// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "new-regexp/regexp-ast.h" namespace v8 { namespace internal { #define MAKE_ACCEPT(Name) \ void* RegExp##Name::Accept(RegExpVisitor* visitor, void* data) { \ return visitor->Visit##Name(this, data); \ } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_ACCEPT) #undef MAKE_ACCEPT #define MAKE_TYPE_CASE(Name) \ RegExp##Name* RegExpTree::As##Name() { return nullptr; } \ bool RegExpTree::Is##Name() { return false; } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) #undef MAKE_TYPE_CASE #define MAKE_TYPE_CASE(Name) \ RegExp##Name* RegExp##Name::As##Name() { return this; } \ bool RegExp##Name::Is##Name() { return true; } FOR_EACH_REG_EXP_TREE_TYPE(MAKE_TYPE_CASE) #undef MAKE_TYPE_CASE static Interval ListCaptureRegisters(ZoneList* children) { Interval result = Interval::Empty(); for (int i = 0; i < children->length(); i++) result = result.Union(children->at(i)->CaptureRegisters()); return result; } Interval RegExpAlternative::CaptureRegisters() { return ListCaptureRegisters(nodes()); } Interval RegExpDisjunction::CaptureRegisters() { return ListCaptureRegisters(alternatives()); } Interval RegExpLookaround::CaptureRegisters() { return body()->CaptureRegisters(); } Interval RegExpCapture::CaptureRegisters() { Interval self(StartRegister(index()), EndRegister(index())); return self.Union(body()->CaptureRegisters()); } Interval RegExpQuantifier::CaptureRegisters() { return body()->CaptureRegisters(); } bool RegExpAssertion::IsAnchoredAtStart() { return assertion_type() == RegExpAssertion::START_OF_INPUT; } bool RegExpAssertion::IsAnchoredAtEnd() { return assertion_type() == RegExpAssertion::END_OF_INPUT; } bool RegExpAlternative::IsAnchoredAtStart() { ZoneList* nodes = this->nodes(); for (int i = 0; i < nodes->length(); i++) { RegExpTree* node = nodes->at(i); if (node->IsAnchoredAtStart()) { return true; } if (node->max_match() > 0) { return false; } } return false; } bool RegExpAlternative::IsAnchoredAtEnd() { ZoneList* nodes = this->nodes(); for (int i = nodes->length() - 1; i >= 0; i--) { RegExpTree* node = nodes->at(i); if (node->IsAnchoredAtEnd()) { return true; } if (node->max_match() > 0) { return false; } } return false; } bool RegExpDisjunction::IsAnchoredAtStart() { ZoneList* alternatives = this->alternatives(); for (int i = 0; i < alternatives->length(); i++) { if (!alternatives->at(i)->IsAnchoredAtStart()) return false; } return true; } bool RegExpDisjunction::IsAnchoredAtEnd() { ZoneList* alternatives = this->alternatives(); for (int i = 0; i < alternatives->length(); i++) { if (!alternatives->at(i)->IsAnchoredAtEnd()) return false; } return true; } bool RegExpLookaround::IsAnchoredAtStart() { return is_positive() && type() == LOOKAHEAD && body()->IsAnchoredAtStart(); } bool RegExpCapture::IsAnchoredAtStart() { return body()->IsAnchoredAtStart(); } bool RegExpCapture::IsAnchoredAtEnd() { return body()->IsAnchoredAtEnd(); } // Convert regular expression trees to a simple sexp representation. // This representation should be different from the input grammar // in as many cases as possible, to make it more difficult for incorrect // parses to look as correct ones which is likely if the input and // output formats are alike. class RegExpUnparser final : public RegExpVisitor { public: RegExpUnparser(std::ostream& os, Zone* zone) : os_(os), zone_(zone) {} void VisitCharacterRange(CharacterRange that); #define MAKE_CASE(Name) void* Visit##Name(RegExp##Name*, void* data) override; FOR_EACH_REG_EXP_TREE_TYPE(MAKE_CASE) #undef MAKE_CASE private: std::ostream& os_; Zone* zone_; }; void* RegExpUnparser::VisitDisjunction(RegExpDisjunction* that, void* data) { os_ << "(|"; for (int i = 0; i < that->alternatives()->length(); i++) { os_ << " "; that->alternatives()->at(i)->Accept(this, data); } os_ << ")"; return nullptr; } void* RegExpUnparser::VisitAlternative(RegExpAlternative* that, void* data) { os_ << "(:"; for (int i = 0; i < that->nodes()->length(); i++) { os_ << " "; that->nodes()->at(i)->Accept(this, data); } os_ << ")"; return nullptr; } void RegExpUnparser::VisitCharacterRange(CharacterRange that) { os_ << AsUC32(that.from()); if (!that.IsSingleton()) { os_ << "-" << AsUC32(that.to()); } } void* RegExpUnparser::VisitCharacterClass(RegExpCharacterClass* that, void* data) { if (that->is_negated()) os_ << "^"; os_ << "["; for (int i = 0; i < that->ranges(zone_)->length(); i++) { if (i > 0) os_ << " "; VisitCharacterRange(that->ranges(zone_)->at(i)); } os_ << "]"; return nullptr; } void* RegExpUnparser::VisitAssertion(RegExpAssertion* that, void* data) { switch (that->assertion_type()) { case RegExpAssertion::START_OF_INPUT: os_ << "@^i"; break; case RegExpAssertion::END_OF_INPUT: os_ << "@$i"; break; case RegExpAssertion::START_OF_LINE: os_ << "@^l"; break; case RegExpAssertion::END_OF_LINE: os_ << "@$l"; break; case RegExpAssertion::BOUNDARY: os_ << "@b"; break; case RegExpAssertion::NON_BOUNDARY: os_ << "@B"; break; } return nullptr; } void* RegExpUnparser::VisitAtom(RegExpAtom* that, void* data) { os_ << "'"; Vector chardata = that->data(); for (int i = 0; i < chardata.length(); i++) { os_ << AsUC16(chardata[i]); } os_ << "'"; return nullptr; } void* RegExpUnparser::VisitText(RegExpText* that, void* data) { if (that->elements()->length() == 1) { that->elements()->at(0).tree()->Accept(this, data); } else { os_ << "(!"; for (int i = 0; i < that->elements()->length(); i++) { os_ << " "; that->elements()->at(i).tree()->Accept(this, data); } os_ << ")"; } return nullptr; } void* RegExpUnparser::VisitQuantifier(RegExpQuantifier* that, void* data) { os_ << "(# " << that->min() << " "; if (that->max() == RegExpTree::kInfinity) { os_ << "- "; } else { os_ << that->max() << " "; } os_ << (that->is_greedy() ? "g " : that->is_possessive() ? "p " : "n "); that->body()->Accept(this, data); os_ << ")"; return nullptr; } void* RegExpUnparser::VisitCapture(RegExpCapture* that, void* data) { os_ << "(^ "; that->body()->Accept(this, data); os_ << ")"; return nullptr; } void* RegExpUnparser::VisitGroup(RegExpGroup* that, void* data) { os_ << "(?: "; that->body()->Accept(this, data); os_ << ")"; return nullptr; } void* RegExpUnparser::VisitLookaround(RegExpLookaround* that, void* data) { os_ << "("; os_ << (that->type() == RegExpLookaround::LOOKAHEAD ? "->" : "<-"); os_ << (that->is_positive() ? " + " : " - "); that->body()->Accept(this, data); os_ << ")"; return nullptr; } void* RegExpUnparser::VisitBackReference(RegExpBackReference* that, void* data) { os_ << "(<- " << that->index() << ")"; return nullptr; } void* RegExpUnparser::VisitEmpty(RegExpEmpty* that, void* data) { os_ << '%'; return nullptr; } std::ostream& RegExpTree::Print(std::ostream& os, Zone* zone) { // NOLINT RegExpUnparser unparser(os, zone); Accept(&unparser, nullptr); return os; } RegExpDisjunction::RegExpDisjunction(ZoneList* alternatives) : alternatives_(alternatives) { DCHECK_LT(1, alternatives->length()); RegExpTree* first_alternative = alternatives->at(0); min_match_ = first_alternative->min_match(); max_match_ = first_alternative->max_match(); for (int i = 1; i < alternatives->length(); i++) { RegExpTree* alternative = alternatives->at(i); min_match_ = Min(min_match_, alternative->min_match()); max_match_ = Max(max_match_, alternative->max_match()); } } static int IncreaseBy(int previous, int increase) { if (RegExpTree::kInfinity - previous < increase) { return RegExpTree::kInfinity; } else { return previous + increase; } } RegExpAlternative::RegExpAlternative(ZoneList* nodes) : nodes_(nodes) { DCHECK_LT(1, nodes->length()); min_match_ = 0; max_match_ = 0; for (int i = 0; i < nodes->length(); i++) { RegExpTree* node = nodes->at(i); int node_min_match = node->min_match(); min_match_ = IncreaseBy(min_match_, node_min_match); int node_max_match = node->max_match(); max_match_ = IncreaseBy(max_match_, node_max_match); } } } // namespace internal } // namespace v8