NAME "layout.css.display-flow-root.enabled" #define DISPLAY_CONTENTS_ENABLED_PREF_NAME "layout.css.display-contents.enabled" #define TEXT_ALIGN_UNSAFE_ENABLED_PREF_NAME "layout.css.text-align-unsafe-value.enabled" #define FLOAT_LOGICAL_VALUES_ENABLED_PREF_NAME "layout.css.float-logical-values.enabled" #define BG_CLIP_TEXT_ENABLED_PREF_NAME "layout.css.background-clip-text.enabled" // The time in number of frames that we estimate for a refresh driver // to be quiescent #define DEFAULT_QUIESCENT_FRAMES 2 // The time (milliseconds) we estimate is needed between the end of an // idle time and the next Tick. #define DEFAULT_IDLE_PERIOD_TIME_LIMIT 1.0f #ifdef DEBUG // TODO: remove, see bug 598468. bool nsLayoutUtils::gPreventAssertInCompareTreePosition = false; #endif // DEBUG typedef FrameMetrics::ViewID ViewID; typedef nsStyleTransformMatrix::TransformReferenceBox TransformReferenceBox; /* static */ uint32_t nsLayoutUtils::sFontSizeInflationEmPerLine; /* static */ uint32_t nsLayoutUtils::sFontSizeInflationMinTwips; /* static */ uint32_t nsLayoutUtils::sFontSizeInflationLineThreshold; /* static */ int32_t nsLayoutUtils::sFontSizeInflationMappingIntercept; /* static */ uint32_t nsLayoutUtils::sFontSizeInflationMaxRatio; /* static */ bool nsLayoutUtils::sFontSizeInflationForceEnabled; /* static */ bool nsLayoutUtils::sFontSizeInflationDisabledInMasterProcess; /* static */ bool nsLayoutUtils::sInvalidationDebuggingIsEnabled; /* static */ bool nsLayoutUtils::sCSSVariablesEnabled; /* static */ bool nsLayoutUtils::sInterruptibleReflowEnabled; /* static */ bool nsLayoutUtils::sSVGTransformBoxEnabled; /* static */ bool nsLayoutUtils::sTextCombineUprightDigitsEnabled; #ifdef MOZ_STYLO /* static */ bool nsLayoutUtils::sStyloEnabled; #endif /* static */ uint32_t nsLayoutUtils::sIdlePeriodDeadlineLimit; /* static */ uint32_t nsLayoutUtils::sQuiescentFramesBeforeIdlePeriod; static ViewID sScrollIdCounter = FrameMetrics::START_SCROLL_ID; typedef nsDataHashtable ContentMap; static ContentMap* sContentMap = nullptr; static ContentMap& GetContentMap() { if (!sContentMap) { sContentMap = new ContentMap(); } return *sContentMap; } // When the pref "layout.css.grid.enabled" changes, this function is invoked // to let us update kDisplayKTable, to selectively disable or restore the // entries for "grid" and "inline-grid" in that table. static void GridEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { MOZ_ASSERT(strncmp(aPrefName, GRID_ENABLED_PREF_NAME, ArrayLength(GRID_ENABLED_PREF_NAME)) == 0, "We only registered this callback for a single pref, so it " "should only be called for that pref"); static int32_t sIndexOfGridInDisplayTable; static int32_t sIndexOfInlineGridInDisplayTable; static bool sAreGridKeywordIndicesInitialized; // initialized to false bool isGridEnabled = Preferences::GetBool(GRID_ENABLED_PREF_NAME, false); if (!sAreGridKeywordIndicesInitialized) { // First run: find the position of "grid" and "inline-grid" in // kDisplayKTable. sIndexOfGridInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_grid, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfGridInDisplayTable >= 0, "Couldn't find grid in kDisplayKTable"); sIndexOfInlineGridInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_grid, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfInlineGridInDisplayTable >= 0, "Couldn't find inline-grid in kDisplayKTable"); sAreGridKeywordIndicesInitialized = true; } // OK -- now, stomp on or restore the "grid" entries in kDisplayKTable, // depending on whether the grid pref is enabled vs. disabled. if (sIndexOfGridInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfGridInDisplayTable].mKeyword = isGridEnabled ? eCSSKeyword_grid : eCSSKeyword_UNKNOWN; } if (sIndexOfInlineGridInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfInlineGridInDisplayTable].mKeyword = isGridEnabled ? eCSSKeyword_inline_grid : eCSSKeyword_UNKNOWN; } } // When the pref "layout.css.prefixes.webkit" changes, this function is invoked // to let us update kDisplayKTable, to selectively disable or restore the // entries for "-webkit-box" and "-webkit-inline-box" in that table. static void WebkitPrefixEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { MOZ_ASSERT(strncmp(aPrefName, WEBKIT_PREFIXES_ENABLED_PREF_NAME, ArrayLength(WEBKIT_PREFIXES_ENABLED_PREF_NAME)) == 0, "We only registered this callback for a single pref, so it " "should only be called for that pref"); static int32_t sIndexOfWebkitBoxInDisplayTable; static int32_t sIndexOfWebkitInlineBoxInDisplayTable; static int32_t sIndexOfWebkitFlexInDisplayTable; static int32_t sIndexOfWebkitInlineFlexInDisplayTable; static bool sAreKeywordIndicesInitialized; // initialized to false bool isWebkitPrefixSupportEnabled = Preferences::GetBool(WEBKIT_PREFIXES_ENABLED_PREF_NAME, false); if (!sAreKeywordIndicesInitialized) { // First run: find the position of the keywords in kDisplayKTable. sIndexOfWebkitBoxInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword__webkit_box, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfWebkitBoxInDisplayTable >= 0, "Couldn't find -webkit-box in kDisplayKTable"); sIndexOfWebkitInlineBoxInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword__webkit_inline_box, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfWebkitInlineBoxInDisplayTable >= 0, "Couldn't find -webkit-inline-box in kDisplayKTable"); sIndexOfWebkitFlexInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword__webkit_flex, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfWebkitFlexInDisplayTable >= 0, "Couldn't find -webkit-flex in kDisplayKTable"); sIndexOfWebkitInlineFlexInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword__webkit_inline_flex, nsCSSProps::kDisplayKTable); MOZ_ASSERT(sIndexOfWebkitInlineFlexInDisplayTable >= 0, "Couldn't find -webkit-inline-flex in kDisplayKTable"); sAreKeywordIndicesInitialized = true; } // OK -- now, stomp on or restore the "-webkit-{box|flex}" entries in // kDisplayKTable, depending on whether the webkit prefix pref is enabled // vs. disabled. if (sIndexOfWebkitBoxInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfWebkitBoxInDisplayTable].mKeyword = isWebkitPrefixSupportEnabled ? eCSSKeyword__webkit_box : eCSSKeyword_UNKNOWN; } if (sIndexOfWebkitInlineBoxInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfWebkitInlineBoxInDisplayTable].mKeyword = isWebkitPrefixSupportEnabled ? eCSSKeyword__webkit_inline_box : eCSSKeyword_UNKNOWN; } if (sIndexOfWebkitFlexInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfWebkitFlexInDisplayTable].mKeyword = isWebkitPrefixSupportEnabled ? eCSSKeyword__webkit_flex : eCSSKeyword_UNKNOWN; } if (sIndexOfWebkitInlineFlexInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfWebkitInlineFlexInDisplayTable].mKeyword = isWebkitPrefixSupportEnabled ? eCSSKeyword__webkit_inline_flex : eCSSKeyword_UNKNOWN; } } // When the pref "layout.css.display-flow-root.enabled" changes, this function is // invoked to let us update kDisplayKTable, to selectively disable or restore // the entries for "flow-root" in that table. static void DisplayFlowRootEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { NS_ASSERTION(strcmp(aPrefName, DISPLAY_FLOW_ROOT_ENABLED_PREF_NAME) == 0, "Did you misspell " DISPLAY_FLOW_ROOT_ENABLED_PREF_NAME " ?"); static bool sIsDisplayFlowRootKeywordIndexInitialized; static int32_t sIndexOfFlowRootInDisplayTable; bool isDisplayFlowRootEnabled = Preferences::GetBool(DISPLAY_FLOW_ROOT_ENABLED_PREF_NAME, false); if (!sIsDisplayFlowRootKeywordIndexInitialized) { // First run: find the position of "flow-root" in kDisplayKTable. sIndexOfFlowRootInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_flow_root, nsCSSProps::kDisplayKTable); sIsDisplayFlowRootKeywordIndexInitialized = true; } // OK -- now, stomp on or restore the "flow-root" entry in kDisplayKTable, // depending on whether the pref is enabled vs. disabled. if (sIndexOfFlowRootInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfFlowRootInDisplayTable].mKeyword = isDisplayFlowRootEnabled ? eCSSKeyword_flow_root : eCSSKeyword_UNKNOWN; } } // When the pref "layout.css.display-contents.enabled" changes, this function is // invoked to let us update kDisplayKTable, to selectively disable or restore // the entries for "contents" in that table. static void DisplayContentsEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { NS_ASSERTION(strcmp(aPrefName, DISPLAY_CONTENTS_ENABLED_PREF_NAME) == 0, "Did you misspell " DISPLAY_CONTENTS_ENABLED_PREF_NAME " ?"); static bool sIsDisplayContentsKeywordIndexInitialized; static int32_t sIndexOfContentsInDisplayTable; bool isDisplayContentsEnabled = Preferences::GetBool(DISPLAY_CONTENTS_ENABLED_PREF_NAME, false); if (!sIsDisplayContentsKeywordIndexInitialized) { // First run: find the position of "contents" in kDisplayKTable. sIndexOfContentsInDisplayTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_contents, nsCSSProps::kDisplayKTable); sIsDisplayContentsKeywordIndexInitialized = true; } // OK -- now, stomp on or restore the "contents" entry in kDisplayKTable, // depending on whether the pref is enabled vs. disabled. if (sIndexOfContentsInDisplayTable >= 0) { nsCSSProps::kDisplayKTable[sIndexOfContentsInDisplayTable].mKeyword = isDisplayContentsEnabled ? eCSSKeyword_contents : eCSSKeyword_UNKNOWN; } } // When the pref "layout.css.text-align-unsafe-value.enabled" changes, this // function is called to let us update kTextAlignKTable & kTextAlignLastKTable, // to selectively disable or restore the entries for "unsafe" in those tables. static void TextAlignUnsafeEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { NS_ASSERTION(strcmp(aPrefName, TEXT_ALIGN_UNSAFE_ENABLED_PREF_NAME) == 0, "Did you misspell " TEXT_ALIGN_UNSAFE_ENABLED_PREF_NAME " ?"); static bool sIsInitialized; static int32_t sIndexOfUnsafeInTextAlignTable; static int32_t sIndexOfUnsafeInTextAlignLastTable; bool isTextAlignUnsafeEnabled = Preferences::GetBool(TEXT_ALIGN_UNSAFE_ENABLED_PREF_NAME, false); if (!sIsInitialized) { // First run: find the position of "unsafe" in kTextAlignKTable. sIndexOfUnsafeInTextAlignTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_unsafe, nsCSSProps::kTextAlignKTable); // First run: find the position of "unsafe" in kTextAlignLastKTable. sIndexOfUnsafeInTextAlignLastTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_unsafe, nsCSSProps::kTextAlignLastKTable); sIsInitialized = true; } // OK -- now, stomp on or restore the "unsafe" entry in the keyword tables, // depending on whether the pref is enabled vs. disabled. MOZ_ASSERT(sIndexOfUnsafeInTextAlignTable >= 0); nsCSSProps::kTextAlignKTable[sIndexOfUnsafeInTextAlignTable].mKeyword = isTextAlignUnsafeEnabled ? eCSSKeyword_unsafe : eCSSKeyword_UNKNOWN; MOZ_ASSERT(sIndexOfUnsafeInTextAlignLastTable >= 0); nsCSSProps::kTextAlignLastKTable[sIndexOfUnsafeInTextAlignLastTable].mKeyword = isTextAlignUnsafeEnabled ? eCSSKeyword_unsafe : eCSSKeyword_UNKNOWN; } // When the pref "layout.css.float-logical-values.enabled" changes, this // function is called to let us update kFloatKTable & kClearKTable, // to selectively disable or restore the entries for logical values // (inline-start and inline-end) in those tables. static void FloatLogicalValuesEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { NS_ASSERTION(strcmp(aPrefName, FLOAT_LOGICAL_VALUES_ENABLED_PREF_NAME) == 0, "Did you misspell " FLOAT_LOGICAL_VALUES_ENABLED_PREF_NAME " ?"); static bool sIsInitialized; static int32_t sIndexOfInlineStartInFloatTable; static int32_t sIndexOfInlineEndInFloatTable; static int32_t sIndexOfInlineStartInClearTable; static int32_t sIndexOfInlineEndInClearTable; bool isFloatLogicalValuesEnabled = Preferences::GetBool(FLOAT_LOGICAL_VALUES_ENABLED_PREF_NAME, false); if (!sIsInitialized) { // First run: find the position of "inline-start" in kFloatKTable. sIndexOfInlineStartInFloatTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_start, nsCSSProps::kFloatKTable); // First run: find the position of "inline-end" in kFloatKTable. sIndexOfInlineEndInFloatTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_end, nsCSSProps::kFloatKTable); // First run: find the position of "inline-start" in kClearKTable. sIndexOfInlineStartInClearTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_start, nsCSSProps::kClearKTable); // First run: find the position of "inline-end" in kClearKTable. sIndexOfInlineEndInClearTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_inline_end, nsCSSProps::kClearKTable); sIsInitialized = true; } // OK -- now, stomp on or restore the logical entries in the keyword tables, // depending on whether the pref is enabled vs. disabled. MOZ_ASSERT(sIndexOfInlineStartInFloatTable >= 0); nsCSSProps::kFloatKTable[sIndexOfInlineStartInFloatTable].mKeyword = isFloatLogicalValuesEnabled ? eCSSKeyword_inline_start : eCSSKeyword_UNKNOWN; MOZ_ASSERT(sIndexOfInlineEndInFloatTable >= 0); nsCSSProps::kFloatKTable[sIndexOfInlineEndInFloatTable].mKeyword = isFloatLogicalValuesEnabled ? eCSSKeyword_inline_end : eCSSKeyword_UNKNOWN; MOZ_ASSERT(sIndexOfInlineStartInClearTable >= 0); nsCSSProps::kClearKTable[sIndexOfInlineStartInClearTable].mKeyword = isFloatLogicalValuesEnabled ? eCSSKeyword_inline_start : eCSSKeyword_UNKNOWN; MOZ_ASSERT(sIndexOfInlineEndInClearTable >= 0); nsCSSProps::kClearKTable[sIndexOfInlineEndInClearTable].mKeyword = isFloatLogicalValuesEnabled ? eCSSKeyword_inline_end : eCSSKeyword_UNKNOWN; } // When the pref "layout.css.background-clip-text.enabled" changes, this // function is invoked to let us update kBackgroundClipKTable, to selectively // disable or restore the entries for "text" in that table. static void BackgroundClipTextEnabledPrefChangeCallback(const char* aPrefName, void* aClosure) { NS_ASSERTION(strcmp(aPrefName, BG_CLIP_TEXT_ENABLED_PREF_NAME) == 0, "Did you misspell " BG_CLIP_TEXT_ENABLED_PREF_NAME " ?"); static bool sIsBGClipKeywordIndexInitialized; static int32_t sIndexOfTextInBGClipTable; bool isBGClipTextEnabled = Preferences::GetBool(BG_CLIP_TEXT_ENABLED_PREF_NAME, false); if (!sIsBGClipKeywordIndexInitialized) { // First run: find the position of "text" in kBackgroundClipKTable. sIndexOfTextInBGClipTable = nsCSSProps::FindIndexOfKeyword(eCSSKeyword_text, nsCSSProps::kBackgroundClipKTable); sIsBGClipKeywordIndexInitialized = true; } // OK -- now, stomp on or restore the "text" entry in kBackgroundClipKTable, // depending on whether the pref is enabled vs. disabled. if (sIndexOfTextInBGClipTable >= 0) { nsCSSProps::kBackgroundClipKTable[sIndexOfTextInBGClipTable].mKeyword = isBGClipTextEnabled ? eCSSKeyword_text : eCSSKeyword_UNKNOWN; } } template static bool HasMatchingAnimations(const nsIFrame* aFrame, TestType&& aTest) { EffectSet* effects = EffectSet::GetEffectSet(aFrame); if (!effects) { return false; } for (KeyframeEffectReadOnly* effect : *effects) { if (aTest(*effect)) { return true; } } return false; } bool nsLayoutUtils::HasCurrentTransitions(const nsIFrame* aFrame) { return HasMatchingAnimations(aFrame, [](KeyframeEffectReadOnly& aEffect) { // Since |aEffect| is current, it must have an associated Animation // so we don't need to null-check the result of GetAnimation(). return aEffect.IsCurrent() && aEffect.GetAnimation()->AsCSSTransition(); } ); } bool nsLayoutUtils::HasAnimationOfProperty(const nsIFrame* aFrame, nsCSSPropertyID aProperty) { return HasMatchingAnimations(aFrame, [&aProperty](KeyframeEffectReadOnly& aEffect) { return (aEffect.IsInEffect() || aEffect.IsCurrent()) && aEffect.HasAnimationOfProperty(aProperty); } ); } bool nsLayoutUtils::HasEffectiveAnimation(const nsIFrame* aFrame, nsCSSPropertyID aProperty) { return HasMatchingAnimations(aFrame, [&aProperty](KeyframeEffectReadOnly& aEffect) { return (aEffect.IsInEffect() || aEffect.IsCurrent()) && aEffect.HasEffectiveAnimationOfProperty(aProperty); } ); } static float GetSuitableScale(float aMaxScale, float aMinScale, nscoord aVisibleDimension, nscoord aDisplayDimension) { float displayVisibleRatio = float(aDisplayDimension) / float(aVisibleDimension); // We want to rasterize based on the largest scale used during the // transform animation, unless that would make us rasterize something // larger than the screen. But we never want to go smaller than the // minimum scale over the animation. if (FuzzyEqualsMultiplicative(displayVisibleRatio, aMaxScale, .01f)) { // Using aMaxScale may make us rasterize something a fraction larger than // the screen. However, if aMaxScale happens to be the final scale of a // transform animation it is better to use aMaxScale so that for the // fraction of a second before we delayerize the composited texture it has // a better chance of being pixel aligned and composited without resampling // (avoiding visually clunky delayerization). return aMaxScale; } return std::max(std::min(aMaxScale, displayVisibleRatio), aMinScale); } static void GetMinAndMaxScaleForAnimationProperty(const nsIFrame* aFrame, nsTArray>& aAnimations, gfxSize& aMaxScale, gfxSize& aMinScale) { for (dom::Animation* anim : aAnimations) { // This method is only expected to be passed animations that are running on // the compositor and we only pass playing animations to the compositor, // which are, by definition, "relevant" animations (animations that are // not yet finished or which are filling forwards). MOZ_ASSERT(anim->IsRelevant()); dom::KeyframeEffectReadOnly* effect = anim->GetEffect() ? anim->GetEffect()->AsKeyframeEffect() : nullptr; MOZ_ASSERT(effect, "A playing animation should have a keyframe effect"); for (size_t propIdx = effect->Properties().Length(); propIdx-- != 0; ) { const AnimationProperty& prop = effect->Properties()[propIdx]; if (prop.mProperty == eCSSProperty_transform) { for (uint32_t segIdx = prop.mSegments.Length(); segIdx-- != 0; ) { const AnimationPropertySegment& segment = prop.mSegments[segIdx]; gfxSize from = segment.mFromValue.GetScaleValue(aFrame); aMaxScale.width = std::max(aMaxScale.width, from.width); aMaxScale.height = std::max(aMaxScale.height, from.height); aMinScale.width = std::min(aMinScale.width, from.width); aMinScale.height = std::min(aMinScale.height, from.height); gfxSize to = segment.mToValue.GetScaleValue(aFrame); aMaxScale.width = std::max(aMaxScale.width, to.width); aMaxScale.height = std::max(aMaxScale.height, to.height); aMinScale.width = std::min(aMinScale.width, to.width); aMinScale.height = std::min(aMinScale.height, to.height); } } } } } gfxSize nsLayoutUtils::ComputeSuitableScaleForAnimation(const nsIFrame* aFrame, const nsSize& aVisibleSize, const nsSize& aDisplaySize) { gfxSize maxScale(std::numeric_limits::min(), std::numeric_limits::min()); gfxSize minScale(std::numeric_limits::max(), std::numeric_limits::max()); nsTArray> compositorAnimations = EffectCompositor::GetAnimationsForCompositor(aFrame, eCSSProperty_transform); GetMinAndMaxScaleForAnimationProperty(aFrame, compositorAnimations, maxScale, minScale); if (maxScale.width == std::numeric_limits::min()) { // We didn't encounter a transform return gfxSize(1.0, 1.0); } return gfxSize(GetSuitableScale(maxScale.width, minScale.width, aVisibleSize.width, aDisplaySize.width), GetSuitableScale(maxScale.height, minScale.height, aVisibleSize.height, aDisplaySize.height)); } bool nsLayoutUtils::AreAsyncAnimationsEnabled() { static bool sAreAsyncAnimationsEnabled; static bool sAsyncPrefCached = false; if (!sAsyncPrefCached) { sAsyncPrefCached = true; Preferences::AddBoolVarCache(&sAreAsyncAnimationsEnabled, "layers.offmainthreadcomposition.async-animations"); } return sAreAsyncAnimationsEnabled && gfxPlatform::OffMainThreadCompositingEnabled(); } bool nsLayoutUtils::IsAnimationLoggingEnabled() { static bool sShouldLog; static bool sShouldLogPrefCached; if (!sShouldLogPrefCached) { sShouldLogPrefCached = true; Preferences::AddBoolVarCache(&sShouldLog, "layers.offmainthreadcomposition.log-animations"); } return sShouldLog; } bool nsLayoutUtils::GPUImageScalingEnabled() { static bool sGPUImageScalingEnabled; static bool sGPUImageScalingPrefInitialised = false; if (!sGPUImageScalingPrefInitialised) { sGPUImageScalingPrefInitialised = true; sGPUImageScalingEnabled = Preferences::GetBool("layout.gpu-image-scaling.enabled", false); } return sGPUImageScalingEnabled; } bool nsLayoutUtils::AnimatedImageLayersEnabled() { static bool sAnimatedImageLayersEnabled; static bool sAnimatedImageLayersPrefCached = false; if (!sAnimatedImageLayersPrefCached) { sAnimatedImageLayersPrefCached = true; Preferences::AddBoolVarCache(&sAnimatedImageLayersEnabled, "layout.animated-image-layers.enabled", false); } return sAnimatedImageLayersEnabled; } bool nsLayoutUtils::CSSFiltersEnabled() { static bool sCSSFiltersEnabled; static bool sCSSFiltersPrefCached = false; if (!sCSSFiltersPrefCached) { sCSSFiltersPrefCached = true; Preferences::AddBoolVarCache(&sCSSFiltersEnabled, "layout.css.filters.enabled", false); } return sCSSFiltersEnabled; } bool nsLayoutUtils::CSSClipPathShapesEnabled() { static bool sCSSClipPathShapesEnabled; static bool sCSSClipPathShapesPrefCached = false; if (!sCSSClipPathShapesPrefCached) { sCSSClipPathShapesPrefCached = true; Preferences::AddBoolVarCache(&sCSSClipPathShapesEnabled, "layout.css.clip-path-shapes.enabled", false); } return sCSSClipPathShapesEnabled; } bool nsLayoutUtils::UnsetValueEnabled() { static bool sUnsetValueEnabled; static bool sUnsetValuePrefCached = false; if (!sUnsetValuePrefCached) { sUnsetValuePrefCached = true; Preferences::AddBoolVarCache(&sUnsetValueEnabled, "layout.css.unset-value.enabled", false); } return sUnsetValueEnabled; } bool nsLayoutUtils::IsGridTemplateSubgridValueEnabled() { static bool sGridTemplateSubgridValueEnabled; static bool sGridTemplateSubgridValueEnabledPrefCached = false; if (!sGridTemplateSubgridValueEnabledPrefCached) { sGridTemplateSubgridValueEnabledPrefCached = true; Preferences::AddBoolVarCache(&sGridTemplateSubgridValueEnabled, GRID_TEMPLATE_SUBGRID_ENABLED_PREF_NAME, false); } return sGridTemplateSubgridValueEnabled; } bool nsLayoutUtils::IsTextAlignUnsafeValueEnabled() { static bool sTextAlignUnsafeValueEnabled; static bool sTextAlignUnsafeValueEnabledPrefCached = false; if (!sTextAlignUnsafeValueEnabledPrefCached) { sTextAlignUnsafeValueEnabledPrefCached = true; Preferences::AddBoolVarCache(&sTextAlignUnsafeValueEnabled, TEXT_ALIGN_UNSAFE_ENABLED_PREF_NAME, false); } return sTextAlignUnsafeValueEnabled; } void nsLayoutUtils::UnionChildOverflow(nsIFrame* aFrame, nsOverflowAreas& aOverflowAreas, FrameChildListIDs aSkipChildLists) { // Iterate over all children except pop-ups. FrameChildListIDs skip = aSkipChildLists | nsIFrame::kSelectPopupList | nsIFrame::kPopupList; for (nsIFrame::ChildListIterator childLists(aFrame); !childLists.IsDone(); childLists.Next()) { if (skip.Contains(childLists.CurrentID())) { continue; } nsFrameList children = childLists.CurrentList(); for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next()) { nsIFrame* child = e.get(); nsOverflowAreas childOverflow = child->GetOverflowAreas() + child->GetPosition(); aOverflowAreas.UnionWith(childOverflow); } } } static void DestroyViewID(void* aObject, nsIAtom* aPropertyName, void* aPropertyValue, void* aData) { ViewID* id = static_cast(aPropertyValue); GetContentMap().Remove(*id); delete id; } /** * A namespace class for static layout utilities. */ bool nsLayoutUtils::FindIDFor(const nsIContent* aContent, ViewID* aOutViewId) { void* scrollIdProperty = aContent->GetProperty(nsGkAtoms::RemoteId); if (scrollIdProperty) { *aOutViewId = *static_cast(scrollIdProperty); return true; } return false; } ViewID nsLayoutUtils::FindOrCreateIDFor(nsIContent* aContent) { ViewID scrollId; if (!FindIDFor(aContent, &scrollId)) { scrollId = sScrollIdCounter++; aContent->SetProperty(nsGkAtoms::RemoteId, new ViewID(scrollId), DestroyViewID); GetContentMap().Put(scrollId, aContent); } return scrollId; } nsIContent* nsLayoutUtils::FindContentFor(ViewID aId) { MOZ_ASSERT(aId != FrameMetrics::NULL_SCROLL_ID, "Cannot find a content element in map for null IDs."); nsIContent* content; bool exists = GetContentMap().Get(aId, &content); if (exists) { return content; } else { return nullptr; } } nsIFrame* GetScrollFrameFromContent(nsIContent* aContent) { nsIFrame* frame = aContent->GetPrimaryFrame(); if (aContent->OwnerDoc()->GetRootElement() == aContent) { nsIPresShell* presShell = frame ? frame->PresContext()->PresShell() : nullptr; if (!presShell) { presShell = aContent->OwnerDoc()->GetShell(); } // We want the scroll frame, the root scroll frame differs from all // others in that the primary frame is not the scroll frame. nsIFrame* rootScrollFrame = presShell ? presShell->GetRootScrollFrame() : nullptr; if (rootScrollFrame) { frame = rootScrollFrame; } } return frame; } nsIScrollableFrame* nsLayoutUtils::FindScrollableFrameFor(ViewID aId) { nsIContent* content = FindContentFor(aId); if (!content) { return nullptr; } nsIFrame* scrollFrame = GetScrollFrameFromContent(content); return scrollFrame ? scrollFrame->GetScrollTargetFrame() : nullptr; } static nsRect ApplyRectMultiplier(nsRect aRect, float aMultiplier) { if (aMultiplier == 1.0f) { return aRect; } float newWidth = aRect.width * aMultiplier; float newHeight = aRect.height * aMultiplier; float newX = aRect.x - ((newWidth - aRect.width) / 2.0f); float newY = aRect.y - ((newHeight - aRect.height) / 2.0f); // Rounding doesn't matter too much here, do a round-in return nsRect(ceil(newX), ceil(newY), floor(newWidth), floor(newHeight)); } bool nsLayoutUtils::UsesAsyncScrolling(nsIFrame* aFrame) { return AsyncPanZoomEnabled(aFrame); } bool nsLayoutUtils::AsyncPanZoomEnabled(nsIFrame* aFrame) { // We use this as a shortcut, since if the compositor will never use APZ, // no widget will either. if (!gfxPlatform::AsyncPanZoomEnabled()) { return false; } nsIFrame *frame = nsLayoutUtils::GetDisplayRootFrame(aFrame); nsIWidget* widget = frame->GetNearestWidget(); if (!widget) { return false; } return widget->AsyncPanZoomEnabled(); } float nsLayoutUtils::GetCurrentAPZResolutionScale(nsIPresShell* aShell) { return aShell ? aShell->GetCumulativeNonRootScaleResolution() : 1.0; } // Return the maximum displayport size, based on the LayerManager's maximum // supported texture size. The result is in app units. static nscoord GetMaxDisplayPortSize(nsIContent* aContent) { MOZ_ASSERT(!gfxPrefs::LayersTilesEnabled(), "Do not clamp displayports if tiling is enabled"); nsIFrame* frame = aContent->GetPrimaryFrame(); if (!frame) { return nscoord_MAX; } frame = nsLayoutUtils::GetDisplayRootFrame(frame); nsIWidget* widget = frame->GetNearestWidget(); if (!widget) { return nscoord_MAX; } LayerManager* lm = widget->GetLayerManager(); if (!lm) { return nscoord_MAX; } nsPresContext* presContext = frame->PresContext(); int32_t maxSizeInDevPixels = lm->GetMaxTextureSize(); if (maxSizeInDevPixels < 0 || maxSizeInDevPixels == INT_MAX) { return nscoord_MAX; } return presContext->DevPixelsToAppUnits(maxSizeInDevPixels); } static nsRect GetDisplayPortFromRectData(nsIContent* aContent, DisplayPortPropertyData* aRectData, float aMultiplier) { // In the case where the displayport is set as a rect, we assume it is // already aligned and clamped as necessary. The burden to do that is // on the setter of the displayport. In practice very few places set the // displayport directly as a rect (mostly tests). We still do need to // expand it by the multiplier though. return ApplyRectMultiplier(aRectData->mRect, aMultiplier); } static nsRect GetDisplayPortFromMarginsData(nsIContent* aContent, DisplayPortMarginsPropertyData* aMarginsData, float aMultiplier) { // In the case where the displayport is set via margins, we apply the margins // to a base rect. Then we align the expanded rect based on the alignment // requested, further expand the rect by the multiplier, and finally, clamp it // to the size of the scrollable rect. nsRect base; if (nsRect* baseData = static_cast(aContent->GetProperty(nsGkAtoms::DisplayPortBase))) { base = *baseData; } else { // In theory we shouldn't get here, but we do sometimes (see bug 1212136). // Fall through for graceful handling. } nsIFrame* frame = GetScrollFrameFromContent(aContent); if (!frame) { // Turns out we can't really compute it. Oops. We still should return // something sane. Note that since we can't clamp the rect without a // frame, we don't apply the multiplier either as it can cause the result // to leak outside the scrollable area. NS_WARNING("Attempting to get a displayport from a content with no primary frame!"); return base; } bool isRoot = false; if (aContent->OwnerDoc()->GetRootElement() == aContent) { isRoot = true; } nsPoint scrollPos; if (nsIScrollableFrame* scrollableFrame = frame->GetScrollTargetFrame()) { scrollPos = scrollableFrame->GetScrollPosition(); } nsPresContext* presContext = frame->PresContext(); int32_t auPerDevPixel = presContext->AppUnitsPerDevPixel(); LayoutDeviceToScreenScale2D res(presContext->PresShell()->GetCumulativeResolution() * nsLayoutUtils::GetTransformToAncestorScale(frame)); // Calculate the expanded scrollable rect, which we'll be clamping the // displayport to. nsRect expandedScrollableRect = nsLayoutUtils::CalculateExpandedScrollableRect(frame); // GetTransformToAncestorScale() can return 0. In this case, just return the // base rect (clamped to the expanded scrollable rect), as other calculations // would run into divisions by zero. if (res == LayoutDeviceToScreenScale2D(0, 0)) { // Make sure the displayport remains within the scrollable rect. return base.MoveInsideAndClamp(expandedScrollableRect - scrollPos); } // First convert the base rect to screen pixels LayoutDeviceToScreenScale2D parentRes = res; if (isRoot) { // the base rect for root scroll frames is specified in the parent document // coordinate space, so it doesn't include the local resolution. float localRes = presContext->PresShell()->GetResolution(); parentRes.xScale /= localRes; parentRes.yScale /= localRes; } ScreenRect screenRect = LayoutDeviceRect::FromAppUnits(base, auPerDevPixel) * parentRes; // Note on the correctness of applying the alignment in Screen space: // The correct space to apply the alignment in would be Layer space, but // we don't necessarily know the scale to convert to Layer space at this // point because Layout may not yet have chosen the resolution at which to // render (it chooses that in FrameLayerBuilder, but this can be called // during display list building). Therefore, we perform the alignment in // Screen space, which basically assumes that Layout chose to render at // screen resolution; since this is what Layout does most of the time, // this is a good approximation. A proper solution would involve moving // the choosing of the resolution to display-list building time. ScreenSize alignment; if (APZCCallbackHelper::IsDisplayportSuppressed()) { alignment = ScreenSize(1, 1); } else if (gfxPrefs::LayersTilesEnabled()) { // Don't align to tiles if they are too large, because we could expand // the displayport by a lot which can take more paint time. It's a tradeoff // though because if we don't align to tiles we have more waste on upload. IntSize tileSize = gfxVars::TileSize(); alignment = ScreenSize(std::min(256, tileSize.width), std::min(256, tileSize.height)); } else { // If we're not drawing with tiles then we need to be careful about not // hitting the max texture size and we only need 1 draw call per layer // so we can align to a smaller multiple. alignment = ScreenSize(128, 128); } // Avoid division by zero. if (alignment.width == 0) { alignment.width = 128; } if (alignment.height == 0) { alignment.height = 128; } if (gfxPrefs::LayersTilesEnabled()) { // Expand the rect by the margins screenRect.Inflate(aMarginsData->mMargins); } else { // Calculate the displayport to make sure we fit within the max texture size // when not tiling. nscoord maxSizeAppUnits = GetMaxDisplayPortSize(aContent); if (maxSizeAppUnits == nscoord_MAX) { // Pick a safe maximum displayport size for sanity purposes. This is the // lowest maximum texture size on tileless-platforms (Windows, D3D10). maxSizeAppUnits = presContext->DevPixelsToAppUnits(8192); } // The alignment code can round up to 3 tiles, we want to make sure // that the displayport can grow by up to 3 tiles without going // over the max texture size. const int MAX_ALIGN_ROUNDING = 3; // Find the maximum size in screen pixels. int32_t maxSizeDevPx = presContext->AppUnitsToDevPixels(maxSizeAppUnits); int32_t maxWidthScreenPx = floor(double(maxSizeDevPx) * res.xScale) - MAX_ALIGN_ROUNDING * alignment.width; int32_t maxHeightScreenPx = floor(double(maxSizeDevPx) * res.yScale) - MAX_ALIGN_ROUNDING * alignment.height; // For each axis, inflate the margins up to the maximum size. const ScreenMargin& margins = aMarginsData->mMargins; if (screenRect.height < maxHeightScreenPx) { int32_t budget = maxHeightScreenPx - screenRect.height; // Scale the margins down to fit into the budget if necessary, maintaining // their relative ratio. float scale = std::min(1.0f, float(budget) / margins.TopBottom()); float top = margins.top * scale; float bottom = margins.bottom * scale; screenRect.y -= top; screenRect.height += top + bottom; } if (screenRect.width < maxWidthScreenPx) { int32_t budget = maxWidthScreenPx - screenRect.width; float scale = std::min(1.0f, float(budget) / margins.LeftRight()); float left = margins.left * scale; float right = margins.right * scale; screenRect.x -= left; screenRect.width += left + right; } } ScreenPoint scrollPosScreen = LayoutDevicePoint::FromAppUnits(scrollPos, auPerDevPixel) * res; // Round-out the display port to the nearest alignment (tiles) screenRect += scrollPosScreen; float x = alignment.width * floor(screenRect.x / alignment.width); float y = alignment.height * floor(screenRect.y / alignment.height); float w = alignment.width * ceil(screenRect.width / alignment.width + 1); float h = alignment.height * ceil(screenRect.height / alignment.height + 1); screenRect = ScreenRect(x, y, w, h); screenRect -= scrollPosScreen; // Convert the aligned rect back into app units. nsRect result = LayoutDeviceRect::ToAppUnits(screenRect / res, auPerDevPixel); // If we have non-zero margins, expand the displayport for the low-res buffer // if that's what we're drawing. If we have zero margins, we want the // displayport to reflect the scrollport. if (aMarginsData->mMargins != ScreenMargin()) { result = ApplyRectMultiplier(result, aMultiplier); } // Make sure the displayport remains within the scrollable rect. result = result.MoveInsideAndClamp(expandedScrollableRect - scrollPos); return result; } static bool ShouldDisableApzForElement(nsIContent* aContent) { if (gfxPrefs::APZDisableForScrollLinkedEffects() && aContent) { nsIDocument* doc = aContent->GetComposedDoc(); return (doc && doc->HasScrollLinkedEffect()); } return false; } static bool GetDisplayPortImpl(nsIContent* aContent, nsRect *aResult, float aMultiplier) { DisplayPortPropertyData* rectData = static_cast(aContent->GetProperty(nsGkAtoms::DisplayPort)); DisplayPortMarginsPropertyData* marginsData = static_cast(aContent->GetProperty(nsGkAtoms::DisplayPortMargins)); if (!rectData && !marginsData) { // This content element has no displayport data at all return false; } if (!aResult) { // We have displayport data, but the caller doesn't want the actual // rect, so we don't need to actually compute it. return true; } if (rectData && marginsData) { // choose margins if equal priority if (rectData->mPriority > marginsData->mPriority) { marginsData = nullptr; } else { rectData = nullptr; } } NS_ASSERTION((rectData == nullptr) != (marginsData == nullptr), "Only one of rectData or marginsData should be set!"); nsRect result; if (rectData) { result = GetDisplayPortFromRectData(aContent, rectData, aMultiplier); } else if (APZCCallbackHelper::IsDisplayportSuppressed() || ShouldDisableApzForElement(aContent)) { DisplayPortMarginsPropertyData noMargins(ScreenMargin(), 1); result = GetDisplayPortFromMarginsData(aContent, &noMargins, aMultiplier); } else { result = GetDisplayPortFromMarginsData(aContent, marginsData, aMultiplier); } if (!gfxPrefs::LayersTilesEnabled()) { // Either we should have gotten a valid rect directly from the displayport // base, or we should have computed a valid rect from the margins. NS_ASSERTION(result.width <= GetMaxDisplayPortSize(aContent), "Displayport must be a valid texture size"); NS_ASSERTION(result.height <= GetMaxDisplayPortSize(aContent), "Displayport must be a valid texture size"); } *aResult = result; return true; } void TranslateFromScrollPortToScrollFrame(nsIContent* aContent, nsRect* aRect) { MOZ_ASSERT(aRect); nsIFrame* frame = GetScrollFrameFromContent(aContent); nsIScrollableFrame* scrollableFrame = frame ? frame->GetScrollTargetFrame() : nullptr; if (scrollableFrame) { *aRect += scrollableFrame->GetScrollPortRect().TopLeft(); } } bool nsLayoutUtils::GetDisplayPort(nsIContent* aContent, nsRect *aResult, RelativeTo aRelativeTo /* = RelativeTo::ScrollPort */) { float multiplier = gfxPrefs::UseLowPrecisionBuffer() ? 1.0f / gfxPrefs::LowPrecisionResolution() : 1.0f; bool usingDisplayPort = GetDisplayPortImpl(aContent, aResult, multiplier); if (aResult && usingDisplayPort && aRelativeTo == RelativeTo::ScrollFrame) { TranslateFromScrollPortToScrollFrame(aContent, aResult); } return usingDisplayPort; } bool nsLayoutUtils::HasDisplayPort(nsIContent* aContent) { return GetDisplayPort(aContent, nullptr); } /* static */ bool nsLayoutUtils::GetDisplayPortForVisibilityTesting( nsIContent* aContent, nsRect* aResult, RelativeTo aRelativeTo /* = RelativeTo::ScrollPort */) { MOZ_ASSERT(aResult); bool usingDisplayPort = GetDisplayPortImpl(aContent, aResult, 1.0f); if (usingDisplayPort && aRelativeTo == RelativeTo::ScrollFrame) { TranslateFromScrollPortToScrollFrame(aContent, aResult); } return usingDisplayPort; } bool nsLayoutUtils::SetDisplayPortMargins(nsIContent* aContent, nsIPresShell* aPresShell, const ScreenMargin& aMargins, uint32_t aPriority, RepaintMode aRepaintMode) { MOZ_ASSERT(aContent); MOZ_ASSERT(aContent->GetComposedDoc() == aPresShell->GetDocument()); DisplayPortMarginsPropertyData* currentData = static_cast(aContent->GetProperty(nsGkAtoms::DisplayPortMargins)); if (currentData && currentData->mPriority > aPriority) { return false; } nsRect oldDisplayPort; bool hadDisplayPort = GetHighResolutionDisplayPort(aContent, &oldDisplayPort); aContent->SetProperty(nsGkAtoms::DisplayPortMargins, new DisplayPortMarginsPropertyData( aMargins, aPriority), nsINode::DeleteProperty); nsRect newDisplayPort; DebugOnly hasDisplayPort = GetHighResolutionDisplayPort(aContent, &newDisplayPort); MOZ_ASSERT(hasDisplayPort); bool changed = !hadDisplayPort || !oldDisplayPort.IsEqualEdges(newDisplayPort); if (gfxPrefs::LayoutUseContainersForRootFrames()) { nsIFrame* rootScrollFrame = aPresShell->GetRootScrollFrame(); if (rootScrollFrame && aContent == rootScrollFrame->GetContent() && nsLayoutUtils::UsesAsyncScrolling(rootScrollFrame)) { // We are setting a root displayport for a document. // If we have APZ, then set a special flag on the pres shell so // that we don't get scrollbars drawn. aPresShell->SetIgnoreViewportScrolling(true); } } if (changed && aRepaintMode == RepaintMode::Repaint) { nsIFrame* frame = aContent->GetPrimaryFrame(); if (frame) { frame->SchedulePaint(); } } nsIFrame* frame = GetScrollFrameFromContent(aContent); nsIScrollableFrame* scrollableFrame = frame ? frame->GetScrollTargetFrame() : nullptr; if (!scrollableFrame) { return true; } scrollableFrame->TriggerDisplayPortExpiration(); // Display port margins changing means that the set of visible frames may // have drastically changed. Check if we should schedule an update. hadDisplayPort = scrollableFrame->GetDisplayPortAtLastApproximateFrameVisibilityUpdate(&oldDisplayPort); bool needVisibilityUpdate = !hadDisplayPort; // Check if the total size has changed by a large factor. if (!needVisibilityUpdate) { if ((newDisplayPort.width > 2 * oldDisplayPort.width) || (oldDisplayPort.width > 2 * newDisplayPort.width) || (newDisplayPort.height > 2 * oldDisplayPort.height) || (oldDisplayPort.height > 2 * newDisplayPort.height)) { needVisibilityUpdate = true; } } // Check if it's moved by a significant amount. if (!needVisibilityUpdate) { if (nsRect* baseData = static_cast(aContent->GetProperty(nsGkAtoms::DisplayPortBase))) { nsRect base = *baseData; if ((std::abs(newDisplayPort.X() - oldDisplayPort.X()) > base.width) || (std::abs(newDisplayPort.XMost() - oldDisplayPort.XMost()) > base.width) || (std::abs(newDisplayPort.Y() - oldDisplayPort.Y()) > base.height) || (std::abs(newDisplayPort.YMost() - oldDisplayPort.YMost()) > base.height)) { needVisibilityUpdate = true; } } } if (needVisibilityUpdate) { aPresShell->ScheduleApproximateFrameVisibilityUpdateNow(); } return true; } void nsLayoutUtils::SetDisplayPortBase(nsIContent* aContent, const nsRect& aBase) { aContent->SetProperty(nsGkAtoms::DisplayPortBase, new nsRect(aBase), nsINode::DeleteProperty); } void nsLayoutUtils::SetDisplayPortBaseIfNotSet(nsIContent* aContent, const nsRect& aBase) { if (!aContent->GetProperty(nsGkAtoms::DisplayPortBase)) { SetDisplayPortBase(aContent, aBase); } } bool nsLayoutUtils::GetCriticalDisplayPort(nsIContent* aContent, nsRect* aResult) { if (gfxPrefs::UseLowPrecisionBuffer()) { return GetDisplayPortImpl(aContent, aResult, 1.0f); } return false; } bool nsLayoutUtils::HasCriticalDisplayPort(nsIContent* aContent) { return GetCriticalDisplayPort(aContent, nullptr); } bool nsLayoutUtils::GetHighResolutionDisplayPort(nsIContent* aContent, nsRect* aResult) { if (gfxPrefs::UseLowPrecisionBuffer()) { return GetCriticalDisplayPort(aContent, aResult); } return GetDisplayPort(aContent, aResult); } void nsLayoutUtils::RemoveDisplayPort(nsIContent* aContent) { aContent->DeleteProperty(nsGkAtoms::DisplayPort); aContent->DeleteProperty(nsGkAtoms::DisplayPortMargins); } nsContainerFrame* nsLayoutUtils::LastContinuationWithChild(nsContainerFrame* aFrame) { NS_PRECONDITION(aFrame, "NULL frame pointer"); nsIFrame* f = aFrame->LastContinuation(); while (!f->PrincipalChildList().FirstChild() && f->GetPrevContinuation()) { f = f->GetPrevContinuation(); } return static_cast(f); } //static FrameChildListID nsLayoutUtils::GetChildListNameFor(nsIFrame* aChildFrame) { nsIFrame::ChildListID id = nsIFrame::kPrincipalList; if (aChildFrame->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) { nsIFrame* pif = aChildFrame->GetPrevInFlow(); if (pif->GetParent() == aChildFrame->GetParent()) { id = nsIFrame::kExcessOverflowContainersList; } else { id = nsIFrame::kOverflowContainersList; } } // See if the frame is moved out of the flow else if (aChildFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) { // Look at the style information to tell const nsStyleDisplay* disp = aChildFrame->StyleDisplay(); if (NS_STYLE_POSITION_ABSOLUTE == disp->mPosition) { id = nsIFrame::kAbsoluteList; } else if (NS_STYLE_POSITION_FIXED == disp->mPosition) { if (nsLayoutUtils::IsReallyFixedPos(aChildFrame)) { id = nsIFrame::kFixedList; } else { id = nsIFrame::kAbsoluteList; } } else if (StyleDisplay::Popup == disp->mDisplay) { // Out-of-flows that are DISPLAY_POPUP must be kids of the root popup set #ifdef DEBUG nsIFrame* parent = aChildFrame->GetParent(); NS_ASSERTION(parent && parent->GetType() == nsGkAtoms::popupSetFrame, "Unexpected parent"); #endif // DEBUG id = nsIFrame::kPopupList; } else { NS_ASSERTION(aChildFrame->IsFloating(), "not a floated frame"); id = nsIFrame::kFloatList; } } else { nsIAtom* childType = aChildFrame->GetType(); if (nsGkAtoms::menuPopupFrame == childType) { nsIFrame* parent = aChildFrame->GetParent(); MOZ_ASSERT(parent, "nsMenuPopupFrame can't be the root frame"); if (parent) { if (parent->GetType() == nsGkAtoms::popupSetFrame) { id = nsIFrame::kPopupList; } else { nsIFrame* firstPopup = parent->GetChildList(nsIFrame::kPopupList).FirstChild(); MOZ_ASSERT(!firstPopup || !firstPopup->GetNextSibling(), "We assume popupList only has one child, but it has more."); id = firstPopup == aChildFrame ? nsIFrame::kPopupList : nsIFrame::kPrincipalList; } } else { id = nsIFrame::kPrincipalList; } } else if (nsGkAtoms::tableColGroupFrame == childType) { id = nsIFrame::kColGroupList; } else if (aChildFrame->IsTableCaption()) { id = nsIFrame::kCaptionList; } else { id = nsIFrame::kPrincipalList; } } #ifdef DEBUG // Verify that the frame is actually in that child list or in the // corresponding overflow list. nsContainerFrame* parent = aChildFrame->GetParent(); bool found = parent->GetChildList(id).ContainsFrame(aChildFrame); if (!found) { if (!(aChildFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW)) { found = parent->GetChildList(nsIFrame::kOverflowList) .ContainsFrame(aChildFrame); } else if (aChildFrame->IsFloating()) { found = parent->GetChildList(nsIFrame::kOverflowOutOfFlowList) .ContainsFrame(aChildFrame); if (!found) { found = parent->GetChildList(nsIFrame::kPushedFloatsList) .ContainsFrame(aChildFrame); } } // else it's positioned and should have been on the 'id' child list. NS_POSTCONDITION(found, "not in child list"); } #endif return id; } static Element* GetPseudo(const nsIContent* aContent, nsIAtom* aPseudoProperty) { MOZ_ASSERT(aPseudoProperty == nsGkAtoms::beforePseudoProperty || aPseudoProperty == nsGkAtoms::afterPseudoProperty); return static_cast(aContent->GetProperty(aPseudoProperty)); } /*static*/ Element* nsLayoutUtils::GetBeforePseudo(const nsIContent* aContent) { return GetPseudo(aContent, nsGkAtoms::beforePseudoProperty); } /*static*/ nsIFrame* nsLayoutUtils::GetBeforeFrame(const nsIContent* aContent) { Element* pseudo = GetBeforePseudo(aContent); return pseudo ? pseudo->GetPrimaryFrame() : nullptr; } /*static*/ Element* nsLayoutUtils::GetAfterPseudo(const nsIContent* aContent) { return GetPseudo(aContent, nsGkAtoms::afterPseudoProperty); } /*static*/ nsIFrame* nsLayoutUtils::GetAfterFrame(const nsIContent* aContent) { Element* pseudo = GetAfterPseudo(aContent); return pseudo ? pseudo->GetPrimaryFrame() : nullptr; } // static nsIFrame* nsLayoutUtils::GetClosestFrameOfType(nsIFrame* aFrame, nsIAtom* aFrameType, nsIFrame* aStopAt) { for (nsIFrame* frame = aFrame; frame; frame = frame->GetParent()) { if (frame->GetType() == aFrameType) { return frame; } if (frame == aStopAt) { break; } } return nullptr; } // static nsIFrame* nsLayoutUtils::GetStyleFrame(nsIFrame* aFrame) { if (aFrame->GetType() == nsGkAtoms::tableWrapperFrame) { nsIFrame* inner = aFrame->PrincipalChildList().FirstChild(); // inner may be null, if aFrame is mid-destruction return inner; } return aFrame; } nsIFrame* nsLayoutUtils::GetStyleFrame(const nsIContent* aContent) { nsIFrame *frame = aContent->GetPrimaryFrame(); if (!frame) { return nullptr; } return nsLayoutUtils::GetStyleFrame(frame); } /* static */ nsIFrame* nsLayoutUtils::GetRealPrimaryFrameFor(const nsIContent* aContent) { nsIFrame *frame = aContent->GetPrimaryFrame(); if (!frame) { return nullptr; } return nsPlaceholderFrame::GetRealFrameFor(frame); } nsIFrame* nsLayoutUtils::GetFloatFromPlaceholder(nsIFrame* aFrame) { NS_ASSERTION(nsGkAtoms::placeholderFrame == aFrame->GetType(), "Must have a placeholder here"); if (aFrame->GetStateBits() & PLACEHOLDER_FOR_FLOAT) { nsIFrame *outOfFlowFrame = nsPlaceholderFrame::GetRealFrameForPlaceholder(aFrame); NS_ASSERTION(outOfFlowFrame->IsFloating(), "How did that happen?"); return outOfFlowFrame; } return nullptr; } // static nsIFrame* nsLayoutUtils::GetCrossDocParentFrame(const nsIFrame* aFrame, nsPoint* aExtraOffset) { nsIFrame* p = aFrame->GetParent(); if (p) return p; nsView* v = aFrame->GetView(); if (!v) return nullptr; v = v->GetParent(); // anonymous inner view if (!v) return nullptr; if (aExtraOffset) { *aExtraOffset += v->GetPosition(); } v = v->GetParent(); // subdocumentframe's view return v ? v->GetFrame() : nullptr; } // static bool nsLayoutUtils::IsProperAncestorFrameCrossDoc(nsIFrame* aAncestorFrame, nsIFrame* aFrame, nsIFrame* aCommonAncestor) { if (aFrame == aAncestorFrame) return false; return IsAncestorFrameCrossDoc(aAncestorFrame, aFrame, aCommonAncestor); } // static bool nsLayoutUtils::IsAncestorFrameCrossDoc(const nsIFrame* aAncestorFrame, const nsIFrame* aFrame, const nsIFrame* aCommonAncestor) { for (const nsIFrame* f = aFrame; f != aCommonAncestor; f = GetCrossDocParentFrame(f)) { if (f == aAncestorFrame) return true; } return aCommonAncestor == aAncestorFrame; } // static bool nsLayoutUtils::IsProperAncestorFrame(nsIFrame* aAncestorFrame, nsIFrame* aFrame, nsIFrame* aCommonAncestor) { if (aFrame == aAncestorFrame) return false; for (nsIFrame* f = aFrame; f != aCommonAncestor; f = f->GetParent()) { if (f == aAncestorFrame) return true; } return aCommonAncestor == aAncestorFrame; } // static int32_t nsLayoutUtils::DoCompareTreePosition(nsIContent* aContent1, nsIContent* aContent2, int32_t aIf1Ancestor, int32_t aIf2Ancestor, const nsIContent* aCommonAncestor) { NS_PRECONDITION(aContent1, "aContent1 must not be null"); NS_PRECONDITION(aContent2, "aContent2 must not be null"); AutoTArray content1Ancestors; nsINode* c1; for (c1 = aContent1; c1 && c1 != aCommonAncestor; c1 = c1->GetParentNode()) { content1Ancestors.AppendElement(c1); } if (!c1 && aCommonAncestor) { // So, it turns out aCommonAncestor was not an ancestor of c1. Oops. // Never mind. We can continue as if aCommonAncestor was null. aCommonAncestor = nullptr; } AutoTArray content2Ancestors; nsINode* c2; for (c2 = aContent2; c2 && c2 != aCommonAncestor; c2 = c2->GetParentNode()) { content2Ancestors.AppendElement(c2); } if (!c2 && aCommonAncestor) { // So, it turns out aCommonAncestor was not an ancestor of c2. // We need to retry with no common ancestor hint. return DoCompareTreePosition(aContent1, aContent2, aIf1Ancestor, aIf2Ancestor, nullptr); } int last1 = content1Ancestors.Length() - 1; int last2 = content2Ancestors.Length() - 1; nsINode* content1Ancestor = nullptr; nsINode* content2Ancestor = nullptr; while (last1 >= 0 && last2 >= 0 && ((content1Ancestor = content1Ancestors.ElementAt(last1)) == (content2Ancestor = content2Ancestors.ElementAt(last2)))) { last1--; last2--; } if (last1 < 0) { if (last2 < 0) { NS_ASSERTION(aContent1 == aContent2, "internal error?"); return 0; } // aContent1 is an ancestor of aContent2 return aIf1Ancestor; } if (last2 < 0) { // aContent2 is an ancestor of aContent1 return aIf2Ancestor; } // content1Ancestor != content2Ancestor, so they must be siblings with the same parent nsINode* parent = content1Ancestor->GetParentNode(); #ifdef DEBUG // TODO: remove the uglyness, see bug 598468. NS_ASSERTION(gPreventAssertInCompareTreePosition || parent, "no common ancestor at all???"); #endif // DEBUG if (!parent) { // different documents?? return 0; } int32_t index1 = parent->IndexOf(content1Ancestor); int32_t index2 = parent->IndexOf(content2Ancestor); if (index1 < 0 || index2 < 0) { // one of them must be anonymous; we can't determine the order return 0; } return index1 - index2; } // static nsIFrame* nsLayoutUtils::FillAncestors(nsIFrame* aFrame, nsIFrame* aStopAtAncestor, nsTArray* aAncestors) { while (aFrame && aFrame != aStopAtAncestor) { aAncestors->AppendElement(aFrame); aFrame = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame); } return aFrame; } // Return true if aFrame1 is after aFrame2 static bool IsFrameAfter(nsIFrame* aFrame1, nsIFrame* aFrame2) { nsIFrame* f = aFrame2; do { f = f->GetNextSibling(); if (f == aFrame1) return true; } while (f); return false; } // static int32_t nsLayoutUtils::DoCompareTreePosition(nsIFrame* aFrame1, nsIFrame* aFrame2, int32_t aIf1Ancestor, int32_t aIf2Ancestor, nsIFrame* aCommonAncestor) { NS_PRECONDITION(aFrame1, "aFrame1 must not be null"); NS_PRECONDITION(aFrame2, "aFrame2 must not be null"); AutoTArray frame2Ancestors; nsIFrame* nonCommonAncestor = FillAncestors(aFrame2, aCommonAncestor, &frame2Ancestors); return DoCompareTreePosition(aFrame1, aFrame2, frame2Ancestors, aIf1Ancestor, aIf2Ancestor, nonCommonAncestor ? aCommonAncestor : nullptr); } // static int32_t nsLayoutUtils::DoCompareTreePosition(nsIFrame* aFrame1, nsIFrame* aFrame2, nsTArray& aFrame2Ancestors, int32_t aIf1Ancestor, int32_t aIf2Ancestor, nsIFrame* aCommonAncestor) { NS_PRECONDITION(aFrame1, "aFrame1 must not be null"); NS_PRECONDITION(aFrame2, "aFrame2 must not be null"); nsPresContext* presContext = aFrame1->PresContext(); if (presContext != aFrame2->PresContext()) { NS_ERROR("no common ancestor at all, different documents"); return 0; } AutoTArray frame1Ancestors; if (aCommonAncestor && !FillAncestors(aFrame1, aCommonAncestor, &frame1Ancestors)) { // We reached the root of the frame tree ... if aCommonAncestor was set, // it is wrong return DoCompareTreePosition(aFrame1, aFrame2, aIf1Ancestor, aIf2Ancestor, nullptr); } int32_t last1 = int32_t(frame1Ancestors.Length()) - 1; int32_t last2 = int32_t(aFrame2Ancestors.Length()) - 1; while (last1 >= 0 && last2 >= 0 && frame1Ancestors[last1] == aFrame2Ancestors[last2]) { last1--; last2--; } if (last1 < 0) { if (last2 < 0) { NS_ASSERTION(aFrame1 == aFrame2, "internal error?"); return 0; } // aFrame1 is an ancestor of aFrame2 return aIf1Ancestor; } if (last2 < 0) { // aFrame2 is an ancestor of aFrame1 return aIf2Ancestor; } nsIFrame* ancestor1 = frame1Ancestors[last1]; nsIFrame* ancestor2 = aFrame2Ancestors[last2]; // Now we should be able to walk sibling chains to find which one is first if (IsFrameAfter(ancestor2, ancestor1)) return -1; if (IsFrameAfter(ancestor1, ancestor2)) return 1; NS_WARNING("Frames were in different child lists???"); return 0; } // static nsIFrame* nsLayoutUtils::GetLastSibling(nsIFrame* aFrame) { if (!aFrame) { return nullptr; } nsIFrame* next; while ((next = aFrame->GetNextSibling()) != nullptr) { aFrame = next; } return aFrame; } // static nsView* nsLayoutUtils::FindSiblingViewFor(nsView* aParentView, nsIFrame* aFrame) { nsIFrame* parentViewFrame = aParentView->GetFrame(); nsIContent* parentViewContent = parentViewFrame ? parentViewFrame->GetContent() : nullptr; for (nsView* insertBefore = aParentView->GetFirstChild(); insertBefore; insertBefore = insertBefore->GetNextSibling()) { nsIFrame* f = insertBefore->GetFrame(); if (!f) { // this view could be some anonymous view attached to a meaningful parent for (nsView* searchView = insertBefore->GetParent(); searchView; searchView = searchView->GetParent()) { f = searchView->GetFrame(); if (f) { break; } } NS_ASSERTION(f, "Can't find a frame anywhere!"); } if (!f || !aFrame->GetContent() || !f->GetContent() || CompareTreePosition(aFrame->GetContent(), f->GetContent(), parentViewContent) > 0) { // aFrame's content is after f's content (or we just don't know), // so put our view before f's view return insertBefore; } } return nullptr; } //static nsIScrollableFrame* nsLayoutUtils::GetScrollableFrameFor(const nsIFrame *aScrolledFrame) { nsIFrame *frame = aScrolledFrame->GetParent(); nsIScrollableFrame *sf = do_QueryFrame(frame); return (sf && sf->GetScrolledFrame() == aScrolledFrame) ? sf : nullptr; } /* static */ void nsLayoutUtils::SetFixedPositionLayerData(Layer* aLayer, const nsIFrame* aViewportFrame, const nsRect& aAnchorRect, const nsIFrame* aFixedPosFrame, nsPresContext* aPresContext, const ContainerLayerParameters& aContainerParameters) { // Find out the rect of the viewport frame relative to the reference frame. // This, in conjunction with the container scale, will correspond to the // coordinate-space of the built layer. float factor = aPresContext->AppUnitsPerDevPixel(); Rect anchorRect(NSAppUnitsToFloatPixels(aAnchorRect.x, factor) * aContainerParameters.mXScale, NSAppUnitsToFloatPixels(aAnchorRect.y, factor) * aContainerParameters.mYScale, NSAppUnitsToFloatPixels(aAnchorRect.width, factor) * aContainerParameters.mXScale, NSAppUnitsToFloatPixels(aAnchorRect.height, factor) * aContainerParameters.mYScale); // Need to transform anchorRect from the container layer's coordinate system // into aLayer's coordinate system. Matrix transform2d; if (aLayer->GetTransform().Is2D(&transform2d)) { transform2d.Invert(); anchorRect = transform2d.TransformBounds(anchorRect); } else { NS_ERROR("3D transform found between fixedpos content and its viewport (should never happen)"); anchorRect = Rect(0,0,0,0); } // Work out the anchor point for this fixed position layer. We assume that // any positioning set (left/top/right/bottom) indicates that the // corresponding side of its container should be the anchor point, // defaulting to top-left. LayerPoint anchor(anchorRect.x, anchorRect.y); int32_t sides = eSideBitsNone; if (aFixedPosFrame != aViewportFrame) { const nsStylePosition* position = aFixedPosFrame->StylePosition(); if (position->mOffset.GetRightUnit() != eStyleUnit_Auto) { sides |= eSideBitsRight; if (position->mOffset.GetLeftUnit() != eStyleUnit_Auto) { sides |= eSideBitsLeft; anchor.x = anchorRect.x + anchorRect.width / 2.f; } else { anchor.x = anchorRect.XMost(); } } if (position->mOffset.GetBottomUnit() != eStyleUnit_Auto) { sides |= eSideBitsBottom; if (position->mOffset.GetTopUnit() != eStyleUnit_Auto) { sides |= eSideBitsTop; anchor.y = anchorRect.y + anchorRect.height / 2.f; } else { anchor.y = anchorRect.YMost(); } } } ViewID id = FrameMetrics::NULL_SCROLL_ID; if (nsIFrame* rootScrollFrame = aPresContext->PresShell()->GetRootScrollFrame()) { if (nsIContent* content = rootScrollFrame->GetContent()) { id = FindOrCreateIDFor(content); } } aLayer->SetFixedPositionData(id, anchor, sides); } bool nsLayoutUtils::ViewportHasDisplayPort(nsPresContext* aPresContext) { nsIFrame* rootScrollFrame = aPresContext->PresShell()->GetRootScrollFrame(); return rootScrollFrame && nsLayoutUtils::HasDisplayPort(rootScrollFrame->GetContent()); } bool nsLayoutUtils::IsFixedPosFrameInDisplayPort(const nsIFrame* aFrame) { // Fixed-pos frames are parented by the viewport frame or the page content frame. // We'll assume that printing/print preview don't have displayports for their // pages! nsIFrame* parent = aFrame->GetParent(); if (!parent || parent->GetParent() || aFrame->StyleDisplay()->mPosition != NS_STYLE_POSITION_FIXED) { return false; } return ViewportHasDisplayPort(aFrame->PresContext()); } NS_DECLARE_FRAME_PROPERTY_SMALL_VALUE(ScrollbarThumbLayerized, bool) /* static */ void nsLayoutUtils::SetScrollbarThumbLayerization(nsIFrame* aThumbFrame, bool aLayerize) { aThumbFrame->SetProperty(ScrollbarThumbLayerized(), aLayerize); } bool nsLayoutUtils::IsScrollbarThumbLayerized(nsIFrame* aThumbFrame) { return aThumbFrame->GetProperty(ScrollbarThumbLayerized()); } // static nsIScrollableFrame* nsLayoutUtils::GetNearestScrollableFrameForDirection(nsIFrame* aFrame, Direction aDirection) { NS_ASSERTION(aFrame, "GetNearestScrollableFrameForDirection expects a non-null frame"); for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { nsIScrollableFrame* scrollableFrame = do_QueryFrame(f); if (scrollableFrame) { ScrollStyles ss = scrollableFrame->GetScrollStyles(); uint32_t directions = scrollableFrame->GetPerceivedScrollingDirections(); if (aDirection == eVertical ? (ss.mVertical != NS_STYLE_OVERFLOW_HIDDEN && (directions & nsIScrollableFrame::VERTICAL)) : (ss.mHorizontal != NS_STYLE_OVERFLOW_HIDDEN && (directions & nsIScrollableFrame::HORIZONTAL))) return scrollableFrame; } } return nullptr; } // static nsIScrollableFrame* nsLayoutUtils::GetNearestScrollableFrame(nsIFrame* aFrame, uint32_t aFlags) { NS_ASSERTION(aFrame, "GetNearestScrollableFrame expects a non-null frame"); for (nsIFrame* f = aFrame; f; f = (aFlags & SCROLLABLE_SAME_DOC) ? f->GetParent() : nsLayoutUtils::GetCrossDocParentFrame(f)) { nsIScrollableFrame* scrollableFrame = do_QueryFrame(f); if (scrollableFrame) { if (aFlags & SCROLLABLE_ONLY_ASYNC_SCROLLABLE) { if (scrollableFrame->WantAsyncScroll()) { return scrollableFrame; } } else { ScrollStyles ss = scrollableFrame->GetScrollStyles(); if ((aFlags & SCROLLABLE_INCLUDE_HIDDEN) || ss.mVertical != NS_STYLE_OVERFLOW_HIDDEN || ss.mHorizontal != NS_STYLE_OVERFLOW_HIDDEN) { return scrollableFrame; } } if (aFlags & SCROLLABLE_ALWAYS_MATCH_ROOT) { nsIPresShell* ps = f->PresContext()->PresShell(); if (ps->GetRootScrollFrame() == f && ps->GetDocument() && ps->GetDocument()->IsRootDisplayDocument()) { return scrollableFrame; } } } if ((aFlags & SCROLLABLE_FIXEDPOS_FINDS_ROOT) && f->StyleDisplay()->mPosition == NS_STYLE_POSITION_FIXED && nsLayoutUtils::IsReallyFixedPos(f)) { return f->PresContext()->PresShell()->GetRootScrollFrameAsScrollable(); } } return nullptr; } // static nsRect nsLayoutUtils::GetScrolledRect(nsIFrame* aScrolledFrame, const nsRect& aScrolledFrameOverflowArea, const nsSize& aScrollPortSize, uint8_t aDirection) { WritingMode wm = aScrolledFrame->GetWritingMode(); // Potentially override the frame's direction to use the direction found // by ScrollFrameHelper::GetScrolledFrameDir() wm.SetDirectionFromBidiLevel(aDirection == NS_STYLE_DIRECTION_RTL ? 1 : 0); nscoord x1 = aScrolledFrameOverflowArea.x, x2 = aScrolledFrameOverflowArea.XMost(), y1 = aScrolledFrameOverflowArea.y, y2 = aScrolledFrameOverflowArea.YMost(); bool horizontal = !wm.IsVertical(); // Clamp the horizontal start-edge (x1 or x2, depending whether the logical // axis that corresponds to horizontal progresses from L-R or R-L). // In horizontal writing mode, we need to check IsInlineReversed() to see // which side to clamp; in vertical mode, it depends on the block direction. if ((horizontal && !wm.IsInlineReversed()) || wm.IsVerticalLR()) { if (x1 < 0) { x1 = 0; } } else { if (x2 > aScrollPortSize.width) { x2 = aScrollPortSize.width; } // When the scrolled frame chooses a size larger than its available width // (because its padding alone is larger than the available width), we need // to keep the start-edge of the scroll frame anchored to the start-edge of // the scrollport. // When the scrolled frame is RTL, this means moving it in our left-based // coordinate system, so we need to compensate for its extra width here by // effectively repositioning the frame. nscoord extraWidth = std::max(0, aScrolledFrame->GetSize().width - aScrollPortSize.width); x2 += extraWidth; } // Similarly, clamp the vertical start-edge. // In horizontal writing mode, the block direction is always top-to-bottom; // in vertical writing mode, we need to check IsInlineReversed(). if (horizontal || !wm.IsInlineReversed()) { if (y1 < 0) { y1 = 0; } } else { if (y2 > aScrollPortSize.height) { y2 = aScrollPortSize.height; } nscoord extraHeight = std::max(0, aScrolledFrame->GetSize().height - aScrollPortSize.height); y2 += extraHeight; } return nsRect(x1, y1, x2 - x1, y2 - y1); } //static bool nsLayoutUtils::HasPseudoStyle(nsIContent* aContent, nsStyleContext* aStyleContext, CSSPseudoElementType aPseudoElement, nsPresContext* aPresContext) { NS_PRECONDITION(aPresContext, "Must have a prescontext"); RefPtr pseudoContext; if (aContent) { pseudoContext = aPresContext->StyleSet()-> ProbePseudoElementStyle(aContent->AsElement(), aPseudoElement, aStyleContext); } return pseudoContext != nullptr; } nsPoint nsLayoutUtils::GetDOMEventCoordinatesRelativeTo(nsIDOMEvent* aDOMEvent, nsIFrame* aFrame) { if (!aDOMEvent) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); WidgetEvent* event = aDOMEvent->WidgetEventPtr(); if (!event) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); return GetEventCoordinatesRelativeTo(event, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo(const WidgetEvent* aEvent, nsIFrame* aFrame) { if (!aEvent || (aEvent->mClass != eMouseEventClass && aEvent->mClass != eMouseScrollEventClass && aEvent->mClass != eWheelEventClass && aEvent->mClass != eDragEventClass && aEvent->mClass != eSimpleGestureEventClass && aEvent->mClass != ePointerEventClass && aEvent->mClass != eGestureNotifyEventClass && aEvent->mClass != eTouchEventClass && aEvent->mClass != eQueryContentEventClass)) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); return GetEventCoordinatesRelativeTo(aEvent, aEvent->AsGUIEvent()->mRefPoint, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo(const WidgetEvent* aEvent, const LayoutDeviceIntPoint& aPoint, nsIFrame* aFrame) { if (!aFrame) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsIWidget* widget = aEvent->AsGUIEvent()->mWidget; if (!widget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } return GetEventCoordinatesRelativeTo(widget, aPoint, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo(nsIWidget* aWidget, const LayoutDeviceIntPoint& aPoint, nsIFrame* aFrame) { if (!aFrame || !aWidget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsView* view = aFrame->GetView(); if (view) { nsIWidget* frameWidget = view->GetWidget(); if (frameWidget && frameWidget == aWidget) { // Special case this cause it happens a lot. // This also fixes bug 664707, events in the extra-special case of select // dropdown popups that are transformed. nsPresContext* presContext = aFrame->PresContext(); nsPoint pt(presContext->DevPixelsToAppUnits(aPoint.x), presContext->DevPixelsToAppUnits(aPoint.y)); pt = pt - view->ViewToWidgetOffset(); pt = pt.RemoveResolution(GetCurrentAPZResolutionScale(presContext->PresShell())); return pt; } } /* If we walk up the frame tree and discover that any of the frames are * transformed, we need to do extra work to convert from the global * space to the local space. */ nsIFrame* rootFrame = aFrame; bool transformFound = false; for (nsIFrame* f = aFrame; f; f = GetCrossDocParentFrame(f)) { if (f->IsTransformed()) { transformFound = true; } rootFrame = f; } nsView* rootView = rootFrame->GetView(); if (!rootView) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsPoint widgetToView = TranslateWidgetToView(rootFrame->PresContext(), aWidget, aPoint, rootView); if (widgetToView == nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } // Convert from root document app units to app units of the document aFrame // is in. int32_t rootAPD = rootFrame->PresContext()->AppUnitsPerDevPixel(); int32_t localAPD = aFrame->PresContext()->AppUnitsPerDevPixel(); widgetToView = widgetToView.ScaleToOtherAppUnits(rootAPD, localAPD); nsIPresShell* shell = aFrame->PresContext()->PresShell(); // XXX Bug 1224748 - Update nsLayoutUtils functions to correctly handle nsPresShell resolution widgetToView = widgetToView.RemoveResolution(GetCurrentAPZResolutionScale(shell)); /* If we encountered a transform, we can't do simple arithmetic to figure * out how to convert back to aFrame's coordinates and must use the CTM. */ if (transformFound || aFrame->IsSVGText()) { return TransformRootPointToFrame(aFrame, widgetToView); } /* Otherwise, all coordinate systems are translations of one another, * so we can just subtract out the difference. */ return widgetToView - aFrame->GetOffsetToCrossDoc(rootFrame); } nsIFrame* nsLayoutUtils::GetPopupFrameForEventCoordinates(nsPresContext* aPresContext, const WidgetEvent* aEvent) { nsXULPopupManager* pm = nsXULPopupManager::GetInstance(); if (!pm) { return nullptr; } nsTArray popups; pm->GetVisiblePopups(popups); uint32_t i; // Search from top to bottom for (i = 0; i < popups.Length(); i++) { nsIFrame* popup = popups[i]; if (popup->PresContext()->GetRootPresContext() == aPresContext && popup->GetScrollableOverflowRect().Contains( GetEventCoordinatesRelativeTo(aEvent, popup))) { return popup; } } return nullptr; } static void ConstrainToCoordValues(float& aStart, float& aSize) { MOZ_ASSERT(aSize >= 0); // Here we try to make sure that the resulting nsRect will continue to cover // as much of the area that was covered by the original gfx Rect as possible. // We clamp the bounds of the rect to {nscoord_MIN,nscoord_MAX} since // nsRect::X/Y() and nsRect::XMost/YMost() can't return values outwith this // range: float end = aStart + aSize; aStart = clamped(aStart, float(nscoord_MIN), float(nscoord_MAX)); end = clamped(end, float(nscoord_MIN), float(nscoord_MAX)); aSize = end - aStart; // We must also clamp aSize to {0,nscoord_MAX} since nsRect::Width/Height() // can't return a value greater than nscoord_MAX. If aSize is greater than // nscoord_MAX then we reduce it to nscoord_MAX while keeping the rect // centered: if (aSize > nscoord_MAX) { float excess = aSize - nscoord_MAX; excess /= 2; aStart += excess; aSize = nscoord_MAX; } } /** * Given a gfxFloat, constrains its value to be between nscoord_MIN and nscoord_MAX. * * @param aVal The value to constrain (in/out) */ static void ConstrainToCoordValues(gfxFloat& aVal) { if (aVal <= nscoord_MIN) aVal = nscoord_MIN; else if (aVal >= nscoord_MAX) aVal = nscoord_MAX; } static void ConstrainToCoordValues(gfxFloat& aStart, gfxFloat& aSize) { gfxFloat max = aStart + aSize; // Clamp the end points to within nscoord range ConstrainToCoordValues(aStart); ConstrainToCoordValues(max); aSize = max - aStart; // If the width if still greater than the max nscoord, then bring both // endpoints in by the same amount until it fits. if (aSize > nscoord_MAX) { gfxFloat excess = aSize - nscoord_MAX; excess /= 2; aStart += excess; aSize = nscoord_MAX; } else if (aSize < nscoord_MIN) { gfxFloat excess = aSize - nscoord_MIN; excess /= 2; aStart -= excess; aSize = nscoord_MIN; } } nsRect nsLayoutUtils::RoundGfxRectToAppRect(const Rect &aRect, float aFactor) { /* Get a new Rect whose units are app units by scaling by the specified factor. */ Rect scaledRect = aRect; scaledRect.ScaleRoundOut(aFactor); /* We now need to constrain our results to the max and min values for coords. */ ConstrainToCoordValues(scaledRect.x, scaledRect.width); ConstrainToCoordValues(scaledRect.y, scaledRect.height); /* Now typecast everything back. This is guaranteed to be safe. */ return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), nscoord(scaledRect.Width()), nscoord(scaledRect.Height())); } nsRect nsLayoutUtils::RoundGfxRectToAppRect(const gfxRect &aRect, float aFactor) { /* Get a new gfxRect whose units are app units by scaling by the specified factor. */ gfxRect scaledRect = aRect; scaledRect.ScaleRoundOut(aFactor); /* We now need to constrain our results to the max and min values for coords. */ ConstrainToCoordValues(scaledRect.x, scaledRect.width); ConstrainToCoordValues(scaledRect.y, scaledRect.height); /* Now typecast everything back. This is guaranteed to be safe. */ return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), nscoord(scaledRect.Width()), nscoord(scaledRect.Height())); } nsRegion nsLayoutUtils::RoundedRectIntersectRect(const nsRect& aRoundedRect, const nscoord aRadii[8], const nsRect& aContainedRect) { // rectFullHeight and rectFullWidth together will approximately contain // the total area of the frame minus the rounded corners. nsRect rectFullHeight = aRoundedRect; nscoord xDiff = std::max(aRadii[NS_CORNER_TOP_LEFT_X], aRadii[NS_CORNER_BOTTOM_LEFT_X]); rectFullHeight.x += xDiff; rectFullHeight.width -= std::max(aRadii[NS_CORNER_TOP_RIGHT_X], aRadii[NS_CORNER_BOTTOM_RIGHT_X]) + xDiff; nsRect r1; r1.IntersectRect(rectFullHeight, aContainedRect); nsRect rectFullWidth = aRoundedRect; nscoord yDiff = std::max(aRadii[NS_CORNER_TOP_LEFT_Y], aRadii[NS_CORNER_TOP_RIGHT_Y]); rectFullWidth.y += yDiff; rectFullWidth.height -= std::max(aRadii[NS_CORNER_BOTTOM_LEFT_Y], aRadii[NS_CORNER_BOTTOM_RIGHT_Y]) + yDiff; nsRect r2; r2.IntersectRect(rectFullWidth, aContainedRect); nsRegion result; result.Or(r1, r2); return result; } nsIntRegion nsLayoutUtils::RoundedRectIntersectIntRect(const nsIntRect& aRoundedRect, const RectCornerRadii& aCornerRadii, const nsIntRect& aContainedRect) { // rectFullHeight and rectFullWidth together will approximately contain // the total area of the frame minus the rounded corners. nsIntRect rectFullHeight = aRoundedRect; uint32_t xDiff = std::max(aCornerRadii.TopLeft().width, aCornerRadii.BottomLeft().width); rectFullHeight.x += xDiff; rectFullHeight.width -= std::max(aCornerRadii.TopRight().width, aCornerRadii.BottomRight().width) + xDiff; nsIntRect r1; r1.IntersectRect(rectFullHeight, aContainedRect); nsIntRect rectFullWidth = aRoundedRect; uint32_t yDiff = std::max(aCornerRadii.TopLeft().height, aCornerRadii.TopRight().height); rectFullWidth.y += yDiff; rectFullWidth.height -= std::max(aCornerRadii.BottomLeft().height, aCornerRadii.BottomRight().height) + yDiff; nsIntRect r2; r2.IntersectRect(rectFullWidth, aContainedRect); nsIntRegion result; result.Or(r1, r2); return result; } // Helper for RoundedRectIntersectsRect. static bool CheckCorner(nscoord aXOffset, nscoord aYOffset, nscoord aXRadius, nscoord aYRadius) { MOZ_ASSERT(aXOffset > 0 && aYOffset > 0, "must not pass nonpositives to CheckCorner"); MOZ_ASSERT(aXRadius >= 0 && aYRadius >= 0, "must not pass negatives to CheckCorner"); // Avoid floating point math unless we're either (1) within the // quarter-ellipse area at the rounded corner or (2) outside the // rounding. if (aXOffset >= aXRadius || aYOffset >= aYRadius) return true; // Convert coordinates to a unit circle with (0,0) as the center of // curvature, and see if we're inside the circle or outside. float scaledX = float(aXRadius - aXOffset) / float(aXRadius); float scaledY = float(aYRadius - aYOffset) / float(aYRadius); return scaledX * scaledX + scaledY * scaledY < 1.0f; } bool nsLayoutUtils::RoundedRectIntersectsRect(const nsRect& aRoundedRect, const nscoord aRadii[8], const nsRect& aTestRect) { if (!aTestRect.Intersects(aRoundedRect)) return false; // distances from this edge of aRoundedRect to opposite edge of aTestRect, // which we know are positive due to the Intersects check above. nsMargin insets; insets.top = aTestRect.YMost() - aRoundedRect.y; insets.right = aRoundedRect.XMost() - aTestRect.x; insets.bottom = aRoundedRect.YMost() - aTestRect.y; insets.left = aTestRect.XMost() - aRoundedRect.x; // Check whether the bottom-right corner of aTestRect is inside the // top left corner of aBounds when rounded by aRadii, etc. If any // corner is not, then fail; otherwise succeed. return CheckCorner(insets.left, insets.top, aRadii[NS_CORNER_TOP_LEFT_X], aRadii[NS_CORNER_TOP_LEFT_Y]) && CheckCorner(insets.right, insets.top, aRadii[NS_CORNER_TOP_RIGHT_X], aRadii[NS_CORNER_TOP_RIGHT_Y]) && CheckCorner(insets.right, insets.bottom, aRadii[NS_CORNER_BOTTOM_RIGHT_X], aRadii[NS_CORNER_BOTTOM_RIGHT_Y]) && CheckCorner(insets.left, insets.bottom, aRadii[NS_CORNER_BOTTOM_LEFT_X], aRadii[NS_CORNER_BOTTOM_LEFT_Y]); } nsRect nsLayoutUtils::MatrixTransformRect(const nsRect &aBounds, const Matrix4x4 &aMatrix, float aFactor) { RectDouble image = RectDouble(NSAppUnitsToDoublePixels(aBounds.x, aFactor), NSAppUnitsToDoublePixels(aBounds.y, aFactor), NSAppUnitsToDoublePixels(aBounds.width, aFactor), NSAppUnitsToDoublePixels(aBounds.height, aFactor)); RectDouble maxBounds = RectDouble(double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MAX) / aFactor, double(nscoord_MAX) / aFactor); image = aMatrix.TransformAndClipBounds(image, maxBounds); return RoundGfxRectToAppRect(ThebesRect(image), aFactor); } nsPoint nsLayoutUtils::MatrixTransformPoint(const nsPoint &aPoint, const Matrix4x4 &aMatrix, float aFactor) { gfxPoint image = gfxPoint(NSAppUnitsToFloatPixels(aPoint.x, aFactor), NSAppUnitsToFloatPixels(aPoint.y, aFactor)); image.Transform(aMatrix); return nsPoint(NSFloatPixelsToAppUnits(float(image.x), aFactor), NSFloatPixelsToAppUnits(float(image.y), aFactor)); } void nsLayoutUtils::PostTranslate(Matrix4x4& aTransform, const nsPoint& aOrigin, float aAppUnitsPerPixel, bool aRounded) { Point3D gfxOrigin = Point3D(NSAppUnitsToFloatPixels(aOrigin.x, aAppUnitsPerPixel), NSAppUnitsToFloatPixels(aOrigin.y, aAppUnitsPerPixel), 0.0f); if (aRounded) { gfxOrigin.x = NS_round(gfxOrigin.x); gfxOrigin.y = NS_round(gfxOrigin.y); } aTransform.PostTranslate(gfxOrigin); } Matrix4x4 nsLayoutUtils::GetTransformToAncestor(nsIFrame *aFrame, const nsIFrame *aAncestor) { nsIFrame* parent; Matrix4x4 ctm; if (aFrame == aAncestor) { return ctm; } ctm = aFrame->GetTransformMatrix(aAncestor, &parent); while (parent && parent != aAncestor) { if (!parent->Extend3DContext()) { ctm.ProjectTo2D(); } ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent); } return ctm; } gfxSize nsLayoutUtils::GetTransformToAncestorScale(nsIFrame* aFrame) { Matrix4x4 transform = GetTransformToAncestor(aFrame, nsLayoutUtils::GetDisplayRootFrame(aFrame)); Matrix transform2D; if (transform.Is2D(&transform2D)) { return ThebesMatrix(transform2D).ScaleFactors(true); } return gfxSize(1, 1); } static Matrix4x4 GetTransformToAncestorExcludingAnimated(nsIFrame* aFrame, const nsIFrame* aAncestor) { nsIFrame* parent; Matrix4x4 ctm; if (aFrame == aAncestor) { return ctm; } if (ActiveLayerTracker::IsScaleSubjectToAnimation(aFrame)) { return ctm; } ctm = aFrame->GetTransformMatrix(aAncestor, &parent); while (parent && parent != aAncestor) { if (ActiveLayerTracker::IsScaleSubjectToAnimation(parent)) { return Matrix4x4(); } if (!parent->Extend3DContext()) { ctm.ProjectTo2D(); } ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent); } return ctm; } gfxSize nsLayoutUtils::GetTransformToAncestorScaleExcludingAnimated(nsIFrame* aFrame) { Matrix4x4 transform = GetTransformToAncestorExcludingAnimated(aFrame, nsLayoutUtils::GetDisplayRootFrame(aFrame)); Matrix transform2D; if (transform.Is2D(&transform2D)) { return ThebesMatrix(transform2D).ScaleFactors(true); } return gfxSize(1, 1); } nsIFrame* nsLayoutUtils::FindNearestCommonAncestorFrame(nsIFrame* aFrame1, nsIFrame* aFrame2) { if (!aFrame1 || !aFrame2) { return nullptr; } AutoTArray ancestors1; AutoTArray ancestors2; nsIFrame* commonAncestor = nullptr; if (aFrame1->PresContext() == aFrame2->PresContext()) { commonAncestor = aFrame1->PresContext()->PresShell()->GetRootFrame(); } for (nsIFrame* f = aFrame1; f != commonAncestor; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { ancestors1.AppendElement(f); } for (nsIFrame* f = aFrame2; f != commonAncestor; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { ancestors2.AppendElement(f); } uint32_t minLengths = std::min(ancestors1.Length(), ancestors2.Length()); for (uint32_t i = 1; i <= minLengths; ++i) { if (ancestors1[ancestors1.Length() - i] == ancestors2[ancestors2.Length() - i]) { commonAncestor = ancestors1[ancestors1.Length() - i]; } else { break; } } return commonAncestor; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformPoints(nsIFrame* aFromFrame, nsIFrame* aToFrame, uint32_t aPointCount, CSSPoint* aPoints) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); CSSToLayoutDeviceScale devPixelsPerCSSPixelFromFrame = aFromFrame->PresContext()->CSSToDevPixelScale(); CSSToLayoutDeviceScale devPixelsPerCSSPixelToFrame = aToFrame->PresContext()->CSSToDevPixelScale(); for (uint32_t i = 0; i < aPointCount; ++i) { LayoutDevicePoint devPixels = aPoints[i] * devPixelsPerCSSPixelFromFrame; // What should the behaviour be if some of the points aren't invertible // and others are? Just assume all points are for now. Point toDevPixels = downToDest.ProjectPoint( (upToAncestor.TransformPoint(Point(devPixels.x, devPixels.y)))).As2DPoint(); // Divide here so that when the devPixelsPerCSSPixels are the same, we get the correct // answer instead of some inaccuracy multiplying a number by its reciprocal. aPoints[i] = LayoutDevicePoint(toDevPixels.x, toDevPixels.y) / devPixelsPerCSSPixelToFrame; } return TRANSFORM_SUCCEEDED; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformPoint(nsIFrame* aFromFrame, nsIFrame* aToFrame, nsPoint& aPoint) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); float devPixelsPerAppUnitFromFrame = 1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel(); float devPixelsPerAppUnitToFrame = 1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel(); Point4D toDevPixels = downToDest.ProjectPoint( upToAncestor.TransformPoint(Point(aPoint.x * devPixelsPerAppUnitFromFrame, aPoint.y * devPixelsPerAppUnitFromFrame))); if (!toDevPixels.HasPositiveWCoord()) { // Not strictly true, but we failed to get a valid point in this // coordinate space. return NONINVERTIBLE_TRANSFORM; } aPoint.x = NSToCoordRound(toDevPixels.x / devPixelsPerAppUnitToFrame); aPoint.y = NSToCoordRound(toDevPixels.y / devPixelsPerAppUnitToFrame); return TRANSFORM_SUCCEEDED; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformRect(nsIFrame* aFromFrame, nsIFrame* aToFrame, nsRect& aRect) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4 downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4 upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); float devPixelsPerAppUnitFromFrame = 1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel(); float devPixelsPerAppUnitToFrame = 1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel(); gfx::Rect toDevPixels = downToDest.ProjectRectBounds( upToAncestor.ProjectRectBounds( gfx::Rect(aRect.x * devPixelsPerAppUnitFromFrame, aRect.y * devPixelsPerAppUnitFromFrame, aRect.width * devPixelsPerAppUnitFromFrame, aRect.height * devPixelsPerAppUnitFromFrame), Rect(-std::numeric_limits::max() * 0.5f, -std::numeric_limits::max() * 0.5f, std::numeric_limits::max(), std::numeric_limits::max())), Rect(-std::numeric_limits::max() * devPixelsPerAppUnitFromFrame * 0.5f, -std::numeric_limits::max() * devPixelsPerAppUnitFromFrame * 0.5f, std::numeric_limits::max() * devPixelsPerAppUnitFromFrame, std::numeric_limits::max() * devPixelsPerAppUnitFromFrame)); aRect.x = toDevPixels.x / devPixelsPerAppUnitToFrame; aRect.y = toDevPixels.y / devPixelsPerAppUnitToFrame; aRect.width = toDevPixels.width / devPixelsPerAppUnitToFrame; aRect.height = toDevPixels.height / devPixelsPerAppUnitToFrame; return TRANSFORM_SUCCEEDED; } nsRect nsLayoutUtils::GetRectRelativeToFrame(Element* aElement, nsIFrame* aFrame) { if (!aElement || !aFrame) { return nsRect(); } nsIFrame* frame = aElement->GetPrimaryFrame(); if (!frame) { return nsRect(); } nsRect rect = frame->GetRectRelativeToSelf(); nsLayoutUtils::TransformResult rv = nsLayoutUtils::TransformRect(frame, aFrame, rect); if (rv != nsLayoutUtils::TRANSFORM_SUCCEEDED) { return nsRect(); } return rect; } bool nsLayoutUtils::ContainsPoint(const nsRect& aRect, const nsPoint& aPoint, nscoord aInflateSize) { nsRect rect = aRect; rect.Inflate(aInflateSize); return rect.Contains(aPoint); } nsRect nsLayoutUtils::ClampRectToScrollFrames(nsIFrame* aFrame, const nsRect& aRect) { nsIFrame* closestScrollFrame = nsLayoutUtils::GetClosestFrameOfType(aFrame, nsGkAtoms::scrollFrame); nsRect resultRect = aRect; while (closestScrollFrame) { nsIScrollableFrame* sf = do_QueryFrame(closestScrollFrame); nsRect scrollPortRect = sf->GetScrollPortRect(); nsLayoutUtils::TransformRect(closestScrollFrame, aFrame, scrollPortRect); resultRect = resultRect.Intersect(scrollPortRect); // Check whether aRect is visible in the scroll frame or not. if (resultRect.IsEmpty()) { break; } // Get next ancestor scroll frame. closestScrollFrame = nsLayoutUtils::GetClosestFrameOfType(closestScrollFrame->GetParent(), nsGkAtoms::scrollFrame); } return resultRect; } bool nsLayoutUtils::GetLayerTransformForFrame(nsIFrame* aFrame, Matrix4x4* aTransform) { // FIXME/bug 796690: we can sometimes compute a transform in these // cases, it just increases complexity considerably. Punt for now. if (aFrame->Extend3DContext() || aFrame->HasTransformGetter()) { return false; } nsIFrame* root = nsLayoutUtils::GetDisplayRootFrame(aFrame); if (root->HasAnyStateBits(NS_FRAME_UPDATE_LAYER_TREE)) { // Content may have been invalidated, so we can't reliably compute // the "layer transform" in general. return false; } // If the caller doesn't care about the value, early-return to skip // overhead below. if (!aTransform) { return true; } nsDisplayListBuilder builder(root, nsDisplayListBuilderMode::TRANSFORM_COMPUTATION, false/*don't build caret*/); nsDisplayList list; nsDisplayTransform* item = new (&builder) nsDisplayTransform(&builder, aFrame, &list, nsRect()); *aTransform = item->GetTransform(); item->~nsDisplayTransform(); return true; } static bool TransformGfxPointFromAncestor(nsIFrame *aFrame, const Point &aPoint, nsIFrame *aAncestor, Point* aOut) { Matrix4x4 ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor); ctm.Invert(); Point4D point = ctm.ProjectPoint(aPoint); if (!point.HasPositiveWCoord()) { return false; } *aOut = point.As2DPoint(); return true; } static Rect TransformGfxRectToAncestor(nsIFrame *aFrame, const Rect &aRect, const nsIFrame *aAncestor, bool* aPreservesAxisAlignedRectangles = nullptr, Maybe* aMatrixCache = nullptr) { Matrix4x4 ctm; if (aMatrixCache && *aMatrixCache) { // We are given a matrix to use, so use it ctm = aMatrixCache->value(); } else { // Else, compute it ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor); if (aMatrixCache) { // and put it in the cache, if provided *aMatrixCache = Some(ctm); } } // Fill out the axis-alignment flag if (aPreservesAxisAlignedRectangles) { Matrix matrix2d; *aPreservesAxisAlignedRectangles = ctm.Is2D(&matrix2d) && matrix2d.PreservesAxisAlignedRectangles(); } Rect maxBounds = Rect(-std::numeric_limits::max() * 0.5, -std::numeric_limits::max() * 0.5, std::numeric_limits::max(), std::numeric_limits::max()); return ctm.TransformAndClipBounds(aRect, maxBounds); } static SVGTextFrame* GetContainingSVGTextFrame(nsIFrame* aFrame) { if (!aFrame->IsSVGText()) { return nullptr; } return static_cast (nsLayoutUtils::GetClosestFrameOfType(aFrame->GetParent(), nsGkAtoms::svgTextFrame)); } nsPoint nsLayoutUtils::TransformAncestorPointToFrame(nsIFrame* aFrame, const nsPoint& aPoint, nsIFrame* aAncestor) { SVGTextFrame* text = GetContainingSVGTextFrame(aFrame); float factor = aFrame->PresContext()->AppUnitsPerDevPixel(); Point result(NSAppUnitsToFloatPixels(aPoint.x, factor), NSAppUnitsToFloatPixels(aPoint.y, factor)); if (text) { if (!TransformGfxPointFromAncestor(text, result, aAncestor, &result)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } result = text->TransformFramePointToTextChild(result, aFrame); } else { if (!TransformGfxPointFromAncestor(aFrame, result, nullptr, &result)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } } return nsPoint(NSFloatPixelsToAppUnits(float(result.x), factor), NSFloatPixelsToAppUnits(float(result.y), factor)); } nsRect nsLayoutUtils::TransformFrameRectToAncestor(nsIFrame* aFrame, const nsRect& aRect, const nsIFrame* aAncestor, bool* aPreservesAxisAlignedRectangles /* = nullptr */, Maybe* aMatrixCache /* = nullptr */) { SVGTextFrame* text = GetContainingSVGTextFrame(aFrame); float srcAppUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel(); Rect result; if (text) { result = ToRect(text->TransformFrameRectFromTextChild(aRect, aFrame)); result = TransformGfxRectToAncestor(text, result, aAncestor, nullptr, aMatrixCache); // TransformFrameRectFromTextChild could involve any kind of transform, we // could drill down into it to get an answer out of it but we don't yet. if (aPreservesAxisAlignedRectangles) *aPreservesAxisAlignedRectangles = false; } else { result = Rect(NSAppUnitsToFloatPixels(aRect.x, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.y, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.width, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.height, srcAppUnitsPerDevPixel)); result = TransformGfxRectToAncestor(aFrame, result, aAncestor, aPreservesAxisAlignedRectangles, aMatrixCache); } float destAppUnitsPerDevPixel = aAncestor->PresContext()->AppUnitsPerDevPixel(); return nsRect(NSFloatPixelsToAppUnits(float(result.x), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.y), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.width), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.height), destAppUnitsPerDevPixel)); } static LayoutDeviceIntPoint GetWidgetOffset(nsIWidget* aWidget, nsIWidget*& aRootWidget) { LayoutDeviceIntPoint offset(0, 0); while ((aWidget->WindowType() == eWindowType_child || aWidget->IsPlugin())) { nsIWidget* parent = aWidget->GetParent(); if (!parent) { break; } LayoutDeviceIntRect bounds = aWidget->GetBounds(); offset += bounds.TopLeft(); aWidget = parent; } aRootWidget = aWidget; return offset; } static LayoutDeviceIntPoint WidgetToWidgetOffset(nsIWidget* aFrom, nsIWidget* aTo) { nsIWidget* fromRoot; LayoutDeviceIntPoint fromOffset = GetWidgetOffset(aFrom, fromRoot); nsIWidget* toRoot; LayoutDeviceIntPoint toOffset = GetWidgetOffset(aTo, toRoot); if (fromRoot == toRoot) { return fromOffset - toOffset; } return aFrom->WidgetToScreenOffset() - aTo->WidgetToScreenOffset(); } nsPoint nsLayoutUtils::TranslateWidgetToView(nsPresContext* aPresContext, nsIWidget* aWidget, const LayoutDeviceIntPoint& aPt, nsView* aView) { nsPoint viewOffset; nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset); if (!viewWidget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } LayoutDeviceIntPoint widgetPoint = aPt + WidgetToWidgetOffset(aWidget, viewWidget); nsPoint widgetAppUnits(aPresContext->DevPixelsToAppUnits(widgetPoint.x), aPresContext->DevPixelsToAppUnits(widgetPoint.y)); return widgetAppUnits - viewOffset; } LayoutDeviceIntPoint nsLayoutUtils::TranslateViewToWidget(nsPresContext* aPresContext, nsView* aView, nsPoint aPt, nsIWidget* aWidget) { nsPoint viewOffset; nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset); if (!viewWidget) { return LayoutDeviceIntPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsPoint pt = (aPt + viewOffset).ApplyResolution(GetCurrentAPZResolutionScale(aPresContext->PresShell())); LayoutDeviceIntPoint relativeToViewWidget(aPresContext->AppUnitsToDevPixels(pt.x), aPresContext->AppUnitsToDevPixels(pt.y)); return relativeToViewWidget + WidgetToWidgetOffset(viewWidget, aWidget); } // Combine aNewBreakType with aOrigBreakType, but limit the break types // to StyleClear::Left, Right, Both. StyleClear nsLayoutUtils::CombineBreakType(StyleClear aOrigBreakType, StyleClear aNewBreakType) { StyleClear breakType = aOrigBreakType; switch(breakType) { case StyleClear::Left: if (StyleClear::Right == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = StyleClear::Both; } break; case StyleClear::Right: if (StyleClear::Left == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = StyleClear::Both; } break; case StyleClear::None: if (StyleClear::Left == aNewBreakType || StyleClear::Right == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = aNewBreakType; } break; default: break; } return breakType; } #ifdef MOZ_DUMP_PAINTING #include static bool gDumpEventList = false; // nsLayoutUtils::PaintFrame() can call itself recursively, so rather than // maintaining a single paint count, we need a stack. StaticAutoPtr> gPaintCountStack; struct AutoNestedPaintCount { AutoNestedPaintCount() { gPaintCountStack->AppendElement(0); } ~AutoNestedPaintCount() { gPaintCountStack->RemoveElementAt(gPaintCountStack->Length() - 1); } }; #endif nsIFrame* nsLayoutUtils::GetFrameForPoint(nsIFrame* aFrame, nsPoint aPt, uint32_t aFlags) { PROFILER_LABEL("nsLayoutUtils", "GetFrameForPoint", js::ProfileEntry::Category::GRAPHICS); nsresult rv; AutoTArray outFrames; rv = GetFramesForArea(aFrame, nsRect(aPt, nsSize(1, 1)), outFrames, aFlags); NS_ENSURE_SUCCESS(rv, nullptr); return outFrames.Length() ? outFrames.ElementAt(0) : nullptr; } nsresult nsLayoutUtils::GetFramesForArea(nsIFrame* aFrame, const nsRect& aRect, nsTArray &aOutFrames, uint32_t aFlags) { PROFILER_LABEL("nsLayoutUtils", "GetFramesForArea", js::ProfileEntry::Category::GRAPHICS); nsDisplayListBuilder builder(aFrame, nsDisplayListBuilderMode::EVENT_DELIVERY, false); nsDisplayList list; if (aFlags & IGNORE_PAINT_SUPPRESSION) { builder.IgnorePaintSuppression(); } if (aFlags & IGNORE_ROOT_SCROLL_FRAME) { nsIFrame* rootScrollFrame = aFrame->PresContext()->PresShell()->GetRootScrollFrame(); if (rootScrollFrame) { builder.SetIgnoreScrollFrame(rootScrollFrame); } } if (aFlags & IGNORE_CROSS_DOC) { builder.SetDescendIntoSubdocuments(false); } builder.EnterPresShell(aFrame); builder.SetDirtyRect(aRect); aFrame->BuildDisplayListForStackingContext(&builder, &list); builder.LeavePresShell(aFrame, nullptr); #ifdef MOZ_DUMP_PAINTING if (gDumpEventList) { fprintf_stderr(stderr, "Event handling --- (%d,%d):\n", aRect.x, aRect.y); std::stringstream ss; nsFrame::PrintDisplayList(&builder, list, ss); print_stderr(ss); } #endif nsDisplayItem::HitTestState hitTestState; list.HitTest(&builder, aRect, &hitTestState, &aOutFrames); list.DeleteAll(); return NS_OK; } // aScrollFrameAsScrollable must be non-nullptr and queryable to an nsIFrame FrameMetrics nsLayoutUtils::CalculateBasicFrameMetrics(nsIScrollableFrame* aScrollFrame) { nsIFrame* frame = do_QueryFrame(aScrollFrame); MOZ_ASSERT(frame); // Calculate the metrics necessary for calculating the displayport. // This code has a lot in common with the code in ComputeFrameMetrics(); // we may want to refactor this at some point. FrameMetrics metrics; nsPresContext* presContext = frame->PresContext(); nsIPresShell* presShell = presContext->PresShell(); CSSToLayoutDeviceScale deviceScale = presContext->CSSToDevPixelScale(); float resolution = 1.0f; if (frame == presShell->GetRootScrollFrame()) { // Only the root scrollable frame for a given presShell should pick up // the presShell's resolution. All the other frames are 1.0. resolution = presShell->GetResolution(); } // Note: unlike in ComputeFrameMetrics(), we don't know the full cumulative // resolution including FrameMetrics::mExtraResolution, because layout hasn't // chosen a resolution to paint at yet. However, the display port calculation // divides out mExtraResolution anyways, so we get the correct result by // setting the mCumulativeResolution to everything except the extra resolution // and leaving mExtraResolution at 1. LayoutDeviceToLayerScale2D cumulativeResolution( presShell->GetCumulativeResolution() * nsLayoutUtils::GetTransformToAncestorScale(frame)); LayerToParentLayerScale layerToParentLayerScale(1.0f); metrics.SetDevPixelsPerCSSPixel(deviceScale); metrics.SetPresShellResolution(resolution); metrics.SetCumulativeResolution(cumulativeResolution); metrics.SetZoom(deviceScale * cumulativeResolution * layerToParentLayerScale); // Only the size of the composition bounds is relevant to the // displayport calculation, not its origin. nsSize compositionSize = nsLayoutUtils::CalculateCompositionSizeForFrame(frame); LayoutDeviceToParentLayerScale2D compBoundsScale; if (frame == presShell->GetRootScrollFrame() && presContext->IsRootContentDocument()) { if (presContext->GetParentPresContext()) { float res = presContext->GetParentPresContext()->PresShell()->GetCumulativeResolution(); compBoundsScale = LayoutDeviceToParentLayerScale2D( LayoutDeviceToParentLayerScale(res)); } } else { compBoundsScale = cumulativeResolution * layerToParentLayerScale; } metrics.SetCompositionBounds( LayoutDeviceRect::FromAppUnits(nsRect(nsPoint(0, 0), compositionSize), presContext->AppUnitsPerDevPixel()) * compBoundsScale); metrics.SetRootCompositionSize( nsLayoutUtils::CalculateRootCompositionSize(frame, false, metrics)); metrics.SetScrollOffset(CSSPoint::FromAppUnits( aScrollFrame->GetScrollPosition())); metrics.SetScrollableRect(CSSRect::FromAppUnits( nsLayoutUtils::CalculateScrollableRectForFrame(aScrollFrame, nullptr))); return metrics; } bool nsLayoutUtils::CalculateAndSetDisplayPortMargins(nsIScrollableFrame* aScrollFrame, RepaintMode aRepaintMode) { nsIFrame* frame = do_QueryFrame(aScrollFrame); MOZ_ASSERT(frame); nsIContent* content = frame->GetContent(); MOZ_ASSERT(content); FrameMetrics metrics = CalculateBasicFrameMetrics(aScrollFrame); ScreenMargin displayportMargins = APZCTreeManager::CalculatePendingDisplayPort( metrics, ParentLayerPoint(0.0f, 0.0f)); nsIPresShell* presShell = frame->PresContext()->GetPresShell(); return nsLayoutUtils::SetDisplayPortMargins( content, presShell, displayportMargins, 0, aRepaintMode); } void nsLayoutUtils::MaybeCreateDisplayPort(nsDisplayListBuilder& aBuilder, nsIFrame* aScrollFrame) { nsIContent* content = aScrollFrame->GetContent(); nsIScrollableFrame* scrollableFrame = do_QueryFrame(aScrollFrame); if (!content || !scrollableFrame) { return; } bool haveDisplayPort = HasDisplayPort(content); // We perform an optimization where we ensure that at least one // async-scrollable frame (i.e. one that WantsAsyncScroll()) has a displayport. // If that's not the case yet, and we are async-scrollable, we will get a // displayport. if (aBuilder.IsPaintingToWindow() && nsLayoutUtils::AsyncPanZoomEnabled(aScrollFrame) && !aBuilder.HaveScrollableDisplayPort() && scrollableFrame->WantAsyncScroll()) { // If we don't already have a displayport, calculate and set one. if (!haveDisplayPort) { CalculateAndSetDisplayPortMargins(scrollableFrame, nsLayoutUtils::RepaintMode::DoNotRepaint); #ifdef DEBUG haveDisplayPort = HasDisplayPort(content); MOZ_ASSERT(haveDisplayPort, "should have a displayport after having just set it"); #endif } // Record that the we now have a scrollable display port. aBuilder.SetHaveScrollableDisplayPort(); } } nsIScrollableFrame* nsLayoutUtils::GetAsyncScrollableAncestorFrame(nsIFrame* aTarget) { uint32_t flags = nsLayoutUtils::SCROLLABLE_ALWAYS_MATCH_ROOT | nsLayoutUtils::SCROLLABLE_ONLY_ASYNC_SCROLLABLE | nsLayoutUtils::SCROLLABLE_FIXEDPOS_FINDS_ROOT; return nsLayoutUtils::GetNearestScrollableFrame(aTarget, flags); } void nsLayoutUtils::SetZeroMarginDisplayPortOnAsyncScrollableAncestors(nsIFrame* aFrame, RepaintMode aRepaintMode) { nsIFrame* frame = aFrame; while (frame) { frame = nsLayoutUtils::GetCrossDocParentFrame(frame); if (!frame) { break; } nsIScrollableFrame* scrollAncestor = GetAsyncScrollableAncestorFrame(frame); if (!scrollAncestor) { break; } frame = do_QueryFrame(scrollAncestor); MOZ_ASSERT(frame); MOZ_ASSERT(scrollAncestor->WantAsyncScroll() || frame->PresContext()->PresShell()->GetRootScrollFrame() == frame); if (nsLayoutUtils::AsyncPanZoomEnabled(frame) && !nsLayoutUtils::HasDisplayPort(frame->GetContent())) { nsLayoutUtils::SetDisplayPortMargins( frame->GetContent(), frame->PresContext()->PresShell(), ScreenMargin(), 0, aRepaintMode); } } } void nsLayoutUtils::ExpireDisplayPortOnAsyncScrollableAncestor(nsIFrame* aFrame) { nsIFrame* frame = aFrame; while (frame) { frame = nsLayoutUtils::GetCrossDocParentFrame(frame); if (!frame) { break; } nsIScrollableFrame* scrollAncestor = GetAsyncScrollableAncestorFrame(frame); if (!scrollAncestor) { break; } frame = do_QueryFrame(scrollAncestor); MOZ_ASSERT(frame); if (!frame) { break; } MOZ_ASSERT(scrollAncestor->WantAsyncScroll() || frame->PresContext()->PresShell()->GetRootScrollFrame() == frame); if (nsLayoutUtils::HasDisplayPort(frame->GetContent())) { scrollAncestor->TriggerDisplayPortExpiration(); // Stop after the first trigger. If it failed, there's no point in // continuing because all the rest of the frames we encounter are going // to be ancestors of |scrollAncestor| which will keep its displayport. // If the trigger succeeded, we stop because when the trigger executes // it will call this function again to trigger the next ancestor up the // chain. break; } } } nsresult nsLayoutUtils::PaintFrame(nsRenderingContext* aRenderingContext, nsIFrame* aFrame, const nsRegion& aDirtyRegion, nscolor aBackstop, nsDisplayListBuilderMode aBuilderMode, PaintFrameFlags aFlags) { PROFILER_LABEL("nsLayoutUtils", "PaintFrame", js::ProfileEntry::Category::GRAPHICS); #ifdef MOZ_DUMP_PAINTING if (!gPaintCountStack) { gPaintCountStack = new nsTArray(); ClearOnShutdown(&gPaintCountStack); gPaintCountStack->AppendElement(0); } ++gPaintCountStack->LastElement(); AutoNestedPaintCount nestedPaintCount; #endif if (aFlags & PaintFrameFlags::PAINT_WIDGET_LAYERS) { nsView* view = aFrame->GetView(); if (!(view && view->GetWidget() && GetDisplayRootFrame(aFrame) == aFrame)) { aFlags &= ~PaintFrameFlags::PAINT_WIDGET_LAYERS; NS_ASSERTION(aRenderingContext, "need a rendering context"); } } nsPresContext* presContext = aFrame->PresContext(); nsIPresShell* presShell = presContext->PresShell(); nsRootPresContext* rootPresContext = presContext->GetRootPresContext(); if (!rootPresContext) { return NS_OK; } nsDisplayListBuilder builder(aFrame, aBuilderMode, !(aFlags & PaintFrameFlags::PAINT_HIDE_CARET)); if (aFlags & PaintFrameFlags::PAINT_IN_TRANSFORM) { builder.SetInTransform(true); } if (aFlags & PaintFrameFlags::PAINT_SYNC_DECODE_IMAGES) { builder.SetSyncDecodeImages(true); } if (aFlags & (PaintFrameFlags::PAINT_WIDGET_LAYERS | PaintFrameFlags::PAINT_TO_WINDOW)) { builder.SetPaintingToWindow(true); } if (aFlags & PaintFrameFlags::PAINT_IGNORE_SUPPRESSION) { builder.IgnorePaintSuppression(); } nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame(); if (rootScrollFrame && !aFrame->GetParent()) { nsIScrollableFrame* rootScrollableFrame = presShell->GetRootScrollFrameAsScrollable(); MOZ_ASSERT(rootScrollableFrame); nsRect displayPortBase = aFrame->GetVisualOverflowRectRelativeToSelf(); Unused << rootScrollableFrame->DecideScrollableLayer(&builder, &displayPortBase, /* aAllowCreateDisplayPort = */ true); } nsRegion visibleRegion; if (aFlags & PaintFrameFlags::PAINT_WIDGET_LAYERS) { // This layer tree will be reused, so we'll need to calculate it // for the whole "visible" area of the window // // |ignoreViewportScrolling| and |usingDisplayPort| are persistent // document-rendering state. We rely on PresShell to flush // retained layers as needed when that persistent state changes. visibleRegion = aFrame->GetVisualOverflowRectRelativeToSelf(); } else { visibleRegion = aDirtyRegion; } nsDisplayList list; // If the root has embedded plugins, flag the builder so we know we'll need // to update plugin geometry after painting. if ((aFlags & PaintFrameFlags::PAINT_WIDGET_LAYERS) && !(aFlags & PaintFrameFlags::PAINT_DOCUMENT_RELATIVE) && rootPresContext->NeedToComputePluginGeometryUpdates()) { builder.SetWillComputePluginGeometry(true); } nsRect canvasArea(nsPoint(0, 0), aFrame->GetSize()); bool ignoreViewportScrolling = aFrame->GetParent() ? false : presShell->IgnoringViewportScrolling(); if (ignoreViewportScrolling && rootScrollFrame) { nsIScrollableFrame* rootScrollableFrame = presShell->GetRootScrollFrameAsScrollable(); if (aFlags & PaintFrameFlags::PAINT_DOCUMENT_RELATIVE) { // Make visibleRegion and aRenderingContext relative to the // scrolled frame instead of the root frame. nsPoint pos = rootScrollableFrame->GetScrollPosition(); visibleRegion.MoveBy(-pos); if (aRenderingContext) { gfxPoint devPixelOffset = nsLayoutUtils::PointToGfxPoint(pos, presContext->AppUnitsPerDevPixel()); aRenderingContext->ThebesContext()->SetMatrix( aRenderingContext->ThebesContext()->CurrentMatrix().Translate(devPixelOffset)); } } builder.SetIgnoreScrollFrame(rootScrollFrame); nsCanvasFrame* canvasFrame = do_QueryFrame(rootScrollableFrame->GetScrolledFrame()); if (canvasFrame) { // Use UnionRect here to ensure that areas where the scrollbars // were are still filled with the background color. canvasArea.UnionRect(canvasArea, canvasFrame->CanvasArea() + builder.ToReferenceFrame(canvasFrame)); } } builder.EnterPresShell(aFrame); nsRect dirtyRect = visibleRegion.GetBounds(); { // If a scrollable container layer is created in nsDisplayList::PaintForFrame, // it will be the scroll parent for display items that are built in the // BuildDisplayListForStackingContext call below. We need to set the scroll // parent on the display list builder while we build those items, so that they // can pick up their scroll parent's id. ViewID id = FrameMetrics::NULL_SCROLL_ID; if (ignoreViewportScrolling && presContext->IsRootContentDocument()) { if (nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame()) { if (nsIContent* content = rootScrollFrame->GetContent()) { id = nsLayoutUtils::FindOrCreateIDFor(content); } } } else if (presShell->GetDocument() && presShell->GetDocument()->IsRootDisplayDocument() && !presShell->GetRootScrollFrame()) { // In cases where the root document is a XUL document, we want to take // the ViewID from the root element, as that will be the ViewID of the // root APZC in the tree. Skip doing this in cases where we know // nsGfxScrollFrame::BuilDisplayList will do it instead. if (dom::Element* element = presShell->GetDocument()->GetDocumentElement()) { id = nsLayoutUtils::FindOrCreateIDFor(element); } } nsDisplayListBuilder::AutoCurrentScrollParentIdSetter idSetter(&builder, id); PROFILER_LABEL("nsLayoutUtils", "PaintFrame::BuildDisplayList", js::ProfileEntry::Category::GRAPHICS); builder.SetDirtyRect(dirtyRect); aFrame->BuildDisplayListForStackingContext(&builder, &list); } nsIAtom* frameType = aFrame->GetType(); // For the viewport frame in print preview/page layout we want to paint // the grey background behind the page, not the canvas color. if (frameType == nsGkAtoms::viewportFrame && nsLayoutUtils::NeedsPrintPreviewBackground(presContext)) { nsRect bounds = nsRect(builder.ToReferenceFrame(aFrame), aFrame->GetSize()); nsDisplayListBuilder::AutoBuildingDisplayList buildingDisplayList(&builder, aFrame, bounds, false); presShell->AddPrintPreviewBackgroundItem(builder, list, aFrame, bounds); } else if (frameType != nsGkAtoms::pageFrame) { // For printing, this function is first called on an nsPageFrame, which // creates a display list with a PageContent item. The PageContent item's // paint function calls this function on the nsPageFrame's child which is // an nsPageContentFrame. We only want to add the canvas background color // item once, for the nsPageContentFrame. // Add the canvas background color to the bottom of the list. This // happens after we've built the list so that AddCanvasBackgroundColorItem // can monkey with the contents if necessary. canvasArea.IntersectRect(canvasArea, visibleRegion.GetBounds()); nsDisplayListBuilder::AutoBuildingDisplayList buildingDisplayList(&builder, aFrame, canvasArea, false); presShell->AddCanvasBackgroundColorItem( builder, list, aFrame, canvasArea, aBackstop); } builder.LeavePresShell(aFrame, &list); bool profilerNeedsDisplayList = profiler_feature_active("displaylistdump"); bool consoleNeedsDisplayList = gfxUtils::DumpDisplayList() || gfxEnv::DumpPaint(); #ifdef MOZ_DUMP_PAINTING FILE* savedDumpFile = gfxUtils::sDumpPaintFile; #endif UniquePtr ss; if (consoleNeedsDisplayList || profilerNeedsDisplayList) { ss = MakeUnique(); #ifdef MOZ_DUMP_PAINTING if (gfxEnv::DumpPaintToFile()) { nsCString string("dump-"); // Include the process ID in the dump file name, to make sure that in an // e10s setup different processes don't clobber each other's dump files. string.AppendInt(getpid()); for (int paintCount : *gPaintCountStack) { string.AppendLiteral("-"); string.AppendInt(paintCount); } string.AppendLiteral(".html"); gfxUtils::sDumpPaintFile = fopen(string.BeginReading(), "w"); } else { gfxUtils::sDumpPaintFile = stderr; } if (gfxEnv::DumpPaintToFile()) { *ss << ""; } #endif *ss << nsPrintfCString("Painting --- before optimization (dirty %d,%d,%d,%d):\n", dirtyRect.x, dirtyRect.y, dirtyRect.width, dirtyRect.height).get(); nsFrame::PrintDisplayList(&builder, list, *ss, gfxEnv::DumpPaintToFile()); if (gfxEnv::DumpPaint() || gfxEnv::DumpPaintItems()) { // Flush stream now to avoid reordering dump output relative to // messages dumped by PaintRoot below. if (profilerNeedsDisplayList && !consoleNeedsDisplayList) { profiler_log(ss->str().c_str()); } else { // Send to the console which will send to the profiler if required. fprint_stderr(gfxUtils::sDumpPaintFile, *ss); } ss = MakeUnique(); } } uint32_t flags = nsDisplayList::PAINT_DEFAULT; if (aFlags & PaintFrameFlags::PAINT_WIDGET_LAYERS) { flags |= nsDisplayList::PAINT_USE_WIDGET_LAYERS; if (!(aFlags & PaintFrameFlags::PAINT_DOCUMENT_RELATIVE)) { nsIWidget *widget = aFrame->GetNearestWidget(); if (widget) { // If we're finished building display list items for painting of the outermost // pres shell, notify the widget about any toolbars we've encountered. widget->UpdateThemeGeometries(builder.GetThemeGeometries()); } } } if (aFlags & PaintFrameFlags::PAINT_EXISTING_TRANSACTION) { flags |= nsDisplayList::PAINT_EXISTING_TRANSACTION; } if (aFlags & PaintFrameFlags::PAINT_NO_COMPOSITE) { flags |= nsDisplayList::PAINT_NO_COMPOSITE; } if (aFlags & PaintFrameFlags::PAINT_COMPRESSED) { flags |= nsDisplayList::PAINT_COMPRESSED; } TimeStamp paintStart = TimeStamp::Now(); RefPtr layerManager = list.PaintRoot(&builder, aRenderingContext, flags); if (gfxPrefs::GfxLoggingPaintedPixelCountEnabled()) { TimeStamp now = TimeStamp::Now(); float rasterizeTime = (now - paintStart).ToMilliseconds(); uint32_t pixelCount = layerManager->GetAndClearPaintedPixelCount(); static std::vector> history; if (pixelCount) { history.push_back(std::make_pair(now, pixelCount)); } uint32_t paintedInLastSecond = 0; for (auto i = history.begin(); i != history.end(); i++) { if ((now - i->first).ToMilliseconds() > 1000.0f) { // more than 1000ms ago, don't count it continue; } if (paintedInLastSecond == 0) { // This is the first one in the last 1000ms, so drop everything earlier history.erase(history.begin(), i); i = history.begin(); } paintedInLastSecond += i->second; MOZ_ASSERT(paintedInLastSecond); // all historical pixel counts are > 0 } printf_stderr("Painted %u pixels in %fms (%u in the last 1000ms)\n", pixelCount, rasterizeTime, paintedInLastSecond); } if (consoleNeedsDisplayList || profilerNeedsDisplayList) { *ss << "Painting --- after optimization:\n"; nsFrame::PrintDisplayList(&builder, list, *ss, gfxEnv::DumpPaintToFile()); *ss << "Painting --- layer tree:\n"; if (layerManager) { FrameLayerBuilder::DumpRetainedLayerTree(layerManager, *ss, gfxEnv::DumpPaintToFile()); } if (profilerNeedsDisplayList && !consoleNeedsDisplayList) { profiler_log(ss->str().c_str()); } else { // Send to the console which will send to the profiler if required. fprint_stderr(gfxUtils::sDumpPaintFile, *ss); } #ifdef MOZ_DUMP_PAINTING if (gfxEnv::DumpPaintToFile()) { *ss << ""; } if (gfxEnv::DumpPaintToFile()) { fclose(gfxUtils::sDumpPaintFile); } gfxUtils::sDumpPaintFile = savedDumpFile; #endif std::stringstream lsStream; nsFrame::PrintDisplayList(&builder, list, lsStream); layerManager->GetRoot()->SetDisplayListLog(lsStream.str().c_str()); } #ifdef MOZ_DUMP_PAINTING if (gfxPrefs::DumpClientLayers()) { std::stringstream ss; FrameLayerBuilder::DumpRetainedLayerTree(layerManager, ss, false); print_stderr(ss); } #endif // Update the widget's opaque region information. This sets // glass boundaries on Windows. Also set up the window dragging region // and plugin clip regions and bounds. if ((aFlags & PaintFrameFlags::PAINT_WIDGET_LAYERS) && !(aFlags & PaintFrameFlags::PAINT_DOCUMENT_RELATIVE)) { nsIWidget *widget = aFrame->GetNearestWidget(); if (widget) { nsRegion opaqueRegion; opaqueRegion.And(builder.GetWindowExcludeGlassRegion(), builder.GetWindowOpaqueRegion()); widget->UpdateOpaqueRegion( LayoutDeviceIntRegion::FromUnknownRegion( opaqueRegion.ToNearestPixels(presContext->AppUnitsPerDevPixel()))); widget->UpdateWindowDraggingRegion(builder.GetWindowDraggingRegion()); } } if (builder.WillComputePluginGeometry()) { // For single process compute and apply plugin geometry updates to plugin // windows, then request composition. For content processes skip eveything // except requesting composition. Geometry updates were calculated and // shipped to the chrome process in nsDisplayList when the layer // transaction completed. if (XRE_IsParentProcess()) { rootPresContext->ComputePluginGeometryUpdates(aFrame, &builder, &list); // We're not going to get a WillPaintWindow event here if we didn't do // widget invalidation, so just apply the plugin geometry update here // instead. We could instead have the compositor send back an equivalent // to WillPaintWindow, but it should be close enough to now not to matter. if (layerManager && !layerManager->NeedsWidgetInvalidation()) { rootPresContext->ApplyPluginGeometryUpdates(); } } // We told the compositor thread not to composite when it received the // transaction because we wanted to update plugins first. Schedule the // composite now. if (layerManager) { layerManager->Composite(); } } // Flush the list so we don't trigger the IsEmpty-on-destruction assertion list.DeleteAll(); return NS_OK; } /** * Uses a binary search for find where the cursor falls in the line of text * It also keeps track of the part of the string that has already been measured * so it doesn't have to keep measuring the same text over and over * * @param "aBaseWidth" contains the width in twips of the portion * of the text that has already been measured, and aBaseInx contains * the index of the text that has already been measured. * * @param aTextWidth returns the (in twips) the length of the text that falls * before the cursor aIndex contains the index of the text where the cursor falls */ bool nsLayoutUtils::BinarySearchForPosition(DrawTarget* aDrawTarget, nsFontMetrics& aFontMetrics, const char16_t* aText, int32_t aBaseWidth, int32_t aBaseInx, int32_t aStartInx, int32_t aEndInx, int32_t aCursorPos, int32_t& aIndex, int32_t& aTextWidth) { int32_t range = aEndInx - aStartInx; if ((range == 1) || (range == 2 && NS_IS_HIGH_SURROGATE(aText[aStartInx]))) { aIndex = aStartInx + aBaseInx; aTextWidth = nsLayoutUtils::AppUnitWidthOfString(aText, aIndex, aFontMetrics, aDrawTarget); return true; } int32_t inx = aStartInx + (range / 2); // Make sure we don't leave a dangling low surrogate if (NS_IS_HIGH_SURROGATE(aText[inx-1])) inx++; int32_t textWidth = nsLayoutUtils::AppUnitWidthOfString(aText, inx, aFontMetrics, aDrawTarget); int32_t fullWidth = aBaseWidth + textWidth; if (fullWidth == aCursorPos) { aTextWidth = textWidth; aIndex = inx; return true; } else if (aCursorPos < fullWidth) { aTextWidth = aBaseWidth; if (BinarySearchForPosition(aDrawTarget, aFontMetrics, aText, aBaseWidth, aBaseInx, aStartInx, inx, aCursorPos, aIndex, aTextWidth)) { return true; } } else { aTextWidth = fullWidth; if (BinarySearchForPosition(aDrawTarget, aFontMetrics, aText, aBaseWidth, aBaseInx, inx, aEndInx, aCursorPos, aIndex, aTextWidth)) { return true; } } return false; } static void AddBoxesForFrame(nsIFrame* aFrame, nsLayoutUtils::BoxCallback* aCallback) { nsIAtom* pseudoType = aFrame->StyleContext()->GetPseudo(); if (pseudoType == nsCSSAnonBoxes::tableWrapper) { AddBoxesForFrame(aFrame->PrincipalChildList().FirstChild(), aCallback); if (aCallback->mIncludeCaptionBoxForTable) { nsIFrame* kid = aFrame->GetChildList(nsIFrame::kCaptionList).FirstChild(); if (kid) { AddBoxesForFrame(kid, aCallback); } } } else if (pseudoType == nsCSSAnonBoxes::mozAnonymousBlock || pseudoType == nsCSSAnonBoxes::mozAnonymousPositionedBlock || pseudoType == nsCSSAnonBoxes::mozMathMLAnonymousBlock || pseudoType == nsCSSAnonBoxes::mozXULAnonymousBlock) { for (nsIFrame* kid : aFrame->PrincipalChildList()) { AddBoxesForFrame(kid, aCallback); } } else { aCallback->AddBox(aFrame); } } void nsLayoutUtils::GetAllInFlowBoxes(nsIFrame* aFrame, BoxCallback* aCallback) { while (aFrame) { AddBoxesForFrame(aFrame, aCallback); aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame); } } nsIFrame* nsLayoutUtils::GetFirstNonAnonymousFrame(nsIFrame* aFrame) { while (aFrame) { nsIAtom* pseudoType = aFrame->StyleContext()->GetPseudo(); if (pseudoType == nsCSSAnonBoxes::tableWrapper) { nsIFrame* f = GetFirstNonAnonymousFrame(aFrame->PrincipalChildList().FirstChild()); if (f) { return f; } nsIFrame* kid = aFrame->GetChildList(nsIFrame::kCaptionList).FirstChild(); if (kid) { f = GetFirstNonAnonymousFrame(kid); if (f) { return f; } } } else if (pseudoType == nsCSSAnonBoxes::mozAnonymousBlock || pseudoType == nsCSSAnonBoxes::mozAnonymousPositionedBlock || pseudoType == nsCSSAnonBoxes::mozMathMLAnonymousBlock || pseudoType == nsCSSAnonBoxes::mozXULAnonymousBlock) { for (nsIFrame* kid : aFrame->PrincipalChildList()) { nsIFrame* f = GetFirstNonAnonymousFrame(kid); if (f) { return f; } } } else { return aFrame; } aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame); } return nullptr; } struct BoxToRect : public nsLayoutUtils::BoxCallback { nsIFrame* mRelativeTo; nsLayoutUtils::RectCallback* mCallback; uint32_t mFlags; BoxToRect(nsIFrame* aRelativeTo, nsLayoutUtils::RectCallback* aCallback, uint32_t aFlags) : mRelativeTo(aRelativeTo), mCallback(aCallback), mFlags(aFlags) {} virtual void AddBox(nsIFrame* aFrame) override { nsRect r; nsIFrame* outer = nsSVGUtils::GetOuterSVGFrameAndCoveredRegion(aFrame, &r); if (!outer) { outer = aFrame; switch (mFlags & nsLayoutUtils::RECTS_WHICH_BOX_MASK) { case nsLayoutUtils::RECTS_USE_CONTENT_BOX: r = aFrame->GetContentRectRelativeToSelf(); break; case nsLayoutUtils::RECTS_USE_PADDING_BOX: r = aFrame->GetPaddingRectRelativeToSelf(); break; case nsLayoutUtils::RECTS_USE_MARGIN_BOX: r = aFrame->GetMarginRectRelativeToSelf(); break; default: // Use the border box r = aFrame->GetRectRelativeToSelf(); } } if (mFlags & nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS) { r = nsLayoutUtils::TransformFrameRectToAncestor(outer, r, mRelativeTo); } else { r += outer->GetOffsetTo(mRelativeTo); } mCallback->AddRect(r); } }; struct BoxToRectAndText : public BoxToRect { mozilla::dom::DOMStringList* mTextList; BoxToRectAndText(nsIFrame* aRelativeTo, nsLayoutUtils::RectCallback* aCallback, mozilla::dom::DOMStringList* aTextList, uint32_t aFlags) : BoxToRect(aRelativeTo, aCallback, aFlags), mTextList(aTextList) {} virtual void AddBox(nsIFrame* aFrame) override { BoxToRect::AddBox(aFrame); if (mTextList) { nsIContent* content = aFrame->GetContent(); nsAutoString textContent; mozilla::ErrorResult err; // ignored content->GetTextContent(textContent, err); mTextList->Add(textContent); } } }; void nsLayoutUtils::GetAllInFlowRects(nsIFrame* aFrame, nsIFrame* aRelativeTo, RectCallback* aCallback, uint32_t aFlags) { BoxToRect converter(aRelativeTo, aCallback, aFlags); GetAllInFlowBoxes(aFrame, &converter); } void nsLayoutUtils::GetAllInFlowRectsAndTexts(nsIFrame* aFrame, nsIFrame* aRelativeTo, RectCallback* aCallback, mozilla::dom::DOMStringList* aTextList, uint32_t aFlags) { BoxToRectAndText converter(aRelativeTo, aCallback, aTextList, aFlags); GetAllInFlowBoxes(aFrame, &converter); } nsLayoutUtils::RectAccumulator::RectAccumulator() : mSeenFirstRect(false) {} void nsLayoutUtils::RectAccumulator::AddRect(const nsRect& aRect) { mResultRect.UnionRect(mResultRect, aRect); if (!mSeenFirstRect) { mSeenFirstRect = true; mFirstRect = aRect; } } nsLayoutUtils::RectListBuilder::RectListBuilder(DOMRectList* aList) : mRectList(aList) { } void nsLayoutUtils::RectListBuilder::AddRect(const nsRect& aRect) { RefPtr rect = new DOMRect(mRectList); rect->SetLayoutRect(aRect); mRectList->Append(rect); } nsIFrame* nsLayoutUtils::GetContainingBlockForClientRect(nsIFrame* aFrame) { return aFrame->PresContext()->PresShell()->GetRootFrame(); } nsRect nsLayoutUtils::GetAllInFlowRectsUnion(nsIFrame* aFrame, nsIFrame* aRelativeTo, uint32_t aFlags) { RectAccumulator accumulator; GetAllInFlowRects(aFrame, aRelativeTo, &accumulator, aFlags); return accumulator.mResultRect.IsEmpty() ? accumulator.mFirstRect : accumulator.mResultRect; } nsRect nsLayoutUtils::GetTextShadowRectsUnion(const nsRect& aTextAndDecorationsRect, nsIFrame* aFrame, uint32_t aFlags) { const nsStyleText* textStyle = aFrame->StyleText(); if (!textStyle->HasTextShadow()) return aTextAndDecorationsRect; nsRect resultRect = aTextAndDecorationsRect; int32_t A2D = aFrame->PresContext()->AppUnitsPerDevPixel(); for (uint32_t i = 0; i < textStyle->mTextShadow->Length(); ++i) { nsCSSShadowItem* shadow = textStyle->mTextShadow->ShadowAt(i); nsMargin blur = nsContextBoxBlur::GetBlurRadiusMargin(shadow->mRadius, A2D); if ((aFlags & EXCLUDE_BLUR_SHADOWS) && blur != nsMargin(0, 0, 0, 0)) continue; nsRect tmpRect(aTextAndDecorationsRect); tmpRect.MoveBy(nsPoint(shadow->mXOffset, shadow->mYOffset)); tmpRect.Inflate(blur); resultRect.UnionRect(resultRect, tmpRect); } return resultRect; } enum ObjectDimensionType { eWidth, eHeight }; static nscoord ComputeMissingDimension(const nsSize& aDefaultObjectSize, const AspectRatio& aIntrinsicRatio, const Maybe& aSpecifiedWidth, const Maybe& aSpecifiedHeight, ObjectDimensionType aDimensionToCompute) { // The "default sizing algorithm" computes the missing dimension as follows: // (source: http://dev.w3.org/csswg/css-images-3/#default-sizing ) // 1. "If the object has an intrinsic aspect ratio, the missing dimension of // the concrete object size is calculated using the intrinsic aspect // ratio and the present dimension." if (aIntrinsicRatio) { // Fill in the missing dimension using the intrinsic aspect ratio. if (aDimensionToCompute == eWidth) { return aIntrinsicRatio.ApplyTo(*aSpecifiedHeight); } return aIntrinsicRatio.Inverted().ApplyTo(*aSpecifiedWidth); } // 2. "Otherwise, if the missing dimension is present in the object's // intrinsic dimensions, [...]" // NOTE: *Skipping* this case, because we already know it's not true -- we're // in this function because the missing dimension is *not* present in // the object's intrinsic dimensions. // 3. "Otherwise, the missing dimension of the concrete object size is taken // from the default object size. " return (aDimensionToCompute == eWidth) ? aDefaultObjectSize.width : aDefaultObjectSize.height; } /* * This computes & returns the concrete object size of replaced content, if * that content were to be rendered with "object-fit: none". (Or, if the * element has neither an intrinsic height nor width, this method returns an * empty Maybe<> object.) * * As specced... * http://dev.w3.org/csswg/css-images-3/#valdef-object-fit-none * ..we use "the default sizing algorithm with no specified size, * and a default object size equal to the replaced element's used width and * height." * * The default sizing algorithm is described here: * http://dev.w3.org/csswg/css-images-3/#default-sizing * Quotes in the function-impl are taken from that ^ spec-text. * * Per its final bulleted section: since there's no specified size, * we run the default sizing algorithm using the object's intrinsic size in * place of the specified size. But if the object has neither an intrinsic * height nor an intrinsic width, then we instead return without populating our * outparam, and we let the caller figure out the size (using a contain * constraint). */ static Maybe MaybeComputeObjectFitNoneSize(const nsSize& aDefaultObjectSize, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio) { // "If the object has an intrinsic height or width, its size is resolved as // if its intrinsic dimensions were given as the specified size." // // So, first we check if we have an intrinsic height and/or width: Maybe specifiedWidth; if (aIntrinsicSize.width.GetUnit() == eStyleUnit_Coord) { specifiedWidth.emplace(aIntrinsicSize.width.GetCoordValue()); } Maybe specifiedHeight; if (aIntrinsicSize.height.GetUnit() == eStyleUnit_Coord) { specifiedHeight.emplace(aIntrinsicSize.height.GetCoordValue()); } Maybe noneSize; // (the value we'll return) if (specifiedWidth || specifiedHeight) { // We have at least one specified dimension; use whichever dimension is // specified, and compute the other one using our intrinsic ratio, or (if // no valid ratio) using the default object size. noneSize.emplace(); noneSize->width = specifiedWidth ? *specifiedWidth : ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio, specifiedWidth, specifiedHeight, eWidth); noneSize->height = specifiedHeight ? *specifiedHeight : ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio, specifiedWidth, specifiedHeight, eHeight); } // [else:] "Otherwise [if there's neither an intrinsic height nor width], its // size is resolved as a contain constraint against the default object size." // We'll let our caller do that, to share code & avoid redundant // computations; so, we return w/out populating noneSize. return noneSize; } // Computes the concrete object size to render into, as described at // http://dev.w3.org/csswg/css-images-3/#concrete-size-resolution static nsSize ComputeConcreteObjectSize(const nsSize& aConstraintSize, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio, uint8_t aObjectFit) { // Handle default behavior (filling the container) w/ fast early return. // (Also: if there's no valid intrinsic ratio, then we have the "fill" // behavior & just use the constraint size.) if (MOZ_LIKELY(aObjectFit == NS_STYLE_OBJECT_FIT_FILL) || !aIntrinsicRatio) { return aConstraintSize; } // The type of constraint to compute (cover/contain), if needed: Maybe fitType; Maybe noneSize; if (aObjectFit == NS_STYLE_OBJECT_FIT_NONE || aObjectFit == NS_STYLE_OBJECT_FIT_SCALE_DOWN) { noneSize = MaybeComputeObjectFitNoneSize(aConstraintSize, aIntrinsicSize, aIntrinsicRatio); if (!noneSize || aObjectFit == NS_STYLE_OBJECT_FIT_SCALE_DOWN) { // Need to compute a 'CONTAIN' constraint (either for the 'none' size // itself, or for comparison w/ the 'none' size to resolve 'scale-down'.) fitType.emplace(nsImageRenderer::CONTAIN); } } else if (aObjectFit == NS_STYLE_OBJECT_FIT_COVER) { fitType.emplace(nsImageRenderer::COVER); } else if (aObjectFit == NS_STYLE_OBJECT_FIT_CONTAIN) { fitType.emplace(nsImageRenderer::CONTAIN); } Maybe constrainedSize; if (fitType) { constrainedSize.emplace( nsImageRenderer::ComputeConstrainedSize(aConstraintSize, aIntrinsicRatio, *fitType)); } // Now, we should have all the sizing information that we need. switch (aObjectFit) { // skipping NS_STYLE_OBJECT_FIT_FILL; we handled it w/ early-return. case NS_STYLE_OBJECT_FIT_CONTAIN: case NS_STYLE_OBJECT_FIT_COVER: MOZ_ASSERT(constrainedSize); return *constrainedSize; case NS_STYLE_OBJECT_FIT_NONE: if (noneSize) { return *noneSize; } MOZ_ASSERT(constrainedSize); return *constrainedSize; case NS_STYLE_OBJECT_FIT_SCALE_DOWN: MOZ_ASSERT(constrainedSize); if (noneSize) { constrainedSize->width = std::min(constrainedSize->width, noneSize->width); constrainedSize->height = std::min(constrainedSize->height, noneSize->height); } return *constrainedSize; default: MOZ_ASSERT_UNREACHABLE("Unexpected enum value for 'object-fit'"); return aConstraintSize; // fall back to (default) 'fill' behavior } } // (Helper for HasInitialObjectFitAndPosition, to check // each "object-position" coord.) static bool IsCoord50Pct(const mozilla::Position::Coord& aCoord) { return (aCoord.mLength == 0 && aCoord.mHasPercent && aCoord.mPercent == 0.5f); } // Indicates whether the given nsStylePosition has the initial values // for the "object-fit" and "object-position" properties. static bool HasInitialObjectFitAndPosition(const nsStylePosition* aStylePos) { const mozilla::Position& objectPos = aStylePos->mObjectPosition; return aStylePos->mObjectFit == NS_STYLE_OBJECT_FIT_FILL && IsCoord50Pct(objectPos.mXPosition) && IsCoord50Pct(objectPos.mYPosition); } /* static */ nsRect nsLayoutUtils::ComputeObjectDestRect(const nsRect& aConstraintRect, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio, const nsStylePosition* aStylePos, nsPoint* aAnchorPoint) { // Step 1: Figure out our "concrete object size" // (the size of the region we'll actually draw our image's pixels into). nsSize concreteObjectSize = ComputeConcreteObjectSize(aConstraintRect.Size(), aIntrinsicSize, aIntrinsicRatio, aStylePos->mObjectFit); // Step 2: Figure out how to align that region in the element's content-box. nsPoint imageTopLeftPt, imageAnchorPt; nsImageRenderer::ComputeObjectAnchorPoint(aStylePos->mObjectPosition, aConstraintRect.Size(), concreteObjectSize, &imageTopLeftPt, &imageAnchorPt); // Right now, we're with respect to aConstraintRect's top-left point. We add // that point here, to convert to the same broader coordinate space that // aConstraintRect is in. imageTopLeftPt += aConstraintRect.TopLeft(); imageAnchorPt += aConstraintRect.TopLeft(); if (aAnchorPoint) { // Special-case: if our "object-fit" and "object-position" properties have // their default values ("object-fit: fill; object-position:50% 50%"), then // we'll override the calculated imageAnchorPt, and instead use the // object's top-left corner. // // This special case is partly for backwards compatibility (since // traditionally we've pixel-aligned the top-left corner of e.g. // elements), and partly because ComputeSnappedDrawingParameters produces // less error if the anchor point is at the top-left corner. So, all other // things being equal, we prefer that code path with less error. if (HasInitialObjectFitAndPosition(aStylePos)) { *aAnchorPoint = imageTopLeftPt; } else { *aAnchorPoint = imageAnchorPt; } } return nsRect(imageTopLeftPt, concreteObjectSize); } already_AddRefed nsLayoutUtils::GetFontMetricsForFrame(const nsIFrame* aFrame, float aInflation) { nsStyleContext* styleContext = aFrame->StyleContext(); uint8_t variantWidth = NS_FONT_VARIANT_WIDTH_NORMAL; if (styleContext->IsTextCombined()) { MOZ_ASSERT(aFrame->GetType() == nsGkAtoms::textFrame); auto textFrame = static_cast(aFrame); auto clusters = textFrame->CountGraphemeClusters(); if (clusters == 2) { variantWidth = NS_FONT_VARIANT_WIDTH_HALF; } else if (clusters == 3) { variantWidth = NS_FONT_VARIANT_WIDTH_THIRD; } else if (clusters == 4) { variantWidth = NS_FONT_VARIANT_WIDTH_QUARTER; } } return GetFontMetricsForStyleContext(styleContext, aInflation, variantWidth); } already_AddRefed nsLayoutUtils::GetFontMetricsForStyleContext(nsStyleContext* aStyleContext, float aInflation, uint8_t aVariantWidth) { nsPresContext* pc = aStyleContext->PresContext(); WritingMode wm(aStyleContext); const nsStyleFont* styleFont = aStyleContext->StyleFont(); nsFontMetrics::Params params; params.language = styleFont->mLanguage; params.explicitLanguage = styleFont->mExplicitLanguage; params.orientation = wm.IsVertical() && !wm.IsSideways() ? gfxFont::eVertical : gfxFont::eHorizontal; // pass the user font set object into the device context to // pass along to CreateFontGroup params.userFontSet = pc->GetUserFontSet(); params.textPerf = pc->GetTextPerfMetrics(); // When aInflation is 1.0 and we don't require width variant, avoid // making a local copy of the nsFont. // This also avoids running font.size through floats when it is large, // which would be lossy. Fortunately, in such cases, aInflation is // guaranteed to be 1.0f. if (aInflation == 1.0f && aVariantWidth == NS_FONT_VARIANT_WIDTH_NORMAL) { return pc->DeviceContext()->GetMetricsFor(styleFont->mFont, params); } nsFont font = styleFont->mFont; font.size = NSToCoordRound(font.size * aInflation); font.variantWidth = aVariantWidth; return pc->DeviceContext()->GetMetricsFor(font, params); } nsIFrame* nsLayoutUtils::FindChildContainingDescendant(nsIFrame* aParent, nsIFrame* aDescendantFrame) { nsIFrame* result = aDescendantFrame; while (result) { nsIFrame* parent = result->GetParent(); if (parent == aParent) { break; } // The frame is not an immediate child of aParent so walk up another level result = parent; } return result; } nsBlockFrame* nsLayoutUtils::GetAsBlock(nsIFrame* aFrame) { nsBlockFrame* block = do_QueryFrame(aFrame); return block; } nsBlockFrame* nsLayoutUtils::FindNearestBlockAncestor(nsIFrame* aFrame) { nsIFrame* nextAncestor; for (nextAncestor = aFrame->GetParent(); nextAncestor; nextAncestor = nextAncestor->GetParent()) { nsBlockFrame* block = GetAsBlock(nextAncestor); if (block) return block; } return nullptr; } nsIFrame* nsLayoutUtils::GetNonGeneratedAncestor(nsIFrame* aFrame) { if (!(aFrame->GetStateBits() & NS_FRAME_GENERATED_CONTENT)) return aFrame; nsIFrame* f = aFrame; do { f = GetParentOrPlaceholderFor(f); } while (f->GetStateBits() & NS_FRAME_GENERATED_CONTENT); return f; } nsIFrame* nsLayoutUtils::GetParentOrPlaceholderFor(nsIFrame* aFrame) { if ((aFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) && !aFrame->GetPrevInFlow()) { return aFrame->GetProperty(nsIFrame::PlaceholderFrameProperty()); } return aFrame->GetParent(); } nsIFrame* nsLayoutUtils::GetParentOrPlaceholderForCrossDoc(nsIFrame* aFrame) { nsIFrame* f = GetParentOrPlaceholderFor(aFrame); if (f) return f; return GetCrossDocParentFrame(aFrame); } nsIFrame* nsLayoutUtils::GetNextContinuationOrIBSplitSibling(nsIFrame *aFrame) { nsIFrame *result = aFrame->GetNextContinuation(); if (result) return result; if ((aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) != 0) { // We only store the ib-split sibling annotation with the first // frame in the continuation chain. Walk back to find that frame now. aFrame = aFrame->FirstContinuation(); return aFrame->GetProperty(nsIFrame::IBSplitSibling()); } return nullptr; } nsIFrame* nsLayoutUtils::FirstContinuationOrIBSplitSibling(nsIFrame *aFrame) { nsIFrame *result = aFrame->FirstContinuation(); if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) { while (true) { nsIFrame* f = result->GetProperty(nsIFrame::IBSplitPrevSibling()); if (!f) break; result = f; } } return result; } nsIFrame* nsLayoutUtils::LastContinuationOrIBSplitSibling(nsIFrame *aFrame) { nsIFrame *result = aFrame->FirstContinuation(); if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) { while (true) { nsIFrame* f = result->GetProperty(nsIFrame::IBSplitSibling()); if (!f) { break; } result = f; } } result = result->LastContinuation(); return result; } bool nsLayoutUtils::IsFirstContinuationOrIBSplitSibling(nsIFrame *aFrame) { if (aFrame->GetPrevContinuation()) { return false; } if ((aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) && aFrame->GetProperty(nsIFrame::IBSplitPrevSibling())) { return false; } return true; } bool nsLayoutUtils::IsViewportScrollbarFrame(nsIFrame* aFrame) { if (!aFrame) return false; nsIFrame* rootScrollFrame = aFrame->PresContext()->PresShell()->GetRootScrollFrame(); if (!rootScrollFrame) return false; nsIScrollableFrame* rootScrollableFrame = do_QueryFrame(rootScrollFrame); NS_ASSERTION(rootScrollableFrame, "The root scorollable frame is null"); if (!IsProperAncestorFrame(rootScrollFrame, aFrame)) return false; nsIFrame* rootScrolledFrame = rootScrollableFrame->GetScrolledFrame(); return !(rootScrolledFrame == aFrame || IsProperAncestorFrame(rootScrolledFrame, aFrame)); } // Use only for widths/heights (or their min/max), since it clamps // negative calc() results to 0. static bool GetAbsoluteCoord(const nsStyleCoord& aStyle, nscoord& aResult) { if (aStyle.IsCalcUnit()) { if (aStyle.CalcHasPercent()) { return false; } // If it has no percents, we can pass 0 for the percentage basis. aResult = nsRuleNode::ComputeComputedCalc(aStyle, 0); if (aResult < 0) aResult = 0; return true; } if (eStyleUnit_Coord != aStyle.GetUnit()) return false; aResult = aStyle.GetCoordValue(); NS_ASSERTION(aResult >= 0, "negative widths not allowed"); return true; } static nscoord GetBSizeTakenByBoxSizing(StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aHorizontalAxis, bool aIgnorePadding); // Only call on style coords for which GetAbsoluteCoord returned false. static bool GetPercentBSize(const nsStyleCoord& aStyle, nsIFrame* aFrame, bool aHorizontalAxis, nscoord& aResult) { if (eStyleUnit_Percent != aStyle.GetUnit() && !aStyle.IsCalcUnit()) return false; MOZ_ASSERT(!aStyle.IsCalcUnit() || aStyle.CalcHasPercent(), "GetAbsoluteCoord should have handled this"); // During reflow, nsHTMLScrollFrame::ReflowScrolledFrame uses // SetComputedHeight on the reflow state for its child to propagate its // computed height to the scrolled content. So here we skip to the scroll // frame that contains this scrolled content in order to get the same // behavior as layout when computing percentage heights. nsIFrame *f = aFrame->GetContainingBlock(nsIFrame::SKIP_SCROLLED_FRAME); if (!f) { NS_NOTREACHED("top of frame tree not a containing block"); return false; } WritingMode wm = f->GetWritingMode(); const nsStylePosition *pos = f->StylePosition(); const nsStyleCoord& bSizeCoord = pos->BSize(wm); nscoord h; if (!GetAbsoluteCoord(bSizeCoord, h) && !GetPercentBSize(bSizeCoord, f, aHorizontalAxis, h)) { NS_ASSERTION(bSizeCoord.GetUnit() == eStyleUnit_Auto || bSizeCoord.HasPercent(), "unknown block-size unit"); nsIAtom* fType = f->GetType(); if (fType != nsGkAtoms::viewportFrame && fType != nsGkAtoms::canvasFrame && fType != nsGkAtoms::pageContentFrame) { // There's no basis for the percentage height, so it acts like auto. // Should we consider a max-height < min-height pair a basis for // percentage heights? The spec is somewhat unclear, and not doing // so is simpler and avoids troubling discontinuities in behavior, // so I'll choose not to. -LDB return false; } NS_ASSERTION(bSizeCoord.GetUnit() == eStyleUnit_Auto, "Unexpected block-size unit for viewport or canvas or page-content"); // For the viewport, canvas, and page-content kids, the percentage // basis is just the parent block-size. h = f->BSize(wm); if (h == NS_UNCONSTRAINEDSIZE) { // We don't have a percentage basis after all return false; } } const nsStyleCoord& maxBSizeCoord = pos->MaxBSize(wm); nscoord maxh; if (GetAbsoluteCoord(maxBSizeCoord, maxh) || GetPercentBSize(maxBSizeCoord, f, aHorizontalAxis, maxh)) { if (maxh < h) h = maxh; } else { NS_ASSERTION(maxBSizeCoord.GetUnit() == eStyleUnit_None || maxBSizeCoord.HasPercent(), "unknown max block-size unit"); } const nsStyleCoord& minBSizeCoord = pos->MinBSize(wm); nscoord minh; if (GetAbsoluteCoord(minBSizeCoord, minh) || GetPercentBSize(minBSizeCoord, f, aHorizontalAxis, minh)) { if (minh > h) h = minh; } else { NS_ASSERTION(minBSizeCoord.HasPercent() || minBSizeCoord.GetUnit() == eStyleUnit_Auto, "unknown min block-size unit"); } // Now adjust h for box-sizing styles on the parent. We never ignore padding // here. That could conceivably cause some problems with fieldsets (which are // the one place that wants to ignore padding), but solving that here without // hardcoding a check for f being a fieldset-content frame is a bit of a pain. nscoord bSizeTakenByBoxSizing = GetBSizeTakenByBoxSizing(pos->mBoxSizing, f, aHorizontalAxis, false); h = std::max(0, h - bSizeTakenByBoxSizing); if (aStyle.IsCalcUnit()) { aResult = std::max(nsRuleNode::ComputeComputedCalc(aStyle, h), 0); return true; } aResult = NSToCoordRound(aStyle.GetPercentValue() * h); return true; } // Return true if aStyle can be resolved to a definite value and if so // return that value in aResult. static bool GetDefiniteSize(const nsStyleCoord& aStyle, nsIFrame* aFrame, bool aIsInlineAxis, const Maybe& aPercentageBasis, nscoord* aResult) { switch (aStyle.GetUnit()) { case eStyleUnit_Coord: *aResult = aStyle.GetCoordValue(); return true; case eStyleUnit_Percent: { if (aPercentageBasis.isNothing()) { return false; } auto wm = aFrame->GetWritingMode(); nscoord pb = aIsInlineAxis ? aPercentageBasis.value().ISize(wm) : aPercentageBasis.value().BSize(wm); if (pb != NS_UNCONSTRAINEDSIZE) { nscoord p = NSToCoordFloorClamped(pb * aStyle.GetPercentValue()); *aResult = std::max(nscoord(0), p); return true; } return false; } case eStyleUnit_Calc: { nsStyleCoord::Calc* calc = aStyle.GetCalcValue(); if (calc->mPercent != 0.0f) { if (aPercentageBasis.isNothing()) { return false; } auto wm = aFrame->GetWritingMode(); nscoord pb = aIsInlineAxis ? aPercentageBasis.value().ISize(wm) : aPercentageBasis.value().BSize(wm); if (pb == NS_UNCONSTRAINEDSIZE) { return false; } *aResult = std::max(0, calc->mLength + NSToCoordFloorClamped(pb * calc->mPercent)); } else { *aResult = std::max(0, calc->mLength); } return true; } default: return false; } } // // NOTE: this function will be replaced by GetDefiniteSizeTakenByBoxSizing (bug 1363918). // Please do not add new uses of this function. // // Get the amount of vertical space taken out of aFrame's content area due to // its borders and paddings given the box-sizing value in aBoxSizing. We don't // get aBoxSizing from the frame because some callers want to compute this for // specific box-sizing values. aHorizontalAxis is true if our inline direction // is horisontal and our block direction is vertical. aIgnorePadding is true if // padding should be ignored. static nscoord GetBSizeTakenByBoxSizing(StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aHorizontalAxis, bool aIgnorePadding) { nscoord bSizeTakenByBoxSizing = 0; if (aBoxSizing == StyleBoxSizing::Border) { const nsStyleBorder* styleBorder = aFrame->StyleBorder(); bSizeTakenByBoxSizing += aHorizontalAxis ? styleBorder->GetComputedBorder().TopBottom() : styleBorder->GetComputedBorder().LeftRight(); if (!aIgnorePadding) { const nsStyleSides& stylePadding = aFrame->StylePadding()->mPadding; const nsStyleCoord& paddingStart = stylePadding.Get(aHorizontalAxis ? NS_SIDE_TOP : NS_SIDE_LEFT); const nsStyleCoord& paddingEnd = stylePadding.Get(aHorizontalAxis ? NS_SIDE_BOTTOM : NS_SIDE_RIGHT); nscoord pad; // XXXbz Calling GetPercentBSize on padding values looks bogus, since // percent padding is always a percentage of the inline-size of the // containing block. We should perhaps just treat non-absolute paddings // here as 0 instead, except that in some cases the width may in fact be // known. See bug 1231059. if (GetAbsoluteCoord(paddingStart, pad) || GetPercentBSize(paddingStart, aFrame, aHorizontalAxis, pad)) { bSizeTakenByBoxSizing += pad; } if (GetAbsoluteCoord(paddingEnd, pad) || GetPercentBSize(paddingEnd, aFrame, aHorizontalAxis, pad)) { bSizeTakenByBoxSizing += pad; } } } return bSizeTakenByBoxSizing; } // Get the amount of space taken out of aFrame's content area due to its // borders and paddings given the box-sizing value in aBoxSizing. We don't // get aBoxSizing from the frame because some callers want to compute this for // specific box-sizing values. // aIsInlineAxis is true if we're computing for aFrame's inline axis. // aIgnorePadding is true if padding should be ignored. static nscoord GetDefiniteSizeTakenByBoxSizing(StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aIsInlineAxis, bool aIgnorePadding, const Maybe& aPercentageBasis) { nscoord sizeTakenByBoxSizing = 0; if (MOZ_UNLIKELY(aBoxSizing == StyleBoxSizing::Border)) { const bool isHorizontalAxis = aIsInlineAxis == !aFrame->GetWritingMode().IsVertical(); const nsStyleBorder* styleBorder = aFrame->StyleBorder(); sizeTakenByBoxSizing = isHorizontalAxis ? styleBorder->GetComputedBorder().LeftRight() : styleBorder->GetComputedBorder().TopBottom(); if (!aIgnorePadding) { const nsStyleSides& stylePadding = aFrame->StylePadding()->mPadding; const nsStyleCoord& pStart = stylePadding.Get(isHorizontalAxis ? eSideLeft : eSideTop); const nsStyleCoord& pEnd = stylePadding.Get(isHorizontalAxis ? eSideRight : eSideBottom); nscoord pad; // XXXbz Calling GetPercentBSize on padding values looks bogus, since // percent padding is always a percentage of the inline-size of the // containing block. We should perhaps just treat non-absolute paddings // here as 0 instead, except that in some cases the width may in fact be // known. See bug 1231059. if (GetDefiniteSize(pStart, aFrame, aIsInlineAxis, aPercentageBasis, &pad) || (aPercentageBasis.isNothing() && GetPercentBSize(pStart, aFrame, isHorizontalAxis, pad))) { sizeTakenByBoxSizing += pad; } if (GetDefiniteSize(pEnd, aFrame, aIsInlineAxis, aPercentageBasis, &pad) || (aPercentageBasis.isNothing() && GetPercentBSize(pEnd, aFrame, isHorizontalAxis, pad))) { sizeTakenByBoxSizing += pad; } } } return sizeTakenByBoxSizing; } // Handles only -moz-max-content and -moz-min-content, and // -moz-fit-content for min-width and max-width, since the others // (-moz-fit-content for width, and -moz-available) have no effect on // intrinsic widths. enum eWidthProperty { PROP_WIDTH, PROP_MAX_WIDTH, PROP_MIN_WIDTH }; static bool GetIntrinsicCoord(const nsStyleCoord& aStyle, nsRenderingContext* aRenderingContext, nsIFrame* aFrame, eWidthProperty aProperty, nscoord& aResult) { NS_PRECONDITION(aProperty == PROP_WIDTH || aProperty == PROP_MAX_WIDTH || aProperty == PROP_MIN_WIDTH, "unexpected property"); if (aStyle.GetUnit() != eStyleUnit_Enumerated) return false; int32_t val = aStyle.GetIntValue(); NS_ASSERTION(val == NS_STYLE_WIDTH_MAX_CONTENT || val == NS_STYLE_WIDTH_MIN_CONTENT || val == NS_STYLE_WIDTH_FIT_CONTENT || val == NS_STYLE_WIDTH_AVAILABLE, "unexpected enumerated value for width property"); if (val == NS_STYLE_WIDTH_AVAILABLE) return false; if (val == NS_STYLE_WIDTH_FIT_CONTENT) { if (aProperty == PROP_WIDTH) return false; // handle like 'width: auto' if (aProperty == PROP_MAX_WIDTH) // constrain large 'width' values down to -moz-max-content val = NS_STYLE_WIDTH_MAX_CONTENT; else // constrain small 'width' or 'max-width' values up to -moz-min-content val = NS_STYLE_WIDTH_MIN_CONTENT; } NS_ASSERTION(val == NS_STYLE_WIDTH_MAX_CONTENT || val == NS_STYLE_WIDTH_MIN_CONTENT, "should have reduced everything remaining to one of these"); // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); if (val == NS_STYLE_WIDTH_MAX_CONTENT) aResult = aFrame->GetPrefISize(aRenderingContext); else aResult = aFrame->GetMinISize(aRenderingContext); return true; } #undef DEBUG_INTRINSIC_WIDTH #ifdef DEBUG_INTRINSIC_WIDTH static int32_t gNoiseIndent = 0; #endif // Return true for form controls whose minimum intrinsic inline-size // shrinks to 0 when they have a percentage inline-size (but not // percentage max-inline-size). (Proper replaced elements, whose // intrinsic minimium inline-size shrinks to 0 for both percentage // inline-size and percentage max-inline-size, are handled elsewhere.) inline static bool FormControlShrinksForPercentISize(nsIFrame* aFrame) { if (!aFrame->IsFrameOfType(nsIFrame::eReplaced)) { // Quick test to reject most frames. return false; } nsIAtom* fType = aFrame->GetType(); if (fType == nsGkAtoms::meterFrame || fType == nsGkAtoms::progressFrame) { // progress and meter do have this shrinking behavior // FIXME: Maybe these should be nsIFormControlFrame? return true; } if (!static_cast(do_QueryFrame(aFrame))) { // Not a form control. This includes fieldsets, which do not // shrink. return false; } if (fType == nsGkAtoms::gfxButtonControlFrame || fType == nsGkAtoms::HTMLButtonControlFrame) { // Buttons don't have this shrinking behavior. (Note that color // inputs do, even though they inherit from button, so we can't use // do_QueryFrame here.) return false; } return true; } /** * Add aOffsets which describes what to add on outside of the content box * aContentSize (controlled by 'box-sizing') and apply min/max properties. * We have to account for these properties after getting all the offsets * (margin, border, padding) because percentages do not operate linearly. * Doing this is ok because although percentages aren't handled linearly, * they are handled monotonically. * * @param aContentSize the content size calculated so far (@see IntrinsicForContainer) * @param aContentMinSize ditto min content size * @param aStyleSize a 'width' or 'height' property value * @param aFixedMinSize if aStyleMinSize is a definite size then this points to * the value, otherwise nullptr * @param aStyleMinSize a 'min-width' or 'min-height' property value * @param aFixedMaxSize if aStyleMaxSize is a definite size then this points to * the value, otherwise nullptr * @param aStyleMaxSize a 'max-width' or 'max-height' property value * @param aFlags same as for IntrinsicForContainer * @param aContainerWM the container's WM */ static nscoord AddIntrinsicSizeOffset(nsRenderingContext* aRenderingContext, nsIFrame* aFrame, const nsIFrame::IntrinsicISizeOffsetData& aOffsets, nsLayoutUtils::IntrinsicISizeType aType, StyleBoxSizing aBoxSizing, nscoord aContentSize, nscoord aContentMinSize, const nsStyleCoord& aStyleSize, const nscoord* aFixedMinSize, const nsStyleCoord& aStyleMinSize, const nscoord* aFixedMaxSize, const nsStyleCoord& aStyleMaxSize, uint32_t aFlags, PhysicalAxis aAxis) { nscoord result = aContentSize; nscoord min = aContentMinSize; nscoord coordOutsideSize = 0; if (!(aFlags & nsLayoutUtils::IGNORE_PADDING)) { coordOutsideSize += aOffsets.hPadding; } coordOutsideSize += aOffsets.hBorder; if (aBoxSizing == StyleBoxSizing::Border) { min += coordOutsideSize; result = NSCoordSaturatingAdd(result, coordOutsideSize); coordOutsideSize = 0; } coordOutsideSize += aOffsets.hMargin; min += coordOutsideSize; result = NSCoordSaturatingAdd(result, coordOutsideSize); nscoord size; if (aType == nsLayoutUtils::MIN_ISIZE && (((aStyleSize.HasPercent() || aStyleMaxSize.HasPercent()) && aFrame->IsFrameOfType(nsIFrame::eReplacedSizing)) || (aStyleSize.HasPercent() && FormControlShrinksForPercentISize(aFrame)))) { // A percentage width or max-width on replaced elements means they // can shrink to 0. // This is also true for percentage widths (but not max-widths) on // text inputs. // Note that if this is max-width, this overrides the fixed-width // rule in the next condition. result = 0; // let |min| handle padding/border/margin } else if (GetAbsoluteCoord(aStyleSize, size) || GetIntrinsicCoord(aStyleSize, aRenderingContext, aFrame, PROP_WIDTH, size)) { result = size + coordOutsideSize; } nscoord maxSize = aFixedMaxSize ? *aFixedMaxSize : 0; if (aFixedMaxSize || GetIntrinsicCoord(aStyleMaxSize, aRenderingContext, aFrame, PROP_MAX_WIDTH, maxSize)) { maxSize += coordOutsideSize; if (result > maxSize) { result = maxSize; } } nscoord minSize = aFixedMinSize ? *aFixedMinSize : 0; if (aFixedMinSize || GetIntrinsicCoord(aStyleMinSize, aRenderingContext, aFrame, PROP_MIN_WIDTH, minSize)) { minSize += coordOutsideSize; if (result < minSize) { result = minSize; } } if (result < min) { result = min; } const nsStyleDisplay* disp = aFrame->StyleDisplay(); if (aFrame->IsThemed(disp)) { LayoutDeviceIntSize devSize; bool canOverride = true; nsPresContext* pc = aFrame->PresContext(); pc->GetTheme()->GetMinimumWidgetSize(pc, aFrame, disp->mAppearance, &devSize, &canOverride); nscoord themeSize = pc->DevPixelsToAppUnits(aAxis == eAxisVertical ? devSize.height : devSize.width); // GetMinimumWidgetSize() returns a border-box width. themeSize += aOffsets.hMargin; if (themeSize > result || !canOverride) { result = themeSize; } } return result; } static void AddStateBitToAncestors(nsIFrame* aFrame, nsFrameState aBit) { for (nsIFrame* f = aFrame; f; f = f->GetParent()) { if (f->HasAnyStateBits(aBit)) { break; } f->AddStateBits(aBit); } } /* static */ nscoord nsLayoutUtils::IntrinsicForAxis(PhysicalAxis aAxis, nsRenderingContext* aRenderingContext, nsIFrame* aFrame, IntrinsicISizeType aType, const Maybe& aPercentageBasis, uint32_t aFlags, nscoord aMarginBoxMinSizeClamp) { NS_PRECONDITION(aFrame, "null frame"); NS_PRECONDITION(aFrame->GetParent(), "IntrinsicForAxis called on frame not in tree"); NS_PRECONDITION(aType == MIN_ISIZE || aType == PREF_ISIZE, "bad type"); MOZ_ASSERT(aFrame->GetParent()->GetType() != nsGkAtoms::gridContainerFrame || aPercentageBasis.isSome(), "grid layout should always pass a percentage basis"); const bool horizontalAxis = MOZ_LIKELY(aAxis == eAxisHorizontal); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size for container:\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical"); #endif // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); // We want the size this frame will contribute to the parent's inline-size, // so we work in the parent's writing mode; but if aFrame is orthogonal to // its parent, we'll need to look at its BSize instead of min/pref-ISize. const nsStylePosition* stylePos = aFrame->StylePosition(); StyleBoxSizing boxSizing = stylePos->mBoxSizing; const nsStyleCoord& styleMinISize = horizontalAxis ? stylePos->mMinWidth : stylePos->mMinHeight; const nsStyleCoord& styleISize = (aFlags & MIN_INTRINSIC_ISIZE) ? styleMinISize : (horizontalAxis ? stylePos->mWidth : stylePos->mHeight); MOZ_ASSERT(!(aFlags & MIN_INTRINSIC_ISIZE) || styleISize.GetUnit() == eStyleUnit_Auto || styleISize.GetUnit() == eStyleUnit_Enumerated, "should only use MIN_INTRINSIC_ISIZE for intrinsic values"); const nsStyleCoord& styleMaxISize = horizontalAxis ? stylePos->mMaxWidth : stylePos->mMaxHeight; // We build up two values starting with the content box, and then // adding padding, border and margin. The result is normally // |result|. Then, when we handle 'width', 'min-width', and // 'max-width', we use the results we've been building in |min| as a // minimum, overriding 'min-width'. This ensures two things: // * that we don't let a value of 'box-sizing' specifying a width // smaller than the padding/border inside the box-sizing box give // a content width less than zero // * that we prevent tables from becoming smaller than their // intrinsic minimum width nscoord result = 0, min = 0; nscoord maxISize; bool haveFixedMaxISize = GetAbsoluteCoord(styleMaxISize, maxISize); nscoord minISize; // Treat "min-width: auto" as 0. bool haveFixedMinISize; if (eStyleUnit_Auto == styleMinISize.GetUnit()) { // NOTE: Technically, "auto" is supposed to behave like "min-content" on // flex items. However, we don't need to worry about that here, because // flex items' min-sizes are intentionally ignored until the flex // container explicitly considers them during space distribution. minISize = 0; haveFixedMinISize = true; } else { haveFixedMinISize = GetAbsoluteCoord(styleMinISize, minISize); } PhysicalAxis ourInlineAxis = aFrame->GetWritingMode().PhysicalAxis(eLogicalAxisInline); const bool isInlineAxis = aAxis == ourInlineAxis; // If we have a specified width (or a specified 'min-width' greater // than the specified 'max-width', which works out to the same thing), // don't even bother getting the frame's intrinsic width, because in // this case GetAbsoluteCoord(styleISize, w) will always succeed, so // we'll never need the intrinsic dimensions. if (styleISize.GetUnit() == eStyleUnit_Enumerated && (styleISize.GetIntValue() == NS_STYLE_WIDTH_MAX_CONTENT || styleISize.GetIntValue() == NS_STYLE_WIDTH_MIN_CONTENT)) { // -moz-fit-content and -moz-available enumerated widths compute intrinsic // widths just like auto. // For -moz-max-content and -moz-min-content, we handle them like // specified widths, but ignore box-sizing. boxSizing = StyleBoxSizing::Content; if (aMarginBoxMinSizeClamp != NS_MAXSIZE && styleISize.GetIntValue() == NS_STYLE_WIDTH_MIN_CONTENT) { // We need |result| to be the 'min-content size' for the clamping below. result = aFrame->GetMinISize(aRenderingContext); } } else if (!styleISize.ConvertsToLength() && !(haveFixedMinISize && haveFixedMaxISize && maxISize <= minISize)) { #ifdef DEBUG_INTRINSIC_WIDTH ++gNoiseIndent; #endif if (aType != MIN_ISIZE) { // At this point, |styleISize| is auto/-moz-fit-content/-moz-available or // has a percentage. The intrinisic size for those under a max-content // constraint is the max-content contribution which we shouldn't clamp. aMarginBoxMinSizeClamp = NS_MAXSIZE; } if (MOZ_UNLIKELY(!isInlineAxis)) { IntrinsicSize intrinsicSize = aFrame->GetIntrinsicSize(); const nsStyleCoord intrinsicBCoord = horizontalAxis ? intrinsicSize.width : intrinsicSize.height; if (intrinsicBCoord.GetUnit() == eStyleUnit_Coord) { result = intrinsicBCoord.GetCoordValue(); } else { // We don't have an intrinsic bsize and we need aFrame's block-dir size. if (aFlags & BAIL_IF_REFLOW_NEEDED) { return NS_INTRINSIC_WIDTH_UNKNOWN; } // XXX Unfortunately, we probably don't know this yet, so this is wrong... // but it's not clear what we should do. If aFrame's inline size hasn't // been determined yet, we can't necessarily figure out its block size // either. For now, authors who put orthogonal elements into things like // buttons or table cells may have to explicitly provide sizes rather // than expecting intrinsic sizing to work "perfectly" in underspecified // cases. result = aFrame->BSize(); } } else { result = aType == MIN_ISIZE ? aFrame->GetMinISize(aRenderingContext) : aFrame->GetPrefISize(aRenderingContext); } #ifdef DEBUG_INTRINSIC_WIDTH --gNoiseIndent; nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size from frame is %d.\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical", result); #endif // Handle elements with an intrinsic ratio (or size) and a specified // height, min-height, or max-height. // NOTE: We treat "min-height:auto" as "0" for the purpose of this code, // since that's what it means in all cases except for on flex items -- and // even there, we're supposed to ignore it (i.e. treat it as 0) until the // flex container explicitly considers it. const nsStyleCoord& styleBSize = horizontalAxis ? stylePos->mHeight : stylePos->mWidth; const nsStyleCoord& styleMinBSize = horizontalAxis ? stylePos->mMinHeight : stylePos->mMinWidth; const nsStyleCoord& styleMaxBSize = horizontalAxis ? stylePos->mMaxHeight : stylePos->mMaxWidth; if (styleBSize.GetUnit() != eStyleUnit_Auto || !(styleMinBSize.GetUnit() == eStyleUnit_Auto || (styleMinBSize.GetUnit() == eStyleUnit_Coord && styleMinBSize.GetCoordValue() == 0)) || styleMaxBSize.GetUnit() != eStyleUnit_None) { AspectRatio ratio = aFrame->GetIntrinsicRatio(); if (ratio) { // Convert 'ratio' if necessary, so that it's storing ISize/BSize: if (!horizontalAxis) { ratio = ratio.Inverted(); } AddStateBitToAncestors(aFrame, NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE); nscoord bSizeTakenByBoxSizing = GetDefiniteSizeTakenByBoxSizing(boxSizing, aFrame, !isInlineAxis, aFlags & IGNORE_PADDING, aPercentageBasis); // NOTE: This is only the minContentSize if we've been passed MIN_INTRINSIC_ISIZE // (which is fine, because this should only be used inside a check for that flag). nscoord minContentSize = result; nscoord h; if (GetDefiniteSize(styleBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); result = ratio.ApplyTo(h); } if (GetDefiniteSize(styleMaxBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleMaxBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); nscoord maxISize = ratio.ApplyTo(h); if (maxISize < result) { result = maxISize; } if (maxISize < minContentSize) { minContentSize = maxISize; } } if (GetDefiniteSize(styleMinBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleMinBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); nscoord minISize = ratio.ApplyTo(h); if (minISize > result) { result = minISize; } if (minISize > minContentSize) { minContentSize = minISize; } } if (MOZ_UNLIKELY(aFlags & nsLayoutUtils::MIN_INTRINSIC_ISIZE)) { // This is the 'min-width/height:auto' "transferred size" piece of: // https://www.w3.org/TR/css-flexbox-1/#min-width-automatic-minimum-size // https://drafts.csswg.org/css-grid/#min-size-auto result = std::min(result, minContentSize); } } } } if (aFrame->GetType() == nsGkAtoms::tableFrame) { // Tables can't shrink smaller than their intrinsic minimum width, // no matter what. min = aFrame->GetMinISize(aRenderingContext); } nscoord pmPercentageBasis = NS_UNCONSTRAINEDSIZE; if (aPercentageBasis.isSome()) { // The padding/margin percentage basis is the inline-size in the parent's // writing-mode. auto childWM = aFrame->GetWritingMode(); pmPercentageBasis = aFrame->GetParent()->GetWritingMode().IsOrthogonalTo(childWM) ? aPercentageBasis->BSize(childWM) : aPercentageBasis->ISize(childWM); } nsIFrame::IntrinsicISizeOffsetData offsets = MOZ_LIKELY(isInlineAxis) ? aFrame->IntrinsicISizeOffsets(pmPercentageBasis) : aFrame->IntrinsicBSizeOffsets(pmPercentageBasis); nscoord contentBoxSize = result; result = AddIntrinsicSizeOffset(aRenderingContext, aFrame, offsets, aType, boxSizing, result, min, styleISize, haveFixedMinISize ? &minISize : nullptr, styleMinISize, haveFixedMaxISize ? &maxISize : nullptr, styleMaxISize, aFlags, aAxis); nscoord overflow = result - aMarginBoxMinSizeClamp; if (MOZ_UNLIKELY(overflow > 0)) { nscoord newContentBoxSize = std::max(nscoord(0), contentBoxSize - overflow); result -= contentBoxSize - newContentBoxSize; } #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size for container is %d twips.\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical", result); #endif return result; } /* static */ nscoord nsLayoutUtils::IntrinsicForContainer(nsRenderingContext* aRenderingContext, nsIFrame* aFrame, IntrinsicISizeType aType, uint32_t aFlags) { MOZ_ASSERT(aFrame && aFrame->GetParent()); // We want the size aFrame will contribute to its parent's inline-size. PhysicalAxis axis = aFrame->GetParent()->GetWritingMode().PhysicalAxis(eLogicalAxisInline); return IntrinsicForAxis(axis, aRenderingContext, aFrame, aType, Nothing(), aFlags); } /* static */ nscoord nsLayoutUtils::MinSizeContributionForAxis(PhysicalAxis aAxis, nsRenderingContext* aRC, nsIFrame* aFrame, IntrinsicISizeType aType, const LogicalSize& aPercentageBasis, uint32_t aFlags) { MOZ_ASSERT(aFrame); MOZ_ASSERT(aFrame->IsFlexOrGridItem(), "only grid/flex items have this behavior currently"); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize for %s WM:\n", aType == MIN_ISIZE ? "min" : "pref", aWM.IsVertical() ? "vertical" : "horizontal"); #endif // Note: this method is only meant for grid/flex items. const nsStylePosition* const stylePos = aFrame->StylePosition(); const nsStyleCoord* style = aAxis == eAxisHorizontal ? &stylePos->mMinWidth : &stylePos->mMinHeight; nscoord minSize; nscoord* fixedMinSize = nullptr; auto minSizeUnit = style->GetUnit(); if (minSizeUnit == eStyleUnit_Auto) { if (aFrame->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE) { style = aAxis == eAxisHorizontal ? &stylePos->mWidth : &stylePos->mHeight; if (GetAbsoluteCoord(*style, minSize)) { // We have a definite width/height. This is the "specified size" in: // https://drafts.csswg.org/css-grid/#min-size-auto fixedMinSize = &minSize; } // fall through - the caller will have to deal with "transferred size" } else { // min-[width|height]:auto with overflow != visible computes to zero. minSize = 0; fixedMinSize = &minSize; } } else if (GetAbsoluteCoord(*style, minSize)) { fixedMinSize = &minSize; } else if (minSizeUnit != eStyleUnit_Enumerated) { MOZ_ASSERT(style->HasPercent()); minSize = 0; fixedMinSize = &minSize; } if (!fixedMinSize) { // Let the caller deal with the "content size" cases. #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize is indefinite.\n", aType == MIN_ISIZE ? "min" : "pref"); #endif return NS_UNCONSTRAINEDSIZE; } // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); // The padding/margin percentage basis is the inline-size in the parent's // writing-mode. auto childWM = aFrame->GetWritingMode(); nscoord pmPercentageBasis = aFrame->GetParent()->GetWritingMode().IsOrthogonalTo(childWM) ? aPercentageBasis.BSize(childWM) : aPercentageBasis.ISize(childWM); PhysicalAxis ourInlineAxis = childWM.PhysicalAxis(eLogicalAxisInline); nsIFrame::IntrinsicISizeOffsetData offsets = ourInlineAxis == aAxis ? aFrame->IntrinsicISizeOffsets(pmPercentageBasis) : aFrame->IntrinsicBSizeOffsets(pmPercentageBasis); nscoord result = 0; nscoord min = 0; const nsStyleCoord& maxISize = aAxis == eAxisHorizontal ? stylePos->mMaxWidth : stylePos->mMaxHeight; result = AddIntrinsicSizeOffset(aRC, aFrame, offsets, aType, stylePos->mBoxSizing, result, min, *style, fixedMinSize, *style, nullptr, maxISize, aFlags, aAxis); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize is %d twips.\n", aType == MIN_ISIZE ? "min" : "pref", result); #endif return result; } /* static */ nscoord nsLayoutUtils::ComputeCBDependentValue(nscoord aPercentBasis, const nsStyleCoord& aCoord) { NS_WARNING_ASSERTION( aPercentBasis != NS_UNCONSTRAINEDSIZE, "have unconstrained width or height; this should only result from very " "large sizes, not attempts at intrinsic size calculation"); if (aCoord.IsCoordPercentCalcUnit()) { return nsRuleNode::ComputeCoordPercentCalc(aCoord, aPercentBasis); } NS_ASSERTION(aCoord.GetUnit() == eStyleUnit_None || aCoord.GetUnit() == eStyleUnit_Auto, "unexpected width value"); return 0; } /* static */ nscoord nsLayoutUtils::ComputeBSizeDependentValue( nscoord aContainingBlockBSize, const nsStyleCoord& aCoord) { // XXXldb Some callers explicitly check aContainingBlockBSize // against NS_AUTOHEIGHT *and* unit against eStyleUnit_Percent or // calc()s containing percents before calling this function. // However, it would be much more likely to catch problems without // the unit conditions. // XXXldb Many callers pass a non-'auto' containing block height when // according to CSS2.1 they should be passing 'auto'. NS_PRECONDITION(NS_AUTOHEIGHT != aContainingBlockBSize || !aCoord.HasPercent(), "unexpected containing block block-size"); if (aCoord.IsCoordPercentCalcUnit()) { return nsRuleNode::ComputeCoordPercentCalc(aCoord, aContainingBlockBSize); } NS_ASSERTION(aCoord.GetUnit() == eStyleUnit_None || aCoord.GetUnit() == eStyleUnit_Auto, "unexpected block-size value"); return 0; } /* static */ void nsLayoutUtils::MarkDescendantsDirty(nsIFrame *aSubtreeRoot) { AutoTArray subtrees; subtrees.AppendElement(aSubtreeRoot); // dirty descendants, iterating over subtrees that may include // additional subtrees associated with placeholders do { nsIFrame *subtreeRoot = subtrees.ElementAt(subtrees.Length() - 1); subtrees.RemoveElementAt(subtrees.Length() - 1); // Mark all descendants dirty (using an nsTArray stack rather than // recursion). // Note that ReflowInput::InitResizeFlags has some similar // code; see comments there for how and why it differs. AutoTArray stack; stack.AppendElement(subtreeRoot); do { nsIFrame *f = stack.ElementAt(stack.Length() - 1); stack.RemoveElementAt(stack.Length() - 1); f->MarkIntrinsicISizesDirty(); if (f->GetType() == nsGkAtoms::placeholderFrame) { nsIFrame *oof = nsPlaceholderFrame::GetRealFrameForPlaceholder(f); if (!nsLayoutUtils::IsProperAncestorFrame(subtreeRoot, oof)) { // We have another distinct subtree we need to mark. subtrees.AppendElement(oof); } } nsIFrame::ChildListIterator lists(f); for (; !lists.IsDone(); lists.Next()) { nsFrameList::Enumerator childFrames(lists.CurrentList()); for (; !childFrames.AtEnd(); childFrames.Next()) { nsIFrame* kid = childFrames.get(); stack.AppendElement(kid); } } } while (stack.Length() != 0); } while (subtrees.Length() != 0); } /* static */ void nsLayoutUtils::MarkIntrinsicISizesDirtyIfDependentOnBSize(nsIFrame* aFrame) { AutoTArray stack; stack.AppendElement(aFrame); do { nsIFrame* f = stack.ElementAt(stack.Length() - 1); stack.RemoveElementAt(stack.Length() - 1); if (!f->HasAnyStateBits( NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE)) { continue; } f->MarkIntrinsicISizesDirty(); for (nsIFrame::ChildListIterator lists(f); !lists.IsDone(); lists.Next()) { for (nsIFrame* kid : lists.CurrentList()) { stack.AppendElement(kid); } } } while (stack.Length() != 0); } nsSize nsLayoutUtils::ComputeAutoSizeWithIntrinsicDimensions(nscoord minWidth, nscoord minHeight, nscoord maxWidth, nscoord maxHeight, nscoord tentWidth, nscoord tentHeight) { // Now apply min/max-width/height - CSS 2.1 sections 10.4 and 10.7: if (minWidth > maxWidth) maxWidth = minWidth; if (minHeight > maxHeight) maxHeight = minHeight; nscoord heightAtMaxWidth, heightAtMinWidth, widthAtMaxHeight, widthAtMinHeight; if (tentWidth > 0) { heightAtMaxWidth = NSCoordMulDiv(maxWidth, tentHeight, tentWidth); if (heightAtMaxWidth < minHeight) heightAtMaxWidth = minHeight; heightAtMinWidth = NSCoordMulDiv(minWidth, tentHeight, tentWidth); if (heightAtMinWidth > maxHeight) heightAtMinWidth = maxHeight; } else { heightAtMaxWidth = heightAtMinWidth = NS_CSS_MINMAX(tentHeight, minHeight, maxHeight); } if (tentHeight > 0) { widthAtMaxHeight = NSCoordMulDiv(maxHeight, tentWidth, tentHeight); if (widthAtMaxHeight < minWidth) widthAtMaxHeight = minWidth; widthAtMinHeight = NSCoordMulDiv(minHeight, tentWidth, tentHeight); if (widthAtMinHeight > maxWidth) widthAtMinHeight = maxWidth; } else { widthAtMaxHeight = widthAtMinHeight = NS_CSS_MINMAX(tentWidth, minWidth, maxWidth); } // The table at http://www.w3.org/TR/CSS21/visudet.html#min-max-widths : nscoord width, height; if (tentWidth > maxWidth) { if (tentHeight > maxHeight) { if (int64_t(maxWidth) * int64_t(tentHeight) <= int64_t(maxHeight) * int64_t(tentWidth)) { width = maxWidth; height = heightAtMaxWidth; } else { width = widthAtMaxHeight; height = maxHeight; } } else { // This also covers "(w > max-width) and (h < min-height)" since in // that case (max-width/w < 1), and with (h < min-height): // max(max-width * h/w, min-height) == min-height width = maxWidth; height = heightAtMaxWidth; } } else if (tentWidth < minWidth) { if (tentHeight < minHeight) { if (int64_t(minWidth) * int64_t(tentHeight) <= int64_t(minHeight) * int64_t(tentWidth)) { width = widthAtMinHeight; height = minHeight; } else { width = minWidth; height = heightAtMinWidth; } } else { // This also covers "(w < min-width) and (h > max-height)" since in // that case (min-width/w > 1), and with (h > max-height): // min(min-width * h/w, max-height) == max-height width = minWidth; height = heightAtMinWidth; } } else { if (tentHeight > maxHeight) { width = widthAtMaxHeight; height = maxHeight; } else if (tentHeight < minHeight) { width = widthAtMinHeight; height = minHeight; } else { width = tentWidth; height = tentHeight; } } return nsSize(width, height); } /* static */ nscoord nsLayoutUtils::MinISizeFromInline(nsIFrame* aFrame, nsRenderingContext* aRenderingContext) { NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(), "should not be container for font size inflation"); nsIFrame::InlineMinISizeData data; DISPLAY_MIN_WIDTH(aFrame, data.mPrevLines); aFrame->AddInlineMinISize(aRenderingContext, &data); data.ForceBreak(); return data.mPrevLines; } /* static */ nscoord nsLayoutUtils::PrefISizeFromInline(nsIFrame* aFrame, nsRenderingContext* aRenderingContext) { NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(), "should not be container for font size inflation"); nsIFrame::InlinePrefISizeData data; DISPLAY_PREF_WIDTH(aFrame, data.mPrevLines); aFrame->AddInlinePrefISize(aRenderingContext, &data); data.ForceBreak(); return data.mPrevLines; } static nscolor DarkenColor(nscolor aColor) { uint16_t hue, sat, value; uint8_t alpha; // convert the RBG to HSV so we can get the lightness (which is the v) NS_RGB2HSV(aColor, hue, sat, value, alpha); // The goal here is to send white to black while letting colored // stuff stay colored... So we adopt the following approach. // Something with sat = 0 should end up with value = 0. Something // with a high sat can end up with a high value and it's ok.... At // the same time, we don't want to make things lighter. Do // something simple, since it seems to work. if (value > sat) { value = sat; // convert this color back into the RGB color space. NS_HSV2RGB(aColor, hue, sat, value, alpha); } return aColor; } // Check whether we should darken text/decoration colors. We need to do this if // background images and colors are being suppressed, because that means // light text will not be visible against the (presumed light-colored) background. static bool ShouldDarkenColors(nsPresContext* aPresContext) { return !aPresContext->GetBackgroundColorDraw() && !aPresContext->GetBackgroundImageDraw(); } nscolor nsLayoutUtils::GetColor(nsIFrame* aFrame, nsCSSPropertyID aProperty) { nscolor color = aFrame->GetVisitedDependentColor(aProperty); if (ShouldDarkenColors(aFrame->PresContext())) { color = DarkenColor(color); } return color; } gfxFloat nsLayoutUtils::GetSnappedBaselineY(nsIFrame* aFrame, gfxContext* aContext, nscoord aY, nscoord aAscent) { gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel(); gfxFloat baseline = gfxFloat(aY) + aAscent; gfxRect putativeRect(0, baseline/appUnitsPerDevUnit, 1, 1); if (!aContext->UserToDevicePixelSnapped(putativeRect, true)) return baseline; return aContext->DeviceToUser(putativeRect.TopLeft()).y * appUnitsPerDevUnit; } gfxFloat nsLayoutUtils::GetSnappedBaselineX(nsIFrame* aFrame, gfxContext* aContext, nscoord aX, nscoord aAscent) { gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel(); gfxFloat baseline = gfxFloat(aX) + aAscent; gfxRect putativeRect(baseline / appUnitsPerDevUnit, 0, 1, 1); if (!aContext->UserToDevicePixelSnapped(putativeRect, true)) { return baseline; } return aContext->DeviceToUser(putativeRect.TopLeft()).x * appUnitsPerDevUnit; } // Hard limit substring lengths to 8000 characters ... this lets us statically // size the cluster buffer array in FindSafeLength #define MAX_GFX_TEXT_BUF_SIZE 8000 static int32_t FindSafeLength(const char16_t *aString, uint32_t aLength, uint32_t aMaxChunkLength) { if (aLength <= aMaxChunkLength) return aLength; int32_t len = aMaxChunkLength; // Ensure that we don't break inside a surrogate pair while (len > 0 && NS_IS_LOW_SURROGATE(aString[len])) { len--; } if (len == 0) { // We don't want our caller to go into an infinite loop, so don't // return zero. It's hard to imagine how we could actually get here // unless there are languages that allow clusters of arbitrary size. // If there are and someone feeds us a 500+ character cluster, too // bad. return aMaxChunkLength; } return len; } static int32_t GetMaxChunkLength(nsFontMetrics& aFontMetrics) { return std::min(aFontMetrics.GetMaxStringLength(), MAX_GFX_TEXT_BUF_SIZE); } nscoord nsLayoutUtils::AppUnitWidthOfString(const char16_t *aString, uint32_t aLength, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget) { uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); nscoord width = 0; while (aLength > 0) { int32_t len = FindSafeLength(aString, aLength, maxChunkLength); width += aFontMetrics.GetWidth(aString, len, aDrawTarget); aLength -= len; aString += len; } return width; } nscoord nsLayoutUtils::AppUnitWidthOfStringBidi(const char16_t* aString, uint32_t aLength, const nsIFrame* aFrame, nsFontMetrics& aFontMetrics, nsRenderingContext& aContext) { nsPresContext* presContext = aFrame->PresContext(); if (presContext->BidiEnabled()) { nsBidiLevel level = nsBidiPresUtils::BidiLevelFromStyle(aFrame->StyleContext()); return nsBidiPresUtils::MeasureTextWidth(aString, aLength, level, presContext, aContext, aFontMetrics); } aFontMetrics.SetTextRunRTL(false); aFontMetrics.SetVertical(aFrame->GetWritingMode().IsVertical()); aFontMetrics.SetTextOrientation(aFrame->StyleVisibility()->mTextOrientation); return nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics, aContext.GetDrawTarget()); } bool nsLayoutUtils::StringWidthIsGreaterThan(const nsString& aString, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget, nscoord aWidth) { const char16_t *string = aString.get(); uint32_t length = aString.Length(); uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); nscoord width = 0; while (length > 0) { int32_t len = FindSafeLength(string, length, maxChunkLength); width += aFontMetrics.GetWidth(string, len, aDrawTarget); if (width > aWidth) { return true; } length -= len; string += len; } return false; } nsBoundingMetrics nsLayoutUtils::AppUnitBoundsOfString(const char16_t* aString, uint32_t aLength, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget) { uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); int32_t len = FindSafeLength(aString, aLength, maxChunkLength); // Assign directly in the first iteration. This ensures that // negative ascent/descent can be returned and the left bearing // is properly initialized. nsBoundingMetrics totalMetrics = aFontMetrics.GetBoundingMetrics(aString, len, aDrawTarget); aLength -= len; aString += len; while (aLength > 0) { len = FindSafeLength(aString, aLength, maxChunkLength); nsBoundingMetrics metrics = aFontMetrics.GetBoundingMetrics(aString, len, aDrawTarget); totalMetrics += metrics; aLength -= len; aString += len; } return totalMetrics; } void nsLayoutUtils::DrawString(const nsIFrame* aFrame, nsFontMetrics& aFontMetrics, nsRenderingContext* aContext, const char16_t* aString, int32_t aLength, nsPoint aPoint, nsStyleContext* aStyleContext) { nsresult rv = NS_ERROR_FAILURE; // If caller didn't pass a style context, use the frame's. if (!aStyleContext) { aStyleContext = aFrame->StyleContext(); } aFontMetrics.SetVertical(WritingMode(aStyleContext).IsVertical()); aFontMetrics.SetTextOrientation( aStyleContext->StyleVisibility()->mTextOrientation); nsPresContext* presContext = aFrame->PresContext(); if (presContext->BidiEnabled()) { nsBidiLevel level = nsBidiPresUtils::BidiLevelFromStyle(aStyleContext); rv = nsBidiPresUtils::RenderText(aString, aLength, level, presContext, *aContext, aContext->GetDrawTarget(), aFontMetrics, aPoint.x, aPoint.y); } if (NS_FAILED(rv)) { aFontMetrics.SetTextRunRTL(false); DrawUniDirString(aString, aLength, aPoint, aFontMetrics, *aContext); } } void nsLayoutUtils::DrawUniDirString(const char16_t* aString, uint32_t aLength, nsPoint aPoint, nsFontMetrics& aFontMetrics, nsRenderingContext& aContext) { nscoord x = aPoint.x; nscoord y = aPoint.y; uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); if (aLength <= maxChunkLength) { aFontMetrics.DrawString(aString, aLength, x, y, &aContext, aContext.GetDrawTarget()); return; } bool isRTL = aFontMetrics.GetTextRunRTL(); // If we're drawing right to left, we must start at the end. if (isRTL) { x += nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics, aContext.GetDrawTarget()); } while (aLength > 0) { int32_t len = FindSafeLength(aString, aLength, maxChunkLength); nscoord width = aFontMetrics.GetWidth(aString, len, aContext.GetDrawTarget()); if (isRTL) { x -= width; } aFontMetrics.DrawString(aString, len, x, y, &aContext, aContext.GetDrawTarget()); if (!isRTL) { x += width; } aLength -= len; aString += len; } } /* static */ void nsLayoutUtils::PaintTextShadow(const nsIFrame* aFrame, nsRenderingContext* aContext, const nsRect& aTextRect, const nsRect& aDirtyRect, const nscolor& aForegroundColor, TextShadowCallback aCallback, void* aCallbackData) { const nsStyleText* textStyle = aFrame->StyleText(); if (!textStyle->HasTextShadow()) return; // Text shadow happens with the last value being painted at the back, // ie. it is painted first. gfxContext* aDestCtx = aContext->ThebesContext(); for (uint32_t i = textStyle->mTextShadow->Length(); i > 0; --i) { nsCSSShadowItem* shadowDetails = textStyle->mTextShadow->ShadowAt(i - 1); nsPoint shadowOffset(shadowDetails->mXOffset, shadowDetails->mYOffset); nscoord blurRadius = std::max(shadowDetails->mRadius, 0); nsRect shadowRect(aTextRect); shadowRect.MoveBy(shadowOffset); nsPresContext* presCtx = aFrame->PresContext(); nsContextBoxBlur contextBoxBlur; gfxContext* shadowContext = contextBoxBlur.Init(shadowRect, 0, blurRadius, presCtx->AppUnitsPerDevPixel(), aDestCtx, aDirtyRect, nullptr); if (!shadowContext) continue; nscolor shadowColor; if (shadowDetails->mHasColor) shadowColor = shadowDetails->mColor; else shadowColor = aForegroundColor; // Conjure an nsRenderingContext from a gfxContext for drawing the text // to blur. nsRenderingContext renderingContext(shadowContext); aDestCtx->Save(); aDestCtx->NewPath(); aDestCtx->SetColor(Color::FromABGR(shadowColor)); // The callback will draw whatever we want to blur as a shadow. aCallback(&renderingContext, shadowOffset, shadowColor, aCallbackData); contextBoxBlur.DoPaint(); aDestCtx->Restore(); } } /* static */ nscoord nsLayoutUtils::GetCenteredFontBaseline(nsFontMetrics* aFontMetrics, nscoord aLineHeight, bool aIsInverted) { nscoord fontAscent = aIsInverted ? aFontMetrics->MaxDescent() : aFontMetrics->MaxAscent(); nscoord fontHeight = aFontMetrics->MaxHeight(); nscoord leading = aLineHeight - fontHeight; return fontAscent + leading/2; } /* static */ bool nsLayoutUtils::GetFirstLineBaseline(WritingMode aWritingMode, const nsIFrame* aFrame, nscoord* aResult) { LinePosition position; if (!GetFirstLinePosition(aWritingMode, aFrame, &position)) return false; *aResult = position.mBaseline; return true; } /* static */ bool nsLayoutUtils::GetFirstLinePosition(WritingMode aWM, const nsIFrame* aFrame, LinePosition* aResult) { const nsBlockFrame* block = nsLayoutUtils::GetAsBlock(const_cast(aFrame)); if (!block) { // For the first-line baseline we also have to check for a table, and if // so, use the baseline of its first row. nsIAtom* fType = aFrame->GetType(); if (fType == nsGkAtoms::tableWrapperFrame || fType == nsGkAtoms::flexContainerFrame || fType == nsGkAtoms::gridContainerFrame) { if ((fType == nsGkAtoms::gridContainerFrame && aFrame->HasAnyStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE)) || (fType == nsGkAtoms::flexContainerFrame && aFrame->HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) || (fType == nsGkAtoms::tableWrapperFrame && static_cast(aFrame)->GetRowCount() == 0)) { // empty grid/flex/table container aResult->mBStart = 0; aResult->mBaseline = aFrame->SynthesizeBaselineBOffsetFromBorderBox(aWM, BaselineSharingGroup::eFirst); aResult->mBEnd = aFrame->BSize(aWM); return true; } aResult->mBStart = 0; aResult->mBaseline = aFrame->GetLogicalBaseline(aWM); // This is what we want for the list bullet caller; not sure if // other future callers will want the same. aResult->mBEnd = aFrame->BSize(aWM); return true; } // For first-line baselines, we have to consider scroll frames. if (fType == nsGkAtoms::scrollFrame) { nsIScrollableFrame *sFrame = do_QueryFrame(const_cast(aFrame)); if (!sFrame) { NS_NOTREACHED("not scroll frame"); } LinePosition kidPosition; if (GetFirstLinePosition(aWM, sFrame->GetScrolledFrame(), &kidPosition)) { // Consider only the border and padding that contributes to the // kid's position, not the scrolling, so we get the initial // position. *aResult = kidPosition + aFrame->GetLogicalUsedBorderAndPadding(aWM).BStart(aWM); return true; } return false; } if (fType == nsGkAtoms::fieldSetFrame) { LinePosition kidPosition; nsIFrame* kid = aFrame->PrincipalChildList().FirstChild(); // kid might be a legend frame here, but that's ok. if (GetFirstLinePosition(aWM, kid, &kidPosition)) { *aResult = kidPosition + kid->GetLogicalNormalPosition(aWM, aFrame->GetSize()).B(aWM); return true; } return false; } // No baseline. return false; } for (nsBlockFrame::ConstLineIterator line = block->LinesBegin(), line_end = block->LinesEnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame *kid = line->mFirstChild; LinePosition kidPosition; if (GetFirstLinePosition(aWM, kid, &kidPosition)) { //XXX Not sure if this is the correct value to use for container // width here. It will only be used in vertical-rl layout, // which we don't have full support and testing for yet. const nsSize& containerSize = line->mContainerSize; *aResult = kidPosition + kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM); return true; } } else { // XXX Is this the right test? We have some bogus empty lines // floating around, but IsEmpty is perhaps too weak. if (line->BSize() != 0 || !line->IsEmpty()) { nscoord bStart = line->BStart(); aResult->mBStart = bStart; aResult->mBaseline = bStart + line->GetLogicalAscent(); aResult->mBEnd = bStart + line->BSize(); return true; } } } return false; } /* static */ bool nsLayoutUtils::GetLastLineBaseline(WritingMode aWM, const nsIFrame* aFrame, nscoord* aResult) { const nsBlockFrame* block = nsLayoutUtils::GetAsBlock(const_cast(aFrame)); if (!block) // No baseline. (We intentionally don't descend into scroll frames.) return false; for (nsBlockFrame::ConstReverseLineIterator line = block->LinesRBegin(), line_end = block->LinesREnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame *kid = line->mFirstChild; nscoord kidBaseline; const nsSize& containerSize = line->mContainerSize; if (GetLastLineBaseline(aWM, kid, &kidBaseline)) { // Ignore relative positioning for baseline calculations *aResult = kidBaseline + kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM); return true; } else if (kid->GetType() == nsGkAtoms::scrollFrame) { // Use the bottom of the scroll frame. // XXX CSS2.1 really doesn't say what to do here. *aResult = kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM) + kid->BSize(aWM); return true; } } else { // XXX Is this the right test? We have some bogus empty lines // floating around, but IsEmpty is perhaps too weak. if (line->BSize() != 0 || !line->IsEmpty()) { *aResult = line->BStart() + line->GetLogicalAscent(); return true; } } } return false; } static nscoord CalculateBlockContentBEnd(WritingMode aWM, nsBlockFrame* aFrame) { NS_PRECONDITION(aFrame, "null ptr"); nscoord contentBEnd = 0; for (nsBlockFrame::LineIterator line = aFrame->LinesBegin(), line_end = aFrame->LinesEnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame* child = line->mFirstChild; const nsSize& containerSize = line->mContainerSize; nscoord offset = child->GetLogicalNormalPosition(aWM, containerSize).B(aWM); contentBEnd = std::max(contentBEnd, nsLayoutUtils::CalculateContentBEnd(aWM, child) + offset); } else { contentBEnd = std::max(contentBEnd, line->BEnd()); } } return contentBEnd; } /* static */ nscoord nsLayoutUtils::CalculateContentBEnd(WritingMode aWM, nsIFrame* aFrame) { NS_PRECONDITION(aFrame, "null ptr"); nscoord contentBEnd = aFrame->BSize(aWM); // We want scrollable overflow rather than visual because this // calculation is intended to affect layout. LogicalSize overflowSize(aWM, aFrame->GetScrollableOverflowRect().Size()); if (overflowSize.BSize(aWM) > contentBEnd) { nsIFrame::ChildListIDs skip(nsIFrame::kOverflowList | nsIFrame::kExcessOverflowContainersList | nsIFrame::kOverflowOutOfFlowList); nsBlockFrame* blockFrame = GetAsBlock(aFrame); if (blockFrame) { contentBEnd = std::max(contentBEnd, CalculateBlockContentBEnd(aWM, blockFrame)); skip |= nsIFrame::kPrincipalList; } nsIFrame::ChildListIterator lists(aFrame); for (; !lists.IsDone(); lists.Next()) { if (!skip.Contains(lists.CurrentID())) { nsFrameList::Enumerator childFrames(lists.CurrentList()); for (; !childFrames.AtEnd(); childFrames.Next()) { nsIFrame* child = childFrames.get(); nscoord offset = child->GetLogicalNormalPosition(aWM, aFrame->GetSize()).B(aWM); contentBEnd = std::max(contentBEnd, CalculateContentBEnd(aWM, child) + offset); } } } } return contentBEnd; } /* static */ nsIFrame* nsLayoutUtils::GetClosestLayer(nsIFrame* aFrame) { nsIFrame* layer; for (layer = aFrame; layer; layer = layer->GetParent()) { if (layer->IsAbsPosContainingBlock() || (layer->GetParent() && layer->GetParent()->GetType() == nsGkAtoms::scrollFrame)) break; } if (layer) return layer; return aFrame->PresContext()->PresShell()->FrameManager()->GetRootFrame(); } SamplingFilter nsLayoutUtils::GetSamplingFilterForFrame(nsIFrame* aForFrame) { SamplingFilter defaultFilter = SamplingFilter::GOOD; nsStyleContext *sc; if (nsCSSRendering::IsCanvasFrame(aForFrame)) { nsCSSRendering::FindBackground(aForFrame, &sc); } else { sc = aForFrame->StyleContext(); } switch (sc->StyleVisibility()->mImageRendering) { case NS_STYLE_IMAGE_RENDERING_OPTIMIZESPEED: return SamplingFilter::POINT; case NS_STYLE_IMAGE_RENDERING_OPTIMIZEQUALITY: return SamplingFilter::LINEAR; case NS_STYLE_IMAGE_RENDERING_CRISPEDGES: return SamplingFilter::POINT; default: return defaultFilter; } } /** * Given an image being drawn into an appunit coordinate system, and * a point in that coordinate system, map the point back into image * pixel space. * @param aSize the size of the image, in pixels * @param aDest the rectangle that the image is being mapped into * @param aPt a point in the same coordinate system as the rectangle */ static gfxPoint MapToFloatImagePixels(const gfxSize& aSize, const gfxRect& aDest, const gfxPoint& aPt) { return gfxPoint(((aPt.x - aDest.X())*aSize.width)/aDest.Width(), ((aPt.y - aDest.Y())*aSize.height)/aDest.Height()); } /** * Given an image being drawn into an pixel-based coordinate system, and * a point in image space, map the point into the pixel-based coordinate * system. * @param aSize the size of the image, in pixels * @param aDest the rectangle that the image is being mapped into * @param aPt a point in image space */ static gfxPoint MapToFloatUserPixels(const gfxSize& aSize, const gfxRect& aDest, const gfxPoint& aPt) { return gfxPoint(aPt.x*aDest.Width()/aSize.width + aDest.X(), aPt.y*aDest.Height()/aSize.height + aDest.Y()); } /* static */ gfxRect nsLayoutUtils::RectToGfxRect(const nsRect& aRect, int32_t aAppUnitsPerDevPixel) { return gfxRect(gfxFloat(aRect.x) / aAppUnitsPerDevPixel, gfxFloat(aRect.y) / aAppUnitsPerDevPixel, gfxFloat(aRect.width) / aAppUnitsPerDevPixel, gfxFloat(aRect.height) / aAppUnitsPerDevPixel); } struct SnappedImageDrawingParameters { // A transform from image space to device space. gfxMatrix imageSpaceToDeviceSpace; // The size at which the image should be drawn (which may not be its // intrinsic size due to, for example, HQ scaling). nsIntSize size; // The region in tiled image space which will be drawn, with an associated // region to which sampling should be restricted. ImageRegion region; // The default viewport size for SVG images, which we use unless a different // one has been explicitly specified. This is the same as |size| except that // it does not take into account any transformation on the gfxContext we're // drawing to - for example, CSS transforms are not taken into account. CSSIntSize svgViewportSize; // Whether there's anything to draw at all. bool shouldDraw; SnappedImageDrawingParameters() : region(ImageRegion::Empty()) , shouldDraw(false) {} SnappedImageDrawingParameters(const gfxMatrix& aImageSpaceToDeviceSpace, const nsIntSize& aSize, const ImageRegion& aRegion, const CSSIntSize& aSVGViewportSize) : imageSpaceToDeviceSpace(aImageSpaceToDeviceSpace) , size(aSize) , region(aRegion) , svgViewportSize(aSVGViewportSize) , shouldDraw(true) {} }; /** * Given two axis-aligned rectangles, returns the transformation that maps the * first onto the second. * * @param aFrom The rect to be transformed. * @param aTo The rect that aFrom should be mapped onto by the transformation. */ static gfxMatrix TransformBetweenRects(const gfxRect& aFrom, const gfxRect& aTo) { gfxSize scale(aTo.width / aFrom.width, aTo.height / aFrom.height); gfxPoint translation(aTo.x - aFrom.x * scale.width, aTo.y - aFrom.y * scale.height); return gfxMatrix(scale.width, 0, 0, scale.height, translation.x, translation.y); } static nsRect TileNearRect(const nsRect& aAnyTile, const nsRect& aTargetRect) { nsPoint distance = aTargetRect.TopLeft() - aAnyTile.TopLeft(); return aAnyTile + nsPoint(distance.x / aAnyTile.width * aAnyTile.width, distance.y / aAnyTile.height * aAnyTile.height); } static gfxFloat StableRound(gfxFloat aValue) { // Values slightly less than 0.5 should round up like 0.5 would; we're // assuming they were meant to be 0.5. return floor(aValue + 0.5001); } static gfxPoint StableRound(const gfxPoint& aPoint) { return gfxPoint(StableRound(aPoint.x), StableRound(aPoint.y)); } /** * Given a set of input parameters, compute certain output parameters * for drawing an image with the image snapping algorithm. * See https://wiki.mozilla.org/Gecko:Image_Snapping_and_Rendering * * @see nsLayoutUtils::DrawImage() for the descriptions of input parameters */ static SnappedImageDrawingParameters ComputeSnappedImageDrawingParameters(gfxContext* aCtx, int32_t aAppUnitsPerDevPixel, const nsRect aDest, const nsRect aFill, const nsPoint aAnchor, const nsRect aDirty, imgIContainer* aImage, const SamplingFilter aSamplingFilter, uint32_t aImageFlags, ExtendMode aExtendMode) { if (aDest.IsEmpty() || aFill.IsEmpty()) return SnappedImageDrawingParameters(); // Avoid unnecessarily large offsets. bool doTile = !aDest.Contains(aFill); nsRect appUnitDest = doTile ? TileNearRect(aDest, aFill.Intersect(aDirty)) : aDest; nsPoint anchor = aAnchor + (appUnitDest.TopLeft() - aDest.TopLeft()); gfxRect devPixelDest = nsLayoutUtils::RectToGfxRect(appUnitDest, aAppUnitsPerDevPixel); gfxRect devPixelFill = nsLayoutUtils::RectToGfxRect(aFill, aAppUnitsPerDevPixel); gfxRect devPixelDirty = nsLayoutUtils::RectToGfxRect(aDirty, aAppUnitsPerDevPixel); gfxMatrix currentMatrix = aCtx->CurrentMatrix(); gfxRect fill = devPixelFill; gfxRect dest = devPixelDest; bool didSnap; // Snap even if we have a scale in the context. But don't snap if // we have something that's not translation+scale, or if the scale flips in // the X or Y direction, because snapped image drawing can't handle that yet. if (!currentMatrix.HasNonAxisAlignedTransform() && currentMatrix._11 > 0.0 && currentMatrix._22 > 0.0 && aCtx->UserToDevicePixelSnapped(fill, true) && aCtx->UserToDevicePixelSnapped(dest, true)) { // We snapped. On this code path, |fill| and |dest| take into account // currentMatrix's transform. didSnap = true; } else { // We didn't snap. On this code path, |fill| and |dest| do not take into // account currentMatrix's transform. didSnap = false; fill = devPixelFill; dest = devPixelDest; } // If we snapped above, |dest| already takes into account |currentMatrix|'s scale // and has integer coordinates. If not, we need these properties to compute // the optimal drawn image size, so compute |snappedDestSize| here. gfxSize snappedDestSize = dest.Size(); if (!didSnap) { gfxSize scaleFactors = currentMatrix.ScaleFactors(true); snappedDestSize.Scale(scaleFactors.width, scaleFactors.height); snappedDestSize.width = NS_round(snappedDestSize.width); snappedDestSize.height = NS_round(snappedDestSize.height); } // We need to be sure that this is at least one pixel in width and height, // or we'll end up drawing nothing even if we have a nonempty fill. snappedDestSize.width = std::max(snappedDestSize.width, 1.0); snappedDestSize.height = std::max(snappedDestSize.height, 1.0); // Bail if we're not going to end up drawing anything. if (fill.IsEmpty() || snappedDestSize.IsEmpty()) { return SnappedImageDrawingParameters(); } nsIntSize intImageSize = aImage->OptimalImageSizeForDest(snappedDestSize, imgIContainer::FRAME_CURRENT, aSamplingFilter, aImageFlags); gfxSize imageSize(intImageSize.width, intImageSize.height); // XXX(seth): May be buggy; see bug 1151016. CSSIntSize svgViewportSize = currentMatrix.IsIdentity() ? CSSIntSize(intImageSize.width, intImageSize.height) : CSSIntSize::Truncate(devPixelDest.width, devPixelDest.height); // Compute the set of pixels that would be sampled by an ideal rendering gfxPoint subimageTopLeft = MapToFloatImagePixels(imageSize, devPixelDest, devPixelFill.TopLeft()); gfxPoint subimageBottomRight = MapToFloatImagePixels(imageSize, devPixelDest, devPixelFill.BottomRight()); gfxRect subimage; subimage.MoveTo(NSToIntFloor(subimageTopLeft.x), NSToIntFloor(subimageTopLeft.y)); subimage.SizeTo(NSToIntCeil(subimageBottomRight.x) - subimage.x, NSToIntCeil(subimageBottomRight.y) - subimage.y); if (subimage.IsEmpty()) { // Bail if the subimage is empty (we're not going to be drawing anything). return SnappedImageDrawingParameters(); } gfxMatrix transform; gfxMatrix invTransform; bool anchorAtUpperLeft = anchor.x == appUnitDest.x && anchor.y == appUnitDest.y; bool exactlyOneImageCopy = aFill.IsEqualEdges(appUnitDest); if (anchorAtUpperLeft && exactlyOneImageCopy) { // The simple case: we can ignore the anchor point and compute the // transformation from the sampled region (the subimage) to the fill rect. // This approach is preferable when it works since it tends to produce // less numerical error. transform = TransformBetweenRects(subimage, fill); invTransform = TransformBetweenRects(fill, subimage); } else { // The more complicated case: we compute the transformation from the // image rect positioned at the image space anchor point to the dest rect // positioned at the device space anchor point. // Compute the anchor point in both device space and image space. This // code assumes that pixel-based devices have one pixel per device unit! gfxPoint anchorPoint(gfxFloat(anchor.x)/aAppUnitsPerDevPixel, gfxFloat(anchor.y)/aAppUnitsPerDevPixel); gfxPoint imageSpaceAnchorPoint = MapToFloatImagePixels(imageSize, devPixelDest, anchorPoint); if (didSnap) { imageSpaceAnchorPoint = StableRound(imageSpaceAnchorPoint); anchorPoint = imageSpaceAnchorPoint; anchorPoint = MapToFloatUserPixels(imageSize, devPixelDest, anchorPoint); anchorPoint = currentMatrix.Transform(anchorPoint); anchorPoint = StableRound(anchorPoint); } // Compute an unsnapped version of the dest rect's size. We continue to // follow the pattern that we take |currentMatrix| into account only if // |didSnap| is true. gfxSize unsnappedDestSize = didSnap ? devPixelDest.Size() * currentMatrix.ScaleFactors(true) : devPixelDest.Size(); gfxRect anchoredDestRect(anchorPoint, unsnappedDestSize); gfxRect anchoredImageRect(imageSpaceAnchorPoint, imageSize); // Calculate anchoredDestRect with snapped fill rect when the devPixelFill rect // corresponds to just a single tile in that direction if (fill.Width() != devPixelFill.Width() && devPixelDest.x == devPixelFill.x && devPixelDest.XMost() == devPixelFill.XMost()) { anchoredDestRect.width = fill.width; } if (fill.Height() != devPixelFill.Height() && devPixelDest.y == devPixelFill.y && devPixelDest.YMost() == devPixelFill.YMost()) { anchoredDestRect.height = fill.height; } transform = TransformBetweenRects(anchoredImageRect, anchoredDestRect); invTransform = TransformBetweenRects(anchoredDestRect, anchoredImageRect); } // If the transform is not a straight translation by integers, then // filtering will occur, and restricting the fill rect to the dirty rect // would change the values computed for edge pixels, which we can't allow. // Also, if 'didSnap' is false then rounding out 'devPixelDirty' might not // produce pixel-aligned coordinates, which would also break the values // computed for edge pixels. if (didSnap && !invTransform.HasNonIntegerTranslation()) { // This form of Transform is safe to call since non-axis-aligned // transforms wouldn't be snapped. devPixelDirty = currentMatrix.Transform(devPixelDirty); devPixelDirty.RoundOut(); fill = fill.Intersect(devPixelDirty); } if (fill.IsEmpty()) return SnappedImageDrawingParameters(); gfxRect imageSpaceFill(didSnap ? invTransform.Transform(fill) : invTransform.TransformBounds(fill)); // If we didn't snap, we need to post-multiply the matrix on the context to // get the final matrix we'll draw with, because we didn't take it into // account when computing the matrices above. if (!didSnap) { transform = transform * currentMatrix; } ExtendMode extendMode = (aImageFlags & imgIContainer::FLAG_CLAMP) ? ExtendMode::CLAMP : aExtendMode; // We were passed in the default extend mode but need to tile. if (extendMode == ExtendMode::CLAMP && doTile) { MOZ_ASSERT(!(aImageFlags & imgIContainer::FLAG_CLAMP)); extendMode = ExtendMode::REPEAT; } ImageRegion region = ImageRegion::CreateWithSamplingRestriction(imageSpaceFill, subimage, extendMode); return SnappedImageDrawingParameters(transform, intImageSize, region, svgViewportSize); } static DrawResult DrawImageInternal(gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsPoint& aAnchor, const nsRect& aDirty, const SVGImageContext* aSVGContext, uint32_t aImageFlags, ExtendMode aExtendMode = ExtendMode::CLAMP) { DrawResult result = DrawResult::SUCCESS; if (aPresContext->Type() == nsPresContext::eContext_Print) { // We want vector images to be passed on as vector commands, not a raster // image. aImageFlags |= imgIContainer::FLAG_BYPASS_SURFACE_CACHE; } if (aDest.Contains(aFill)) { aImageFlags |= imgIContainer::FLAG_CLAMP; } int32_t appUnitsPerDevPixel = aPresContext->AppUnitsPerDevPixel(); SnappedImageDrawingParameters params = ComputeSnappedImageDrawingParameters(&aContext, appUnitsPerDevPixel, aDest, aFill, aAnchor, aDirty, aImage, aSamplingFilter, aImageFlags, aExtendMode); if (!params.shouldDraw) { return result; } { gfxContextMatrixAutoSaveRestore contextMatrixRestorer(&aContext); RefPtr destCtx = &aContext; destCtx->SetMatrix(params.imageSpaceToDeviceSpace); Maybe svgContext = ToMaybe(aSVGContext); if (!svgContext) { // Use the default viewport. svgContext = Some(SVGImageContext(params.svgViewportSize, Nothing())); } result = aImage->Draw(destCtx, params.size, params.region, imgIContainer::FRAME_CURRENT, aSamplingFilter, svgContext, aImageFlags); } return result; } /* static */ DrawResult nsLayoutUtils::DrawSingleUnscaledImage(gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsPoint& aDest, const nsRect* aDirty, uint32_t aImageFlags, const nsRect* aSourceArea) { CSSIntSize imageSize; aImage->GetWidth(&imageSize.width); aImage->GetHeight(&imageSize.height); if (imageSize.width < 1 || imageSize.height < 1) { NS_WARNING("Image width or height is non-positive"); return DrawResult::TEMPORARY_ERROR; } nsSize size(CSSPixel::ToAppUnits(imageSize)); nsRect source; if (aSourceArea) { source = *aSourceArea; } else { source.SizeTo(size); } nsRect dest(aDest - source.TopLeft(), size); nsRect fill(aDest, source.Size()); // Ensure that only a single image tile is drawn. If aSourceArea extends // outside the image bounds, we want to honor the aSourceArea-to-aDest // translation but we don't want to actually tile the image. fill.IntersectRect(fill, dest); return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, dest, fill, aDest, aDirty ? *aDirty : dest, nullptr, aImageFlags); } /* static */ DrawResult nsLayoutUtils::DrawSingleImage(gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aDirty, const SVGImageContext* aSVGContext, uint32_t aImageFlags, const nsPoint* aAnchorPoint, const nsRect* aSourceArea) { nscoord appUnitsPerCSSPixel = nsDeviceContext::AppUnitsPerCSSPixel(); CSSIntSize pixelImageSize(ComputeSizeForDrawingWithFallback(aImage, aDest.Size())); if (pixelImageSize.width < 1 || pixelImageSize.height < 1) { NS_ASSERTION(pixelImageSize.width >= 0 && pixelImageSize.height >= 0, "Image width or height is negative"); return DrawResult::SUCCESS; // no point in drawing a zero size image } nsSize imageSize(CSSPixel::ToAppUnits(pixelImageSize)); nsRect source; nsCOMPtr image; if (aSourceArea) { source = *aSourceArea; nsIntRect subRect(source.x, source.y, source.width, source.height); subRect.ScaleInverseRoundOut(appUnitsPerCSSPixel); image = ImageOps::Clip(aImage, subRect); nsRect imageRect; imageRect.SizeTo(imageSize); nsRect clippedSource = imageRect.Intersect(source); source -= clippedSource.TopLeft(); imageSize = clippedSource.Size(); } else { source.SizeTo(imageSize); image = aImage; } nsRect dest = GetWholeImageDestination(imageSize, source, aDest); // Ensure that only a single image tile is drawn. If aSourceArea extends // outside the image bounds, we want to honor the aSourceArea-to-aDest // transform but we don't want to actually tile the image. nsRect fill; fill.IntersectRect(aDest, dest); return DrawImageInternal(aContext, aPresContext, image, aSamplingFilter, dest, fill, aAnchorPoint ? *aAnchorPoint : fill.TopLeft(), aDirty, aSVGContext, aImageFlags); } /* static */ void nsLayoutUtils::ComputeSizeForDrawing(imgIContainer *aImage, CSSIntSize& aImageSize, /*outparam*/ AspectRatio& aIntrinsicRatio, /*outparam*/ bool& aGotWidth, /*outparam*/ bool& aGotHeight /*outparam*/) { aGotWidth = NS_SUCCEEDED(aImage->GetWidth(&aImageSize.width)); aGotHeight = NS_SUCCEEDED(aImage->GetHeight(&aImageSize.height)); bool gotRatio = NS_SUCCEEDED(aImage->GetIntrinsicRatio(&aIntrinsicRatio)); if (!(aGotWidth && aGotHeight) && !gotRatio) { // We hit an error (say, because the image failed to load or couldn't be // decoded) and should return zero size. aGotWidth = aGotHeight = true; aImageSize = CSSIntSize(0, 0); aIntrinsicRatio = AspectRatio(); } } /* static */ CSSIntSize nsLayoutUtils::ComputeSizeForDrawingWithFallback(imgIContainer* aImage, const nsSize& aFallbackSize) { CSSIntSize imageSize; AspectRatio imageRatio; bool gotHeight, gotWidth; ComputeSizeForDrawing(aImage, imageSize, imageRatio, gotWidth, gotHeight); // If we didn't get both width and height, try to compute them using the // intrinsic ratio of the image. if (gotWidth != gotHeight) { if (!gotWidth) { if (imageRatio) { imageSize.width = imageRatio.ApplyTo(imageSize.height); gotWidth = true; } } else { if (imageRatio) { imageSize.height = imageRatio.Inverted().ApplyTo(imageSize.width); gotHeight = true; } } } // If we still don't have a width or height, just use the fallback size the // caller provided. if (!gotWidth) { imageSize.width = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.width); } if (!gotHeight) { imageSize.height = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.height); } return imageSize; } /* static */ DrawResult nsLayoutUtils::DrawBackgroundImage(gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const CSSIntSize& aImageSize, SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsSize& aRepeatSize, const nsPoint& aAnchor, const nsRect& aDirty, uint32_t aImageFlags, ExtendMode aExtendMode) { PROFILER_LABEL("layout", "nsLayoutUtils::DrawBackgroundImage", js::ProfileEntry::Category::GRAPHICS); SVGImageContext svgContext(aImageSize, Nothing()); /* Fast path when there is no need for image spacing */ if (aRepeatSize.width == aDest.width && aRepeatSize.height == aDest.height) { return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, aDest, aFill, aAnchor, aDirty, &svgContext, aImageFlags, aExtendMode); } nsPoint firstTilePos = aDest.TopLeft() + nsPoint(NSToIntFloor(float(aFill.x - aDest.x) / aRepeatSize.width) * aRepeatSize.width, NSToIntFloor(float(aFill.y - aDest.y) / aRepeatSize.height) * aRepeatSize.height); for (int32_t i = firstTilePos.x; i < aFill.XMost(); i += aRepeatSize.width) { for (int32_t j = firstTilePos.y; j < aFill.YMost(); j += aRepeatSize.height) { nsRect dest(i, j, aDest.width, aDest.height); DrawResult result = DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, dest, dest, aAnchor, aDirty, &svgContext, aImageFlags, ExtendMode::CLAMP); if (result != DrawResult::SUCCESS) { return result; } } } return DrawResult::SUCCESS; } /* static */ DrawResult nsLayoutUtils::DrawImage(gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsPoint& aAnchor, const nsRect& aDirty, uint32_t aImageFlags) { return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, aDest, aFill, aAnchor, aDirty, nullptr, aImageFlags); } /* static */ nsRect nsLayoutUtils::GetWholeImageDestination(const nsSize& aWholeImageSize, const nsRect& aImageSourceArea, const nsRect& aDestArea) { double scaleX = double(aDestArea.width)/aImageSourceArea.width; double scaleY = double(aDestArea.height)/aImageSourceArea.height; nscoord destOffsetX = NSToCoordRound(aImageSourceArea.x*scaleX); nscoord destOffsetY = NSToCoordRound(aImageSourceArea.y*scaleY); nscoord wholeSizeX = NSToCoordRound(aWholeImageSize.width*scaleX); nscoord wholeSizeY = NSToCoordRound(aWholeImageSize.height*scaleY); return nsRect(aDestArea.TopLeft() - nsPoint(destOffsetX, destOffsetY), nsSize(wholeSizeX, wholeSizeY)); } /* static */ already_AddRefed nsLayoutUtils::OrientImage(imgIContainer* aContainer, const nsStyleImageOrientation& aOrientation) { MOZ_ASSERT(aContainer, "Should have an image container"); nsCOMPtr img(aContainer); if (aOrientation.IsFromImage()) { img = ImageOps::Orient(img, img->GetOrientation()); } else if (!aOrientation.IsDefault()) { Angle angle = aOrientation.Angle(); Flip flip = aOrientation.IsFlipped() ? Flip::Horizontal : Flip::Unflipped; img = ImageOps::Orient(img, Orientation(angle, flip)); } return img.forget(); } static bool NonZeroStyleCoord(const nsStyleCoord& aCoord) { if (aCoord.IsCoordPercentCalcUnit()) { // Since negative results are clamped to 0, check > 0. return nsRuleNode::ComputeCoordPercentCalc(aCoord, nscoord_MAX) > 0 || nsRuleNode::ComputeCoordPercentCalc(aCoord, 0) > 0; } return true; } /* static */ bool nsLayoutUtils::HasNonZeroCorner(const nsStyleCorners& aCorners) { NS_FOR_CSS_HALF_CORNERS(corner) { if (NonZeroStyleCoord(aCorners.Get(corner))) return true; } return false; } // aCorner is a "full corner" value, i.e. NS_CORNER_TOP_LEFT etc static bool IsCornerAdjacentToSide(uint8_t aCorner, css::Side aSide) { static_assert((int)NS_SIDE_TOP == NS_CORNER_TOP_LEFT, "Check for Full Corner"); static_assert((int)NS_SIDE_RIGHT == NS_CORNER_TOP_RIGHT, "Check for Full Corner"); static_assert((int)NS_SIDE_BOTTOM == NS_CORNER_BOTTOM_RIGHT, "Check for Full Corner"); static_assert((int)NS_SIDE_LEFT == NS_CORNER_BOTTOM_LEFT, "Check for Full Corner"); static_assert((int)NS_SIDE_TOP == ((NS_CORNER_TOP_RIGHT - 1)&3), "Check for Full Corner"); static_assert((int)NS_SIDE_RIGHT == ((NS_CORNER_BOTTOM_RIGHT - 1)&3), "Check for Full Corner"); static_assert((int)NS_SIDE_BOTTOM == ((NS_CORNER_BOTTOM_LEFT - 1)&3), "Check for Full Corner"); static_assert((int)NS_SIDE_LEFT == ((NS_CORNER_TOP_LEFT - 1)&3), "Check for Full Corner"); return aSide == aCorner || aSide == ((aCorner - 1)&3); } /* static */ bool nsLayoutUtils::HasNonZeroCornerOnSide(const nsStyleCorners& aCorners, css::Side aSide) { static_assert(NS_CORNER_TOP_LEFT_X/2 == NS_CORNER_TOP_LEFT, "Check for Non Zero on side"); static_assert(NS_CORNER_TOP_LEFT_Y/2 == NS_CORNER_TOP_LEFT, "Check for Non Zero on side"); static_assert(NS_CORNER_TOP_RIGHT_X/2 == NS_CORNER_TOP_RIGHT, "Check for Non Zero on side"); static_assert(NS_CORNER_TOP_RIGHT_Y/2 == NS_CORNER_TOP_RIGHT, "Check for Non Zero on side"); static_assert(NS_CORNER_BOTTOM_RIGHT_X/2 == NS_CORNER_BOTTOM_RIGHT, "Check for Non Zero on side"); static_assert(NS_CORNER_BOTTOM_RIGHT_Y/2 == NS_CORNER_BOTTOM_RIGHT, "Check for Non Zero on side"); static_assert(NS_CORNER_BOTTOM_LEFT_X/2 == NS_CORNER_BOTTOM_LEFT, "Check for Non Zero on side"); static_assert(NS_CORNER_BOTTOM_LEFT_Y/2 == NS_CORNER_BOTTOM_LEFT, "Check for Non Zero on side"); NS_FOR_CSS_HALF_CORNERS(corner) { // corner is a "half corner" value, so dividing by two gives us a // "full corner" value. if (NonZeroStyleCoord(aCorners.Get(corner)) && IsCornerAdjacentToSide(corner/2, aSide)) return true; } return false; } /* static */ nsTransparencyMode nsLayoutUtils::GetFrameTransparency(nsIFrame* aBackgroundFrame, nsIFrame* aCSSRootFrame) { if (aCSSRootFrame->StyleEffects()->mOpacity < 1.0f) return eTransparencyTransparent; if (HasNonZeroCorner(aCSSRootFrame->StyleBorder()->mBorderRadius)) return eTransparencyTransparent; if (aCSSRootFrame->StyleDisplay()->mAppearance == NS_THEME_WIN_GLASS) return eTransparencyGlass; if (aCSSRootFrame->StyleDisplay()->mAppearance == NS_THEME_WIN_BORDERLESS_GLASS) return eTransparencyBorderlessGlass; nsITheme::Transparency transparency; if (aCSSRootFrame->IsThemed(&transparency)) return transparency == nsITheme::eTransparent ? eTransparencyTransparent : eTransparencyOpaque; // We need an uninitialized window to be treated as opaque because // doing otherwise breaks window display effects on some platforms, // specifically Vista. (bug 450322) if (aBackgroundFrame->GetType() == nsGkAtoms::viewportFrame && !aBackgroundFrame->PrincipalChildList().FirstChild()) { return eTransparencyOpaque; } nsStyleContext* bgSC; if (!nsCSSRendering::FindBackground(aBackgroundFrame, &bgSC)) { return eTransparencyTransparent; } const nsStyleBackground* bg = bgSC->StyleBackground(); if (NS_GET_A(bg->mBackgroundColor) < 255 || // bottom layer's clip is used for the color bg->BottomLayer().mClip != StyleGeometryBox::Border) return eTransparencyTransparent; return eTransparencyOpaque; } static bool IsPopupFrame(nsIFrame* aFrame) { // aFrame is a popup it's the list control frame dropdown for a combobox. nsIAtom* frameType = aFrame->GetType(); if (frameType == nsGkAtoms::listControlFrame) { nsListControlFrame* lcf = static_cast(aFrame); return lcf->IsInDropDownMode(); } // ... or if it's a XUL menupopup frame. return frameType == nsGkAtoms::menuPopupFrame; } /* static */ bool nsLayoutUtils::IsPopup(nsIFrame* aFrame) { // Optimization: the frame can't possibly be a popup if it has no view. if (!aFrame->HasView()) { NS_ASSERTION(!IsPopupFrame(aFrame), "popup frame must have a view"); return false; } return IsPopupFrame(aFrame); } /* static */ nsIFrame* nsLayoutUtils::GetDisplayRootFrame(nsIFrame* aFrame) { // We could use GetRootPresContext() here if the // NS_FRAME_IN_POPUP frame bit is set. nsIFrame* f = aFrame; for (;;) { if (!f->HasAnyStateBits(NS_FRAME_IN_POPUP)) { f = f->PresContext()->FrameManager()->GetRootFrame(); } else if (IsPopup(f)) { return f; } nsIFrame* parent = GetCrossDocParentFrame(f); if (!parent) return f; f = parent; } } /* static */ nsIFrame* nsLayoutUtils::GetReferenceFrame(nsIFrame* aFrame) { nsIFrame *f = aFrame; for (;;) { if (f->IsTransformed() || f->IsPreserve3DLeaf() || IsPopup(f)) { return f; } nsIFrame* parent = GetCrossDocParentFrame(f); if (!parent) { return f; } f = parent; } } /* static */ uint32_t nsLayoutUtils::GetTextRunFlagsForStyle(nsStyleContext* aStyleContext, const nsStyleFont* aStyleFont, const nsStyleText* aStyleText, nscoord aLetterSpacing) { uint32_t result = 0; if (aLetterSpacing != 0 || aStyleText->mTextJustify == StyleTextJustify::InterCharacter) { result |= gfxTextRunFactory::TEXT_DISABLE_OPTIONAL_LIGATURES; } if (aStyleText->mControlCharacterVisibility == NS_STYLE_CONTROL_CHARACTER_VISIBILITY_HIDDEN) { result |= gfxTextRunFactory::TEXT_HIDE_CONTROL_CHARACTERS; } switch (aStyleContext->StyleText()->mTextRendering) { case NS_STYLE_TEXT_RENDERING_OPTIMIZESPEED: result |= gfxTextRunFactory::TEXT_OPTIMIZE_SPEED; break; case NS_STYLE_TEXT_RENDERING_AUTO: if (aStyleFont->mFont.size < aStyleContext->PresContext()->GetAutoQualityMinFontSize()) { result |= gfxTextRunFactory::TEXT_OPTIMIZE_SPEED; } break; default: break; } return result | GetTextRunOrientFlagsForStyle(aStyleContext); } /* static */ uint32_t nsLayoutUtils::GetTextRunOrientFlagsForStyle(nsStyleContext* aStyleContext) { uint8_t writingMode = aStyleContext->StyleVisibility()->mWritingMode; switch (writingMode) { case NS_STYLE_WRITING_MODE_HORIZONTAL_TB: return gfxTextRunFactory::TEXT_ORIENT_HORIZONTAL; case NS_STYLE_WRITING_MODE_VERTICAL_LR: case NS_STYLE_WRITING_MODE_VERTICAL_RL: switch (aStyleContext->StyleVisibility()->mTextOrientation) { case NS_STYLE_TEXT_ORIENTATION_MIXED: return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_MIXED; case NS_STYLE_TEXT_ORIENTATION_UPRIGHT: return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_UPRIGHT; case NS_STYLE_TEXT_ORIENTATION_SIDEWAYS: return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT; default: NS_NOTREACHED("unknown text-orientation"); return 0; } case NS_STYLE_WRITING_MODE_SIDEWAYS_LR: return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_LEFT; case NS_STYLE_WRITING_MODE_SIDEWAYS_RL: return gfxTextRunFactory::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT; default: NS_NOTREACHED("unknown writing-mode"); return 0; } } /* static */ void nsLayoutUtils::GetRectDifferenceStrips(const nsRect& aR1, const nsRect& aR2, nsRect* aHStrip, nsRect* aVStrip) { NS_ASSERTION(aR1.TopLeft() == aR2.TopLeft(), "expected rects at the same position"); nsRect unionRect(aR1.x, aR1.y, std::max(aR1.width, aR2.width), std::max(aR1.height, aR2.height)); nscoord VStripStart = std::min(aR1.width, aR2.width); nscoord HStripStart = std::min(aR1.height, aR2.height); *aVStrip = unionRect; aVStrip->x += VStripStart; aVStrip->width -= VStripStart; *aHStrip = unionRect; aHStrip->y += HStripStart; aHStrip->height -= HStripStart; } nsDeviceContext* nsLayoutUtils::GetDeviceContextForScreenInfo(nsPIDOMWindowOuter* aWindow) { if (!aWindow) { return nullptr; } nsCOMPtr docShell = aWindow->GetDocShell(); while (docShell) { // Now make sure our size is up to date. That will mean that the device // context does the right thing on multi-monitor systems when we return it to // the caller. It will also make sure that our prescontext has been created, // if we're supposed to have one. nsCOMPtr win = docShell->GetWindow(); if (!win) { // No reason to go on return nullptr; } win->EnsureSizeUpToDate(); RefPtr presContext; docShell->GetPresContext(getter_AddRefs(presContext)); if (presContext) { nsDeviceContext* context = presContext->DeviceContext(); if (context) { return context; } } nsCOMPtr parentItem; docShell->GetParent(getter_AddRefs(parentItem)); docShell = do_QueryInterface(parentItem); } return nullptr; } /* static */ bool nsLayoutUtils::IsReallyFixedPos(nsIFrame* aFrame) { NS_PRECONDITION(aFrame->GetParent(), "IsReallyFixedPos called on frame not in tree"); NS_PRECONDITION(aFrame->StyleDisplay()->mPosition == NS_STYLE_POSITION_FIXED, "IsReallyFixedPos called on non-'position:fixed' frame"); nsIAtom *parentType = aFrame->GetParent()->GetType(); return parentType == nsGkAtoms::viewportFrame || parentType == nsGkAtoms::pageContentFrame; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromOffscreenCanvas(OffscreenCanvas* aOffscreenCanvas, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; bool* isPremultiplied = nullptr; if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) { isPremultiplied = &result.mIsPremultiplied; } nsIntSize size = aOffscreenCanvas->GetWidthHeight(); result.mSourceSurface = aOffscreenCanvas->GetSurfaceSnapshot(isPremultiplied); if (!result.mSourceSurface) { // If the element doesn't have a context then we won't get a snapshot. The canvas spec wants us to not error and just // draw nothing, so return an empty surface. DrawTarget *ref = aTarget ? aTarget.get() : gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); RefPtr dt = ref->CreateSimilarDrawTarget(IntSize(size.width, size.height), SurfaceFormat::B8G8R8A8); if (dt) { result.mSourceSurface = dt->Snapshot(); } } else if (aTarget) { RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } result.mHasSize = true; result.mSize = size; result.mIsWriteOnly = aOffscreenCanvas->IsWriteOnly(); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement(nsIImageLoadingContent* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; nsresult rv; nsCOMPtr imgRequest; rv = aElement->GetRequest(nsIImageLoadingContent::CURRENT_REQUEST, getter_AddRefs(imgRequest)); if (NS_FAILED(rv)) { return result; } if (!imgRequest) { // There's no image request. This is either because a request for // a non-empty URI failed, or the URI is the empty string. nsCOMPtr currentURI; aElement->GetCurrentURI(getter_AddRefs(currentURI)); if (!currentURI) { // Treat the empty URI as available instead of broken state. result.mHasSize = true; } return result; } uint32_t status; imgRequest->GetImageStatus(&status); result.mHasSize = status & imgIRequest::STATUS_SIZE_AVAILABLE; if ((status & imgIRequest::STATUS_LOAD_COMPLETE) == 0) { // Spec says to use GetComplete, but that only works on // nsIDOMHTMLImageElement, and we support all sorts of other stuff // here. Do this for now pending spec clarification. result.mIsStillLoading = (status & imgIRequest::STATUS_ERROR) == 0; return result; } nsCOMPtr principal; rv = imgRequest->GetImagePrincipal(getter_AddRefs(principal)); if (NS_FAILED(rv)) { return result; } nsCOMPtr imgContainer; rv = imgRequest->GetImage(getter_AddRefs(imgContainer)); if (NS_FAILED(rv)) { return result; } uint32_t noRasterize = aSurfaceFlags & SFE_NO_RASTERIZING_VECTORS; uint32_t whichFrame = (aSurfaceFlags & SFE_WANT_FIRST_FRAME) ? (uint32_t) imgIContainer::FRAME_FIRST : (uint32_t) imgIContainer::FRAME_CURRENT; uint32_t frameFlags = imgIContainer::FLAG_SYNC_DECODE; if (aSurfaceFlags & SFE_NO_COLORSPACE_CONVERSION) frameFlags |= imgIContainer::FLAG_DECODE_NO_COLORSPACE_CONVERSION; if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) { frameFlags |= imgIContainer::FLAG_DECODE_NO_PREMULTIPLY_ALPHA; result.mIsPremultiplied = false; } int32_t imgWidth, imgHeight; nsCOMPtr content = do_QueryInterface(aElement); HTMLImageElement* element = HTMLImageElement::FromContentOrNull(content); if (aSurfaceFlags & SFE_USE_ELEMENT_SIZE_IF_VECTOR && element && imgContainer->GetType() == imgIContainer::TYPE_VECTOR) { imgWidth = element->Width(); imgHeight = element->Height(); } else { rv = imgContainer->GetWidth(&imgWidth); nsresult rv2 = imgContainer->GetHeight(&imgHeight); if (NS_FAILED(rv) || NS_FAILED(rv2)) return result; } result.mSize = IntSize(imgWidth, imgHeight); if (!noRasterize || imgContainer->GetType() == imgIContainer::TYPE_RASTER) { if (aSurfaceFlags & SFE_WANT_IMAGE_SURFACE) { frameFlags |= imgIContainer::FLAG_WANT_DATA_SURFACE; } result.mSourceSurface = imgContainer->GetFrameAtSize(result.mSize, whichFrame, frameFlags); if (!result.mSourceSurface) { return result; } // The surface we return is likely to be cached. We don't want to have to // convert to a surface that's compatible with aTarget each time it's used // (that would result in terrible performance), so we convert once here // upfront if aTarget is specified. if (aTarget) { RefPtr optSurface = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (optSurface) { result.mSourceSurface = optSurface; } } } else { result.mDrawInfo.mImgContainer = imgContainer; result.mDrawInfo.mWhichFrame = whichFrame; result.mDrawInfo.mDrawingFlags = frameFlags; } int32_t corsmode; if (NS_SUCCEEDED(imgRequest->GetCORSMode(&corsmode))) { result.mCORSUsed = (corsmode != imgIRequest::CORS_NONE); } result.mPrincipal = principal.forget(); // no images, including SVG images, can load content from another domain. result.mIsWriteOnly = false; result.mImageRequest = imgRequest.forget(); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement(HTMLImageElement *aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { return SurfaceFromElement(static_cast(aElement), aSurfaceFlags, aTarget); } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement(HTMLCanvasElement* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; bool* isPremultiplied = nullptr; if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) { isPremultiplied = &result.mIsPremultiplied; } IntSize size = aElement->GetSize(); result.mSourceSurface = aElement->GetSurfaceSnapshot(isPremultiplied); if (!result.mSourceSurface) { // If the element doesn't have a context then we won't get a snapshot. The canvas spec wants us to not error and just // draw nothing, so return an empty surface. DrawTarget *ref = aTarget ? aTarget.get() : gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); RefPtr dt = ref->CreateSimilarDrawTarget(IntSize(size.width, size.height), SurfaceFormat::B8G8R8A8); if (dt) { result.mSourceSurface = dt->Snapshot(); } } else if (aTarget) { RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } // Ensure that any future changes to the canvas trigger proper invalidation, // in case this is being used by -moz-element() aElement->MarkContextClean(); result.mHasSize = true; result.mSize = size; result.mPrincipal = aElement->NodePrincipal(); result.mIsWriteOnly = aElement->IsWriteOnly(); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement(HTMLVideoElement* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; NS_WARNING_ASSERTION( (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) == 0, "We can't support non-premultiplied alpha for video!"); #ifdef MOZ_EME if (aElement->ContainsRestrictedContent()) { return result; } #endif uint16_t readyState; if (NS_SUCCEEDED(aElement->GetReadyState(&readyState)) && (readyState == nsIDOMHTMLMediaElement::HAVE_NOTHING || readyState == nsIDOMHTMLMediaElement::HAVE_METADATA)) { result.mIsStillLoading = true; return result; } // If it doesn't have a principal, just bail nsCOMPtr principal = aElement->GetCurrentVideoPrincipal(); if (!principal) return result; ImageContainer* container = aElement->GetImageContainer(); if (!container) return result; AutoLockImage lockImage(container); result.mLayersImage = lockImage.GetImage(); if (!result.mLayersImage) return result; if (aTarget) { // They gave us a DrawTarget to optimize for, so even though we have a layers::Image, // we should unconditionally grab a SourceSurface and try to optimize it. result.mSourceSurface = result.mLayersImage->GetAsSourceSurface(); if (!result.mSourceSurface) return result; RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } result.mCORSUsed = aElement->GetCORSMode() != CORS_NONE; result.mHasSize = true; result.mSize = result.mLayersImage->GetSize(); result.mPrincipal = principal.forget(); result.mIsWriteOnly = false; return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement(dom::Element* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { // If it's a , we may be able to just grab its internal surface if (HTMLCanvasElement* canvas = HTMLCanvasElement::FromContentOrNull(aElement)) { return SurfaceFromElement(canvas, aSurfaceFlags, aTarget); } // Maybe it's