/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "builtin/Promise.h" #include "mozilla/Atomics.h" #include "mozilla/Maybe.h" #include "mozilla/TimeStamp.h" #include "jscntxt.h" #include "jsexn.h" #include "jsiter.h" #include "gc/Heap.h" #include "js/Debug.h" #include "vm/ArrayObject.h" #include "vm/AsyncFunction.h" #include "vm/AsyncIteration.h" #include "vm/ErrorObject.h" #include "jsobjinlines.h" #include "vm/ErrorObject-inl.h" #include "vm/NativeObject-inl.h" using namespace js; static double MillisecondsSinceStartup() { auto now = mozilla::TimeStamp::Now(); bool ignored; return (now - mozilla::TimeStamp::ProcessCreation(ignored)).ToMilliseconds(); } enum PromiseHandler { PromiseHandlerIdentity = 0, PromiseHandlerThrower, // ES 2018 draft 25.5.5.4-5. PromiseHandlerAsyncFunctionAwaitedFulfilled, PromiseHandlerAsyncFunctionAwaitedRejected, // Async Iteration proposal 4.1. PromiseHandlerAsyncGeneratorAwaitedFulfilled, PromiseHandlerAsyncGeneratorAwaitedRejected, // Async Iteration proposal 11.4.3.5.1-2. PromiseHandlerAsyncGeneratorResumeNextReturnFulfilled, PromiseHandlerAsyncGeneratorResumeNextReturnRejected, // Async Iteration proposal 11.4.3.7 steps 8.c-e. PromiseHandlerAsyncGeneratorYieldReturnAwaitedFulfilled, PromiseHandlerAsyncGeneratorYieldReturnAwaitedRejected, // Async Iteration proposal 11.1.3.2.5. // Async-from-Sync iterator handlers take the resolved value and create new // iterator objects. To do so it needs to forward whether the iterator is // done. In spec, this is achieved via the [[Done]] internal slot. We // enumerate both true and false cases here. PromiseHandlerAsyncFromSyncIteratorValueUnwrapDone, PromiseHandlerAsyncFromSyncIteratorValueUnwrapNotDone, // One past the maximum allowed PromiseHandler value. PromiseHandlerLimit }; enum ResolutionMode { ResolveMode, RejectMode }; enum ResolveFunctionSlots { ResolveFunctionSlot_Promise = 0, ResolveFunctionSlot_RejectFunction, }; enum RejectFunctionSlots { RejectFunctionSlot_Promise = 0, RejectFunctionSlot_ResolveFunction, }; enum PromiseCombinatorElementFunctionSlots { PromiseCombinatorElementFunctionSlot_Data = 0, PromiseCombinatorElementFunctionSlot_ElementIndex, }; enum ReactionJobSlots { ReactionJobSlot_ReactionRecord = 0, }; enum ThenableJobSlots { // The handler to use as the Promise reaction. It is a callable object // that's guaranteed to be from the same compartment as the // PromiseReactionJob. ThenableJobSlot_Handler = 0, // JobData - a, potentially CCW-wrapped, dense list containing data // required for proper execution of the reaction. ThenableJobSlot_JobData, }; enum ThenableJobDataIndices { // The Promise to resolve using the given thenable. ThenableJobDataIndex_Promise = 0, // The thenable to use as the receiver when calling the `then` function. ThenableJobDataIndex_Thenable, ThenableJobDataLength, }; enum BuiltinThenableJobSlots { // The Promise to resolve using the given thenable. BuiltinThenableJobSlot_Promise = 0, // The thenable to use as the receiver when calling the built-in `then` // function. BuiltinThenableJobSlot_Thenable, }; struct PromiseCapability { JSObject* promise = nullptr; JSObject* resolve = nullptr; JSObject* reject = nullptr; PromiseCapability() = default; static void trace(PromiseCapability* self, JSTracer* trc) { self->trace(trc); } void trace(JSTracer* trc); }; void PromiseCapability::trace(JSTracer* trc) { if (promise) TraceRoot(trc, &promise, "PromiseCapability::promise"); if (resolve) TraceRoot(trc, &resolve, "PromiseCapability::resolve"); if (reject) TraceRoot(trc, &reject, "PromiseCapability::reject"); } namespace js { template class WrappedPtrOperations { const PromiseCapability& capability() const { return static_cast(this)->get(); } public: HandleObject promise() const { return HandleObject::fromMarkedLocation(&capability().promise); } HandleObject resolve() const { return HandleObject::fromMarkedLocation(&capability().resolve); } HandleObject reject() const { return HandleObject::fromMarkedLocation(&capability().reject); } }; template class MutableWrappedPtrOperations : public WrappedPtrOperations { PromiseCapability& capability() { return static_cast(this)->get(); } public: MutableHandleObject promise() { return MutableHandleObject::fromMarkedLocation(&capability().promise); } MutableHandleObject resolve() { return MutableHandleObject::fromMarkedLocation(&capability().resolve); } MutableHandleObject reject() { return MutableHandleObject::fromMarkedLocation(&capability().reject); } }; } // namespace js struct PromiseCombinatorElements; class PromiseCombinatorDataHolder : public NativeObject { enum { Slot_Promise = 0, Slot_RemainingElements, Slot_ValuesArray, Slot_ResolveOrRejectFunction, SlotsCount, }; public: static const Class class_; JSObject* promiseObj() { return &getFixedSlot(Slot_Promise).toObject(); } JSObject* resolveOrRejectObj() { return &getFixedSlot(Slot_ResolveOrRejectFunction).toObject(); } Value valuesArray() { return getFixedSlot(Slot_ValuesArray); } int32_t remainingCount() { return getFixedSlot(Slot_RemainingElements).toInt32(); } int32_t increaseRemainingCount() { int32_t remainingCount = getFixedSlot(Slot_RemainingElements).toInt32(); remainingCount++; setFixedSlot(Slot_RemainingElements, Int32Value(remainingCount)); return remainingCount; } int32_t decreaseRemainingCount() { int32_t remainingCount = getFixedSlot(Slot_RemainingElements).toInt32(); remainingCount--; MOZ_ASSERT(remainingCount >= 0, "unpaired calls to decreaseRemainingCount"); setFixedSlot(Slot_RemainingElements, Int32Value(remainingCount)); return remainingCount; } static PromiseCombinatorDataHolder* New(JSContext* cx, HandleObject resultPromise, Handle elements, HandleObject resolveOrReject); }; const Class PromiseCombinatorDataHolder::class_ = { "PromiseCombinatorDataHolder", JSCLASS_HAS_RESERVED_SLOTS(SlotsCount) }; // Smart pointer to the "F.[[Values]]" part of the state of a Promise.all or // Promise.allSettled invocation, or the "F.[[Errors]]" part of the state of a // Promise.any invocation. Copes with compartment issues when setting an // element. struct MOZ_STACK_CLASS PromiseCombinatorElements final { // Object value holding the elements array. The object can be a wrapper. Value value; // Unwrapped elements array. May not belong to the current compartment! ArrayObject* unwrappedArray = nullptr; // Set to true if the |setElement| method needs to wrap its input value. bool setElementNeedsWrapping = false; PromiseCombinatorElements() = default; void trace(JSTracer* trc); }; void PromiseCombinatorElements::trace(JSTracer* trc) { TraceRoot(trc, &value, "PromiseCombinatorElements::value"); if (unwrappedArray) { TraceRoot(trc, &unwrappedArray, "PromiseCombinatorElements::unwrappedArray"); } } namespace js { template class WrappedPtrOperations { const PromiseCombinatorElements& elements() const { return static_cast(this)->get(); } public: HandleValue value() const { return HandleValue::fromMarkedLocation(&elements().value); } HandleArrayObject unwrappedArray() const { return HandleArrayObject::fromMarkedLocation(&elements().unwrappedArray); } }; template class MutableWrappedPtrOperations : public WrappedPtrOperations { PromiseCombinatorElements& elements() { return static_cast(this)->get(); } public: MutableHandleValue value() { return MutableHandleValue::fromMarkedLocation(&elements().value); } MutableHandle unwrappedArray() { return MutableHandle::fromMarkedLocation( &elements().unwrappedArray); } void initialize(ArrayObject* arrayObj) { unwrappedArray().set(arrayObj); value().setObject(*arrayObj); // |needsWrapping| isn't tracked here, because all modifications on the // initial elements don't require any wrapping. } void initialize(PromiseCombinatorDataHolder* data, ArrayObject* arrayObj, bool needsWrapping) { unwrappedArray().set(arrayObj); value().set(data->valuesArray()); elements().setElementNeedsWrapping = needsWrapping; } MOZ_MUST_USE bool pushUndefined(JSContext* cx) { // Helper for the AutoCompartment we need to work with |array|. We mostly do this // for performance; we could go ahead and do the define via a cross- // compartment proxy instead... AutoCompartment ac(cx, unwrappedArray()); HandleArrayObject arrayObj = unwrappedArray(); return js::NewbornArrayPush(cx, arrayObj, UndefinedValue()); } // `Promise.all` Resolve Element Functions // Step 9. Set values[index] to x. // // `Promise.allSettled` Resolve Element Functions // `Promise.allSettled` Reject Element Functions // Step 12. Set values[index] to obj. // // `Promise.any` Reject Element Functions // Step 9. Set errors[index] to x. // // These handler functions are always created in the compartment of the // Promise.all/allSettled/any function, which isn't necessarily the same // compartment as unwrappedArray as explained in NewPromiseCombinatorElements. // So before storing |val| we may need to enter unwrappedArray's compartment. MOZ_MUST_USE bool setElement(JSContext* cx, uint32_t index, HandleValue val) { // The index is guaranteed to be initialized to `undefined`. MOZ_ASSERT(unwrappedArray()->getDenseElement(index).isUndefined()); if (elements().setElementNeedsWrapping) { AutoCompartment ac(cx, unwrappedArray()); RootedValue rootedVal(cx, val); if (!cx->compartment()->wrap(cx, &rootedVal)) { return false; } unwrappedArray()->setDenseElement(index, rootedVal); } else { unwrappedArray()->setDenseElement(index, val); } return true; } }; } // namespace js PromiseCombinatorDataHolder* PromiseCombinatorDataHolder::New( JSContext* cx, HandleObject resultPromise, Handle elements, HandleObject resolveOrReject) { auto* dataHolder = NewBuiltinClassInstance(cx); if (!dataHolder) return nullptr; assertSameCompartment(cx, resultPromise); assertSameCompartment(cx, elements.value()); assertSameCompartment(cx, resolveOrReject); dataHolder->setFixedSlot(Slot_Promise, ObjectValue(*resultPromise)); dataHolder->setFixedSlot(Slot_RemainingElements, Int32Value(1)); dataHolder->setFixedSlot(Slot_ValuesArray, elements.value()); dataHolder->setFixedSlot(Slot_ResolveOrRejectFunction, ObjectValue(*resolveOrReject)); return dataHolder; } namespace { // Generator used by PromiseObject::getID. mozilla::Atomic gIDGenerator(0); } // namespace static MOZ_ALWAYS_INLINE bool ShouldCaptureDebugInfo(JSContext* cx) { return cx->options().asyncStack() || cx->compartment()->isDebuggee(); } class PromiseDebugInfo : public NativeObject { private: enum Slots { Slot_AllocationSite, Slot_ResolutionSite, Slot_AllocationTime, Slot_ResolutionTime, Slot_Id, SlotCount }; public: static const Class class_; static PromiseDebugInfo* create(JSContext* cx, Handle promise) { Rooted debugInfo(cx, NewObjectWithClassProto(cx)); if (!debugInfo) return nullptr; RootedObject stack(cx); if (!JS::CaptureCurrentStack(cx, &stack, JS::StackCapture(JS::AllFrames()))) return nullptr; debugInfo->setFixedSlot(Slot_AllocationSite, ObjectOrNullValue(stack)); debugInfo->setFixedSlot(Slot_ResolutionSite, NullValue()); debugInfo->setFixedSlot(Slot_AllocationTime, DoubleValue(MillisecondsSinceStartup())); debugInfo->setFixedSlot(Slot_ResolutionTime, NumberValue(0)); promise->setFixedSlot(PromiseSlot_DebugInfo, ObjectValue(*debugInfo)); return debugInfo; } static PromiseDebugInfo* FromPromise(PromiseObject* promise) { Value val = promise->getFixedSlot(PromiseSlot_DebugInfo); if (val.isObject()) return &val.toObject().as(); return nullptr; } /** * Returns the given PromiseObject's process-unique ID. * The ID is lazily assigned when first queried, and then either stored * in the DebugInfo slot if no debug info was recorded for this Promise, * or in the Id slot of the DebugInfo object. */ static uint64_t id(PromiseObject* promise) { Value idVal(promise->getFixedSlot(PromiseSlot_DebugInfo)); if (idVal.isUndefined()) { idVal.setDouble(++gIDGenerator); promise->setFixedSlot(PromiseSlot_DebugInfo, idVal); } else if (idVal.isObject()) { PromiseDebugInfo* debugInfo = FromPromise(promise); idVal = debugInfo->getFixedSlot(Slot_Id); if (idVal.isUndefined()) { idVal.setDouble(++gIDGenerator); debugInfo->setFixedSlot(Slot_Id, idVal); } } return uint64_t(idVal.toNumber()); } double allocationTime() { return getFixedSlot(Slot_AllocationTime).toNumber(); } double resolutionTime() { return getFixedSlot(Slot_ResolutionTime).toNumber(); } JSObject* allocationSite() { return getFixedSlot(Slot_AllocationSite).toObjectOrNull(); } JSObject* resolutionSite() { return getFixedSlot(Slot_ResolutionSite).toObjectOrNull(); } static void setResolutionInfo(JSContext* cx, Handle promise) { if (!ShouldCaptureDebugInfo(cx)) return; // If async stacks weren't enabled and the Promise's global wasn't a // debuggee when the Promise was created, we won't have a debugInfo // object. We still want to capture the resolution stack, so we // create the object now and change it's slots' values around a bit. Rooted debugInfo(cx, FromPromise(promise)); if (!debugInfo) { RootedValue idVal(cx, promise->getFixedSlot(PromiseSlot_DebugInfo)); debugInfo = create(cx, promise); if (!debugInfo) { cx->clearPendingException(); return; } // The current stack was stored in the AllocationSite slot, move // it to ResolutionSite as that's what it really is. debugInfo->setFixedSlot(Slot_ResolutionSite, debugInfo->getFixedSlot(Slot_AllocationSite)); debugInfo->setFixedSlot(Slot_AllocationSite, NullValue()); // There's no good default for a missing AllocationTime, so // instead of resetting that, ensure that it's the same as // ResolutionTime, so that the diff shows as 0, which isn't great, // but bearable. debugInfo->setFixedSlot(Slot_ResolutionTime, debugInfo->getFixedSlot(Slot_AllocationTime)); // The Promise's ID might've been queried earlier, in which case // it's stored in the DebugInfo slot. We saved that earlier, so // now we can store it in the right place (or leave it as // undefined if it wasn't ever initialized.) debugInfo->setFixedSlot(Slot_Id, idVal); return; } RootedObject stack(cx); if (!JS::CaptureCurrentStack(cx, &stack, JS::StackCapture(JS::AllFrames()))) { cx->clearPendingException(); return; } debugInfo->setFixedSlot(Slot_ResolutionSite, ObjectOrNullValue(stack)); debugInfo->setFixedSlot(Slot_ResolutionTime, DoubleValue(MillisecondsSinceStartup())); } }; const Class PromiseDebugInfo::class_ = { "PromiseDebugInfo", JSCLASS_HAS_RESERVED_SLOTS(SlotCount) }; double PromiseObject::allocationTime() { auto debugInfo = PromiseDebugInfo::FromPromise(this); if (debugInfo) return debugInfo->allocationTime(); return 0; } double PromiseObject::resolutionTime() { auto debugInfo = PromiseDebugInfo::FromPromise(this); if (debugInfo) return debugInfo->resolutionTime(); return 0; } JSObject* PromiseObject::allocationSite() { auto debugInfo = PromiseDebugInfo::FromPromise(this); if (debugInfo) return debugInfo->allocationSite(); return nullptr; } JSObject* PromiseObject::resolutionSite() { auto debugInfo = PromiseDebugInfo::FromPromise(this); if (debugInfo) return debugInfo->resolutionSite(); return nullptr; } /** * Wrapper for GetAndClearException that handles cases where no exception is * pending, but an error occurred. This can be the case if an OOM was * encountered while throwing the error. */ static bool MaybeGetAndClearException(JSContext* cx, MutableHandleValue rval) { if (!cx->isExceptionPending()) return false; return GetAndClearException(cx, rval); } static MOZ_MUST_USE bool RunResolutionFunction(JSContext *cx, HandleObject resolutionFun, HandleValue result, ResolutionMode mode, HandleObject promiseObj); // ES2016, 25.4.1.1.1, Steps 1.a-b. // Extracting all of this internal spec algorithm into a helper function would // be tedious, so the check in step 1 and the entirety of step 2 aren't // included. static bool AbruptRejectPromise(JSContext* cx, CallArgs& args, HandleObject promiseObj, HandleObject reject) { // Step 1.a. RootedValue reason(cx); if (!MaybeGetAndClearException(cx, &reason)) return false; if (!RunResolutionFunction(cx, reject, reason, RejectMode, promiseObj)) return false; // Step 1.b. args.rval().setObject(*promiseObj); return true; } static bool AbruptRejectPromise(JSContext* cx, CallArgs& args, Handle capability) { return AbruptRejectPromise(cx, args, capability.promise(), capability.reject()); } enum ReactionRecordSlots { // The promise for which this record provides a reaction handler. // Matches the [[Capability]].[[Promise]] field from the spec. // // The slot value is either an object, but not necessarily a built-in // Promise object, or null. The latter case is only possible for async // generator functions, in which case the REACTION_FLAG_ASYNC_GENERATOR // flag must be set. ReactionRecordSlot_Promise = 0, // The [[Handler]] field(s) of a PromiseReaction record. We create a // single reaction record for fulfillment and rejection, therefore our // PromiseReaction implementation needs two [[Handler]] fields. // // The slot value is either a callable object, an integer constant from // the |PromiseHandler| enum, or null. If the value is null, either the // REACTION_FLAG_DEBUGGER_DUMMY or the // REACTION_FLAG_DEFAULT_RESOLVING_HANDLER flag must be set. // // After setting the target state for a PromiseReaction, the slot of the // no longer used handler gets reused to store the argument of the active // handler. ReactionRecordSlot_OnFulfilled, ReactionRecordSlot_OnRejectedArg = ReactionRecordSlot_OnFulfilled, ReactionRecordSlot_OnRejected, ReactionRecordSlot_OnFulfilledArg = ReactionRecordSlot_OnRejected, // The functions to resolve or reject the promise. Matches the // [[Capability]].[[Resolve]] and [[Capability]].[[Reject]] fields from // the spec. // // The slot values are either callable objects or null, but the latter // case is only allowed if the promise is either a built-in Promise object // or null. ReactionRecordSlot_Resolve, ReactionRecordSlot_Reject, // The incumbent global for this reaction record. Can be null. ReactionRecordSlot_IncumbentGlobalObject, // Bitmask of the REACTION_FLAG values. ReactionRecordSlot_Flags, // Additional slot to store extra data for specific reaction record types. // // - When the REACTION_FLAG_ASYNC_GENERATOR flag is set, this slot store // the async generator function for this promise reaction. // - When the REACTION_FLAG_DEFAULT_RESOLVING_HANDLER flag is set, this // slot stores the promise to resolve when conceptually "calling" the // OnFulfilled or OnRejected handlers. ReactionRecordSlot_GeneratorOrPromiseToResolve, ReactionRecordSlots, }; // ES2016, 25.4.1.2. class PromiseReactionRecord : public NativeObject { static constexpr uint32_t REACTION_FLAG_RESOLVED = 0x1; static constexpr uint32_t REACTION_FLAG_FULFILLED = 0x2; static constexpr uint32_t REACTION_FLAG_DEFAULT_RESOLVING_HANDLER = 0x4; static constexpr uint32_t REACTION_FLAG_ASYNC_FUNCTION = 0x8; static constexpr uint32_t REACTION_FLAG_ASYNC_GENERATOR = 0x10; static constexpr uint32_t REACTION_FLAG_DEBUGGER_DUMMY = 0x20; void setFlagOnInitialState(uint32_t flag) { int32_t flags = this->flags(); MOZ_ASSERT(flags == 0, "Can't modify with non-default flags"); flags |= flag; setFixedSlot(ReactionRecordSlot_Flags, Int32Value(flags)); } uint32_t handlerSlot() { MOZ_ASSERT(targetState() != JS::PromiseState::Pending); return targetState() == JS::PromiseState::Fulfilled ? ReactionRecordSlot_OnFulfilled : ReactionRecordSlot_OnRejected; } uint32_t handlerArgSlot() { MOZ_ASSERT(targetState() != JS::PromiseState::Pending); return targetState() == JS::PromiseState::Fulfilled ? ReactionRecordSlot_OnFulfilledArg : ReactionRecordSlot_OnRejectedArg; } public: static const Class class_; JSObject* promise() { return getFixedSlot(ReactionRecordSlot_Promise).toObjectOrNull(); } int32_t flags() { return getFixedSlot(ReactionRecordSlot_Flags).toInt32(); } JS::PromiseState targetState() { int32_t flags = this->flags(); if (!(flags & REACTION_FLAG_RESOLVED)) return JS::PromiseState::Pending; return flags & REACTION_FLAG_FULFILLED ? JS::PromiseState::Fulfilled : JS::PromiseState::Rejected; } void setTargetStateAndHandlerArg(JS::PromiseState state, const Value& arg) { MOZ_ASSERT(targetState() == JS::PromiseState::Pending); MOZ_ASSERT(state != JS::PromiseState::Pending, "Can't revert a reaction to pending."); int32_t flags = this->flags(); flags |= REACTION_FLAG_RESOLVED; if (state == JS::PromiseState::Fulfilled) flags |= REACTION_FLAG_FULFILLED; setFixedSlot(ReactionRecordSlot_Flags, Int32Value(flags)); setFixedSlot(handlerArgSlot(), arg); } void setIsDefaultResolvingHandler(PromiseObject* promiseToResolve) { setFlagOnInitialState(REACTION_FLAG_DEFAULT_RESOLVING_HANDLER); setFixedSlot(ReactionRecordSlot_GeneratorOrPromiseToResolve, ObjectValue(*promiseToResolve)); } bool isDefaultResolvingHandler() { int32_t flags = this->flags(); return flags & REACTION_FLAG_DEFAULT_RESOLVING_HANDLER; } PromiseObject* defaultResolvingPromise() { MOZ_ASSERT(isDefaultResolvingHandler()); const Value& promiseToResolve = getFixedSlot(ReactionRecordSlot_GeneratorOrPromiseToResolve); return &promiseToResolve.toObject().as(); } void setIsAsyncFunction() { setFlagOnInitialState(REACTION_FLAG_ASYNC_FUNCTION); } bool isAsyncFunction() { int32_t flags = this->flags(); return flags & REACTION_FLAG_ASYNC_FUNCTION; } void setIsAsyncGenerator(AsyncGeneratorObject* asyncGenObj) { setFlagOnInitialState(REACTION_FLAG_ASYNC_GENERATOR); setFixedSlot(ReactionRecordSlot_GeneratorOrPromiseToResolve, ObjectValue(*asyncGenObj)); } bool isAsyncGenerator() { int32_t flags = this->flags(); return flags & REACTION_FLAG_ASYNC_GENERATOR; } AsyncGeneratorObject* asyncGenerator() { MOZ_ASSERT(isAsyncGenerator()); const Value& generator = getFixedSlot(ReactionRecordSlot_GeneratorOrPromiseToResolve); return &generator.toObject().as(); } void setIsDebuggerDummy() { setFlagOnInitialState(REACTION_FLAG_DEBUGGER_DUMMY); } bool isDebuggerDummy() { int32_t flags = this->flags(); return flags & REACTION_FLAG_DEBUGGER_DUMMY; } Value handler() { MOZ_ASSERT(targetState() != JS::PromiseState::Pending); return getFixedSlot(handlerSlot()); } Value handlerArg() { MOZ_ASSERT(targetState() != JS::PromiseState::Pending); return getFixedSlot(handlerArgSlot()); } JSObject* getAndClearIncumbentGlobalObject() { JSObject* obj = getFixedSlot(ReactionRecordSlot_IncumbentGlobalObject).toObjectOrNull(); setFixedSlot(ReactionRecordSlot_IncumbentGlobalObject, UndefinedValue()); return obj; } }; const Class PromiseReactionRecord::class_ = { "PromiseReactionRecord", JSCLASS_HAS_RESERVED_SLOTS(ReactionRecordSlots) }; static void AddPromiseFlags(PromiseObject& promise, int32_t flag) { int32_t flags = promise.flags(); promise.setFixedSlot(PromiseSlot_Flags, Int32Value(flags | flag)); } static bool PromiseHasAnyFlag(PromiseObject& promise, int32_t flag) { return promise.flags() & flag; } static bool ResolvePromiseFunction(JSContext* cx, unsigned argc, Value* vp); static bool RejectPromiseFunction(JSContext* cx, unsigned argc, Value* vp); // ES2016, 25.4.1.3. static MOZ_MUST_USE bool CreateResolvingFunctions(JSContext* cx, HandleObject promise, MutableHandleObject resolveFn, MutableHandleObject rejectFn) { RootedAtom funName(cx, cx->names().empty); RootedFunction resolve(cx, NewNativeFunction(cx, ResolvePromiseFunction, 1, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!resolve) return false; RootedFunction reject(cx, NewNativeFunction(cx, RejectPromiseFunction, 1, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!reject) return false; resolve->setExtendedSlot(ResolveFunctionSlot_Promise, ObjectValue(*promise)); resolve->setExtendedSlot(ResolveFunctionSlot_RejectFunction, ObjectValue(*reject)); reject->setExtendedSlot(RejectFunctionSlot_Promise, ObjectValue(*promise)); reject->setExtendedSlot(RejectFunctionSlot_ResolveFunction, ObjectValue(*resolve)); resolveFn.set(resolve); rejectFn.set(reject); return true; } static void ClearResolutionFunctionSlots(JSFunction* resolutionFun); static bool IsSettledMaybeWrappedPromise(JSObject* promise) { if (IsProxy(promise)) { promise = UncheckedUnwrap(promise); // Caller needs to handle dead wrappers. if (JS_IsDeadWrapper(promise)) return false; } return promise->as().state() != JS::PromiseState::Pending; } // ES2016, 25.4.1.7. static MOZ_MUST_USE bool RejectMaybeWrappedPromise(JSContext *cx, HandleObject promiseObj, HandleValue reason); // ES2016, 25.4.1.7. static MOZ_MUST_USE bool RejectPromiseInternal(JSContext* cx, Handle promise, HandleValue reason); // ES2016, 25.4.1.3.1. static bool RejectPromiseFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); JSFunction* reject = &args.callee().as(); HandleValue reasonVal = args.get(0); // Steps 1-2. const Value& promiseVal = reject->getExtendedSlot(RejectFunctionSlot_Promise); // Steps 3-4. // If the Promise isn't available anymore, it has been resolved and the // reference to it removed to make it eligible for collection. if (promiseVal.isUndefined()) { args.rval().setUndefined(); return true; } // Store the promise value in |promise| before ClearResolutionFunctionSlots // removes the reference. RootedObject promise(cx, &promiseVal.toObject()); // Step 5. // Here, we only remove the Promise reference from the resolution // functions. Actually marking it as fulfilled/rejected happens later. ClearResolutionFunctionSlots(reject); // In some cases the Promise reference on the resolution function won't // have been removed during resolution, so we need to check that here, // too. if (IsSettledMaybeWrappedPromise(promise)) { args.rval().setUndefined(); return true; } // Step 6. if (!RejectMaybeWrappedPromise(cx, promise, reasonVal)) return false; args.rval().setUndefined(); return true; } static MOZ_MUST_USE bool FulfillMaybeWrappedPromise(JSContext *cx, HandleObject promiseObj, HandleValue value_); static MOZ_MUST_USE bool EnqueuePromiseResolveThenableJob(JSContext* cx, HandleValue promiseToResolve, HandleValue thenable, HandleValue thenVal); static MOZ_MUST_USE bool EnqueuePromiseResolveThenableBuiltinJob(JSContext* cx, HandleObject promiseToResolve, HandleObject thenable); static bool Promise_then(JSContext* cx, unsigned argc, Value* vp); static bool Promise_then_impl(JSContext* cx, HandleValue promiseVal, HandleValue onFulfilled, HandleValue onRejected, MutableHandleValue rval, bool rvalUsed); // ES2016, 25.4.1.3.2, steps 6-13. static MOZ_MUST_USE bool ResolvePromiseInternal(JSContext* cx, HandleObject promise, HandleValue resolutionVal) { assertSameCompartment(cx, promise, resolutionVal); MOZ_ASSERT(!IsSettledMaybeWrappedPromise(promise)); // Step 7 (reordered). if (!resolutionVal.isObject()) return FulfillMaybeWrappedPromise(cx, promise, resolutionVal); RootedObject resolution(cx, &resolutionVal.toObject()); // Step 6. if (resolution == promise) { // Step 6.a. JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_CANNOT_RESOLVE_PROMISE_WITH_ITSELF); RootedValue selfResolutionError(cx); MOZ_ALWAYS_TRUE(GetAndClearException(cx, &selfResolutionError)); // Step 6.b. return RejectMaybeWrappedPromise(cx, promise, selfResolutionError); } // Step 8. RootedValue thenVal(cx); bool status = GetProperty(cx, resolution, resolution, cx->names().then, &thenVal); RootedValue error(cx); if (!status) { if (!MaybeGetAndClearException(cx, &error)) return false; } // Testing functions allow to directly settle a promise without going // through the resolving functions. In that case the normal bookkeeping to // ensure only pending promises can be resolved doesn't apply and we need // to manually check for already settled promises. The exception is simply // dropped when this case happens. if (IsSettledMaybeWrappedPromise(promise)) return true; // Step 9. if (!status) return RejectMaybeWrappedPromise(cx, promise, error); // Step 10 (implicit). // Step 11. if (!IsCallable(thenVal)) return FulfillMaybeWrappedPromise(cx, promise, resolutionVal); // If the resolution object is a built-in Promise object and the // `then` property is the original Promise.prototype.then function // from the current realm, we skip storing/calling it. // Additionally we require that |promise| itself is also a built-in // Promise object, so the fast path doesn't need to cope with wrappers. bool isBuiltinThen = false; if (resolution->is() && promise->is() && IsNativeFunction(thenVal, Promise_then) && thenVal.toObject().as().compartment() == cx->compartment()) { thenVal = UndefinedValue(); isBuiltinThen = true; } // Step 12. if (!isBuiltinThen) { RootedValue promiseVal(cx, ObjectValue(*promise)); if (!EnqueuePromiseResolveThenableJob(cx, promiseVal, resolutionVal, thenVal)) return false; } else { if (!EnqueuePromiseResolveThenableBuiltinJob(cx, promise, resolution)) return false; } // Step 13. return true; } // ES2016, 25.4.1.3.2. static bool ResolvePromiseFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); JSFunction* resolve = &args.callee().as(); HandleValue resolutionVal = args.get(0); // Steps 3-4 (reordered). // We use the reference to the reject function as a signal for whether // the resolve or reject function was already called, at which point // the references on each of the functions are cleared. if (!resolve->getExtendedSlot(ResolveFunctionSlot_RejectFunction).isObject()) { args.rval().setUndefined(); return true; } // Steps 1-2 (reordered). RootedObject promise(cx, &resolve->getExtendedSlot(ResolveFunctionSlot_Promise).toObject()); // Step 5. // Here, we only remove the Promise reference from the resolution // functions. Actually marking it as fulfilled/rejected happens later. ClearResolutionFunctionSlots(resolve); // In some cases the Promise reference on the resolution function won't // have been removed during resolution, so we need to check that here, // too. if (IsSettledMaybeWrappedPromise(promise)) { args.rval().setUndefined(); return true; } // Steps 6-13. if (!ResolvePromiseInternal(cx, promise, resolutionVal)) return false; args.rval().setUndefined(); return true; } static bool PromiseReactionJob(JSContext* cx, unsigned argc, Value* vp); /** * Tells the embedding to enqueue a Promise reaction job, based on * three parameters: * reactionObj - The reaction record. * handlerArg_ - The first and only argument to pass to the handler invoked by * the job. This will be stored on the reaction record. * targetState - The PromiseState this reaction job targets. This decides * whether the onFulfilled or onRejected handler is called. */ MOZ_MUST_USE static bool EnqueuePromiseReactionJob(JSContext* cx, HandleObject reactionObj, HandleValue handlerArg_, JS::PromiseState targetState) { MOZ_ASSERT(targetState == JS::PromiseState::Fulfilled || targetState == JS::PromiseState::Rejected); // The reaction might have been stored on a Promise from another // compartment, which means it would've been wrapped in a CCW. // To properly handle that case here, unwrap it and enter its // compartment, where the job creation should take place anyway. Rooted reaction(cx); RootedValue handlerArg(cx, handlerArg_); mozilla::Maybe ac; if (!IsProxy(reactionObj)) { MOZ_RELEASE_ASSERT(reactionObj->is()); reaction = &reactionObj->as(); } else { JSObject* unwrappedReactionObj = UncheckedUnwrap(reactionObj); if (JS_IsDeadWrapper(unwrappedReactionObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } reaction = &unwrappedReactionObj->as(); MOZ_RELEASE_ASSERT(reaction->is()); ac.emplace(cx, reaction); if (!cx->compartment()->wrap(cx, &handlerArg)) return false; } // Must not enqueue a reaction job more than once. MOZ_ASSERT(reaction->targetState() == JS::PromiseState::Pending); assertSameCompartment(cx, handlerArg); reaction->setTargetStateAndHandlerArg(targetState, handlerArg); RootedValue reactionVal(cx, ObjectValue(*reaction)); RootedValue handler(cx, reaction->handler()); // If we have a handler callback, we enter that handler's compartment so // that the promise reaction job function is created in that compartment. // That guarantees that the embedding ends up with the right entry global. // This is relevant for some html APIs like fetch that derive information // from said global. mozilla::Maybe ac2; if (handler.isObject()) { // The unwrapping has to be unchecked because we specifically want to // be able to use handlers with wrappers that would only allow calls. // E.g., it's ok to have a handler from a chrome compartment in a // reaction to a content compartment's Promise instance. JSObject* handlerObj = UncheckedUnwrap(&handler.toObject()); MOZ_ASSERT(handlerObj); ac2.emplace(cx, handlerObj); // We need to wrap the reaction to store it on the job function. if (!cx->compartment()->wrap(cx, &reactionVal)) return false; } // Create the JS function to call when the job is triggered. HandlePropertyName funName = cx->names().empty; RootedFunction job(cx, NewNativeFunction(cx, PromiseReactionJob, 0, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!job) return false; // Store the reaction on the reaction job. job->setExtendedSlot(ReactionJobSlot_ReactionRecord, reactionVal); // When using JS::AddPromiseReactions, no actual promise is created, so we // might not have one here. // Additionally, we might have an object here that isn't an instance of // Promise. This can happen if content overrides the value of // Promise[@@species] (or invokes Promise#then on a Promise subclass // instance with a non-default @@species value on the constructor) with a // function that returns objects that're not Promise (subclass) instances. // In that case, we just pretend we didn't have an object in the first // place. // If after all this we do have an object, wrap it in case we entered the // handler's compartment above, because we should pass objects from a // single compartment to the enqueuePromiseJob callback. RootedObject promise(cx, reaction->promise()); if (promise && promise->is()) { if (!cx->compartment()->wrap(cx, &promise)) return false; } // Using objectFromIncumbentGlobal, we can derive the incumbent global by // unwrapping and then getting the global. This is very convoluted, but // much better than having to store the original global as a private value // because we couldn't wrap it to store it as a normal JS value. RootedObject global(cx); if (JSObject* objectFromIncumbentGlobal = reaction->getAndClearIncumbentGlobalObject()) { objectFromIncumbentGlobal = CheckedUnwrap(objectFromIncumbentGlobal); MOZ_ASSERT(objectFromIncumbentGlobal); global = &objectFromIncumbentGlobal->global(); } // Note: the global we pass here might be from a different compartment // than job and promise. While it's somewhat unusual to pass objects // from multiple compartments, in this case we specifically need the // global to be unwrapped because wrapping and unwrapping aren't // necessarily symmetric for globals. return cx->runtime()->enqueuePromiseJob(cx, job, promise, global); } static MOZ_MUST_USE bool TriggerPromiseReactions(JSContext* cx, HandleValue reactionsVal, JS::PromiseState state, HandleValue valueOrReason); // ES2016, Commoned-out implementation of 25.4.1.4. and 25.4.1.7. static MOZ_MUST_USE bool ResolvePromise(JSContext* cx, Handle promise, HandleValue valueOrReason, JS::PromiseState state) { // Step 1. MOZ_ASSERT(promise->state() == JS::PromiseState::Pending); MOZ_ASSERT(state == JS::PromiseState::Fulfilled || state == JS::PromiseState::Rejected); // Step 2. // We only have one list of reactions for both resolution types. So // instead of getting the right list of reactions, we determine the // resolution type to retrieve the right information from the // reaction records. RootedValue reactionsVal(cx, promise->reactions()); // Steps 3-5. // The same slot is used for the reactions list and the result, so setting // the result also removes the reactions list. promise->setFixedSlot(PromiseSlot_ReactionsOrResult, valueOrReason); // Step 6. int32_t flags = promise->flags(); flags |= PROMISE_FLAG_RESOLVED; if (state == JS::PromiseState::Fulfilled) flags |= PROMISE_FLAG_FULFILLED; promise->setFixedSlot(PromiseSlot_Flags, Int32Value(flags)); // Also null out the resolve/reject functions so they can be GC'd. promise->setFixedSlot(PromiseSlot_RejectFunction, UndefinedValue()); // Now that everything else is done, do the things the debugger needs. // Step 7 of RejectPromise implemented in onSettled. PromiseObject::onSettled(cx, promise); // Step 7 of FulfillPromise. // Step 8 of RejectPromise. if (reactionsVal.isObject()) return TriggerPromiseReactions(cx, reactionsVal, state, valueOrReason); return true; } // ES2016, 25.4.1.7. static MOZ_MUST_USE bool RejectPromiseInternal(JSContext* cx, Handle promise, HandleValue reason) { return ResolvePromise(cx, promise, reason, JS::PromiseState::Rejected); } // ES2016, 25.4.1.4. static MOZ_MUST_USE bool FulfillMaybeWrappedPromise(JSContext *cx, HandleObject promiseObj, HandleValue value_) { Rooted promise(cx); RootedValue value(cx, value_); mozilla::Maybe ac; if (!IsProxy(promiseObj)) { promise = &promiseObj->as(); } else { JSObject* unwrappedPromiseObj = UncheckedUnwrap(promiseObj); if (JS_IsDeadWrapper(unwrappedPromiseObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } promise = &unwrappedPromiseObj->as(); ac.emplace(cx, promise); if (!cx->compartment()->wrap(cx, &value)) return false; } return ResolvePromise(cx, promise, value, JS::PromiseState::Fulfilled); } static bool GetCapabilitiesExecutor(JSContext* cx, unsigned argc, Value* vp); static bool PromiseConstructor(JSContext* cx, unsigned argc, Value* vp); static MOZ_MUST_USE PromiseObject* CreatePromiseObjectInternal(JSContext* cx, HandleObject proto = nullptr, bool protoIsWrapped = false, bool informDebugger = true); enum GetCapabilitiesExecutorSlots { GetCapabilitiesExecutorSlots_Resolve, GetCapabilitiesExecutorSlots_Reject }; static MOZ_MUST_USE PromiseObject* CreatePromiseObjectWithoutResolutionFunctions(JSContext* cx) { Rooted promise(cx, CreatePromiseObjectInternal(cx)); if (!promise) return nullptr; AddPromiseFlags(*promise, PROMISE_FLAG_DEFAULT_RESOLVING_FUNCTIONS); return promise; } static MOZ_MUST_USE PromiseObject* CreatePromiseWithDefaultResolutionFunctions(JSContext* cx, MutableHandleObject resolve, MutableHandleObject reject) { // ES2016, 25.4.3.1., as if called with GetCapabilitiesExecutor as the // executor argument. // Steps 1-2 (Not applicable). // Steps 3-7. Rooted promise(cx, CreatePromiseObjectInternal(cx)); if (!promise) return nullptr; // Step 8. if (!CreateResolvingFunctions(cx, promise, resolve, reject)) return nullptr; promise->setFixedSlot(PromiseSlot_RejectFunction, ObjectValue(*reject)); // Steps 9-10 (Not applicable). // Step 11. return promise; } // ES2016, 25.4.1.5. static MOZ_MUST_USE bool NewPromiseCapability(JSContext* cx, HandleObject C, MutableHandle capability, bool canOmitResolutionFunctions) { RootedValue cVal(cx, ObjectValue(*C)); // Steps 1-2. if (!IsConstructor(C)) { ReportValueError(cx, JSMSG_NOT_CONSTRUCTOR, -1, cVal, nullptr); return false; } // If we'd call the original Promise constructor and know that the // resolve/reject functions won't ever escape to content, we can skip // creating and calling the executor function and instead return a Promise // marked as having default resolve/reject functions. // // This can't be used in Promise.all and Promise.race because we have to // pass the reject (and resolve, in the race case) function to thenables // in the list passed to all/race, which (potentially) means exposing them // to content. // // For Promise.all and Promise.race we can only optimize away the creation // of the GetCapabilitiesExecutor function, and directly allocate the // result promise instead of invoking the Promise constructor. if (IsNativeFunction(cVal, PromiseConstructor)) { PromiseObject* promise; if (canOmitResolutionFunctions) { promise = CreatePromiseObjectWithoutResolutionFunctions(cx); } else { promise = CreatePromiseWithDefaultResolutionFunctions(cx, capability.resolve(), capability.reject()); } if (!promise) return false; capability.promise().set(promise); return true; } // Step 3 (omitted). // Step 4. HandlePropertyName funName = cx->names().empty; RootedFunction executor(cx, NewNativeFunction(cx, GetCapabilitiesExecutor, 2, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!executor) return false; // Step 5 (omitted). // Step 6. FixedConstructArgs<1> cargs(cx); cargs[0].setObject(*executor); if (!Construct(cx, cVal, cargs, cVal, capability.promise())) return false; // Step 7. const Value& resolveVal = executor->getExtendedSlot(GetCapabilitiesExecutorSlots_Resolve); if (!IsCallable(resolveVal)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROMISE_RESOLVE_FUNCTION_NOT_CALLABLE); return false; } // Step 8. const Value& rejectVal = executor->getExtendedSlot(GetCapabilitiesExecutorSlots_Reject); if (!IsCallable(rejectVal)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROMISE_REJECT_FUNCTION_NOT_CALLABLE); return false; } // Step 9 (well, the equivalent for all of promiseCapabilities' fields.) capability.resolve().set(&resolveVal.toObject()); capability.reject().set(&rejectVal.toObject()); // Step 10. return true; } // ES2016, 25.4.1.5.1. static bool GetCapabilitiesExecutor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); JSFunction* F = &args.callee().as(); // Steps 1-2 (implicit). // Steps 3-4. if (!F->getExtendedSlot(GetCapabilitiesExecutorSlots_Resolve).isUndefined() || !F->getExtendedSlot(GetCapabilitiesExecutorSlots_Reject).isUndefined()) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_PROMISE_CAPABILITY_HAS_SOMETHING_ALREADY); return false; } // Step 5. F->setExtendedSlot(GetCapabilitiesExecutorSlots_Resolve, args.get(0)); // Step 6. F->setExtendedSlot(GetCapabilitiesExecutorSlots_Reject, args.get(1)); // Step 7. args.rval().setUndefined(); return true; } // ES2016, 25.4.1.7. static MOZ_MUST_USE bool RejectMaybeWrappedPromise(JSContext *cx, HandleObject promiseObj, HandleValue reason_) { Rooted promise(cx); RootedValue reason(cx, reason_); mozilla::Maybe ac; if (!IsProxy(promiseObj)) { promise = &promiseObj->as(); } else { JSObject* unwrappedPromiseObj = UncheckedUnwrap(promiseObj); if (JS_IsDeadWrapper(unwrappedPromiseObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } promise = &unwrappedPromiseObj->as(); ac.emplace(cx, promise); // The rejection reason might've been created in a compartment with higher // privileges than the Promise's. In that case, object-type rejection // values might be wrapped into a wrapper that throws whenever the // Promise's reaction handler wants to do anything useful with it. To // avoid that situation, we synthesize a generic error that doesn't // expose any privileged information but can safely be used in the // rejection handler. if (!cx->compartment()->wrap(cx, &reason)) return false; if (reason.isObject() && !CheckedUnwrap(&reason.toObject())) { // Async stacks are only properly adopted if there's at least one // interpreter frame active right now. If a thenable job with a // throwing `then` function got us here, that'll not be the case, // so we add one by throwing the error from self-hosted code. if (!GetInternalError(cx, JSMSG_PROMISE_ERROR_IN_WRAPPED_REJECTION_REASON, &reason)) return false; } } return ResolvePromise(cx, promise, reason, JS::PromiseState::Rejected); } // ES2016, 25.4.1.8. static MOZ_MUST_USE bool TriggerPromiseReactions(JSContext* cx, HandleValue reactionsVal, JS::PromiseState state, HandleValue valueOrReason) { MOZ_ASSERT(state == JS::PromiseState::Fulfilled || state == JS::PromiseState::Rejected); RootedObject reactions(cx, &reactionsVal.toObject()); if (reactions->is() || IsWrapper(reactions)) return EnqueuePromiseReactionJob(cx, reactions, valueOrReason, state); HandleNativeObject reactionsList = reactions.as(); uint32_t reactionsCount = reactionsList->getDenseInitializedLength(); MOZ_ASSERT(reactionsCount > 1, "Reactions list should be created lazily"); RootedObject reaction(cx); for (uint32_t i = 0; i < reactionsCount; i++) { const Value& reactionVal = reactionsList->getDenseElement(i); MOZ_RELEASE_ASSERT(reactionVal.isObject()); reaction = &reactionVal.toObject(); if (!EnqueuePromiseReactionJob(cx, reaction, valueOrReason, state)) return false; } return true; } // Implements PromiseReactionJob optimized for the case when the reaction // handler is one of the default resolving functions as created by the // CreateResolvingFunctions abstract operation. static MOZ_MUST_USE bool DefaultResolvingPromiseReactionJob(JSContext* cx, Handle reaction, MutableHandleValue rval) { MOZ_ASSERT(reaction->targetState() != JS::PromiseState::Pending); Rooted promiseToResolve(cx, reaction->defaultResolvingPromise()); // Testing functions allow to directly settle a promise without going // through the resolving functions. In that case the normal bookkeeping to // ensure only pending promises can be resolved doesn't apply and we need // to manually check for already settled promises. We still call // RunResolutionFunction for consistency with PromiseReactionJob. ResolutionMode resolutionMode = ResolveMode; RootedValue handlerResult(cx, UndefinedValue()); if (promiseToResolve->state() == JS::PromiseState::Pending) { RootedValue argument(cx, reaction->handlerArg()); // Step 6. bool ok; if (reaction->targetState() == JS::PromiseState::Fulfilled) ok = ResolvePromiseInternal(cx, promiseToResolve, argument); else ok = RejectPromiseInternal(cx, promiseToResolve, argument); if (!ok) { resolutionMode = RejectMode; if (!MaybeGetAndClearException(cx, &handlerResult)) return false; } } // Steps 7-9. uint32_t hookSlot = resolutionMode == RejectMode ? ReactionRecordSlot_Reject : ReactionRecordSlot_Resolve; RootedObject callee(cx, reaction->getFixedSlot(hookSlot).toObjectOrNull()); RootedObject promiseObj(cx, reaction->promise()); if (!RunResolutionFunction(cx, callee, handlerResult, resolutionMode, promiseObj)) return false; rval.setUndefined(); return true; } static MOZ_MUST_USE bool AsyncFunctionPromiseReactionJob(JSContext* cx, Handle reaction, MutableHandleValue rval) { MOZ_ASSERT(reaction->isAsyncFunction()); RootedValue handlerVal(cx, reaction->handler()); RootedValue argument(cx, reaction->handlerArg()); Rooted resultPromise(cx, &reaction->promise()->as()); RootedValue generatorVal(cx, resultPromise->getFixedSlot(PromiseSlot_AwaitGenerator)); int32_t handlerNum = handlerVal.toInt32(); // Await's handlers don't return a value, nor throw exception. // They fail only on OOM. if (handlerNum == PromiseHandlerAsyncFunctionAwaitedFulfilled) { if (!AsyncFunctionAwaitedFulfilled(cx, resultPromise, generatorVal, argument)) return false; } else { MOZ_ASSERT(handlerNum == PromiseHandlerAsyncFunctionAwaitedRejected); if (!AsyncFunctionAwaitedRejected(cx, resultPromise, generatorVal, argument)) return false; } rval.setUndefined(); return true; } static MOZ_MUST_USE bool AsyncGeneratorPromiseReactionJob(JSContext* cx, Handle reaction, MutableHandleValue rval) { MOZ_ASSERT(reaction->isAsyncGenerator()); RootedValue handlerVal(cx, reaction->handler()); RootedValue argument(cx, reaction->handlerArg()); Rooted asyncGenObj(cx, reaction->asyncGenerator()); int32_t handlerNum = handlerVal.toInt32(); // Await's handlers don't return a value, nor throw exception. // They fail only on OOM. if (handlerNum == PromiseHandlerAsyncGeneratorAwaitedFulfilled) { // 4.1.1. if (!AsyncGeneratorAwaitedFulfilled(cx, asyncGenObj, argument)) return false; } else if (handlerNum == PromiseHandlerAsyncGeneratorAwaitedRejected) { // 4.1.2. if (!AsyncGeneratorAwaitedRejected(cx, asyncGenObj, argument)) return false; } else if (handlerNum == PromiseHandlerAsyncGeneratorResumeNextReturnFulfilled) { asyncGenObj->setCompleted(); // 11.4.3.5.1 step 1. if (!AsyncGeneratorResolve(cx, asyncGenObj, argument, true)) return false; } else if (handlerNum == PromiseHandlerAsyncGeneratorResumeNextReturnRejected) { asyncGenObj->setCompleted(); // 11.4.3.5.2 step 1. if (!AsyncGeneratorReject(cx, asyncGenObj, argument)) return false; } else if (handlerNum == PromiseHandlerAsyncGeneratorYieldReturnAwaitedFulfilled) { asyncGenObj->setExecuting(); // 11.4.3.7 steps 8.d-e. if (!AsyncGeneratorYieldReturnAwaitedFulfilled(cx, asyncGenObj, argument)) return false; } else { MOZ_ASSERT(handlerNum == PromiseHandlerAsyncGeneratorYieldReturnAwaitedRejected); asyncGenObj->setExecuting(); // 11.4.3.7 step 8.c. if (!AsyncGeneratorYieldReturnAwaitedRejected(cx, asyncGenObj, argument)) return false; } rval.setUndefined(); return true; } // ES2016, 25.4.2.1. /** * Callback triggering the fulfill/reject reaction for a resolved Promise, * to be invoked by the embedding during its processing of the Promise job * queue. * * See http://www.ecma-international.org/ecma-262/7.0/index.html#sec-jobs-and-job-queues * * A PromiseReactionJob is set as the native function of an extended * JSFunction object, with all information required for the job's * execution stored in in a reaction record in its first extended slot. */ static bool PromiseReactionJob(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedFunction job(cx, &args.callee().as()); RootedObject reactionObj(cx, &job->getExtendedSlot(ReactionJobSlot_ReactionRecord).toObject()); // To ensure that the embedding ends up with the right entry global, we're // guaranteeing that the reaction job function gets created in the same // compartment as the handler function. That's not necessarily the global // that the job was triggered from, though. // We can find the triggering global via the job's reaction record. To go // back, we check if the reaction is a wrapper and if so, unwrap it and // enter its compartment. mozilla::Maybe ac; if (!IsProxy(reactionObj)) { MOZ_RELEASE_ASSERT(reactionObj->is()); } else { reactionObj = UncheckedUnwrap(reactionObj); if (JS_IsDeadWrapper(reactionObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } MOZ_RELEASE_ASSERT(reactionObj->is()); ac.emplace(cx, reactionObj); } // Steps 1-2. Handle reaction = reactionObj.as(); if (reaction->isDefaultResolvingHandler()) return DefaultResolvingPromiseReactionJob(cx, reaction, args.rval()); if (reaction->isAsyncFunction()) return AsyncFunctionPromiseReactionJob(cx, reaction, args.rval()); if (reaction->isAsyncGenerator()) return AsyncGeneratorPromiseReactionJob(cx, reaction, args.rval()); if (reaction->isDebuggerDummy()) return true; // Step 3. RootedValue handlerVal(cx, reaction->handler()); RootedValue argument(cx, reaction->handlerArg()); RootedValue handlerResult(cx); ResolutionMode resolutionMode = ResolveMode; // Steps 4-6. if (handlerVal.isInt32()) { int32_t handlerNum = handlerVal.toInt32(); // Step 4. if (handlerNum == PromiseHandlerIdentity) { handlerResult = argument; } else if (handlerNum == PromiseHandlerThrower) { // Step 5. resolutionMode = RejectMode; handlerResult = argument; } else { MOZ_ASSERT(handlerNum == PromiseHandlerAsyncFromSyncIteratorValueUnwrapDone || handlerNum == PromiseHandlerAsyncFromSyncIteratorValueUnwrapNotDone); bool done = handlerNum == PromiseHandlerAsyncFromSyncIteratorValueUnwrapDone; // Async Iteration proposal 11.1.3.2.5 step 1. JSObject* resultObj = CreateIterResultObject(cx, argument, done); if (!resultObj) return false; handlerResult = ObjectValue(*resultObj); } } else { MOZ_ASSERT(handlerVal.isObject()); MOZ_ASSERT(IsCallable(handlerVal)); // Step 6. if (!Call(cx, handlerVal, UndefinedHandleValue, argument, &handlerResult)) { resolutionMode = RejectMode; if (!MaybeGetAndClearException(cx, &handlerResult)) return false; } } // Steps 7-9. uint32_t hookSlot = resolutionMode == RejectMode ? ReactionRecordSlot_Reject : ReactionRecordSlot_Resolve; RootedObject callee(cx, reaction->getFixedSlot(hookSlot).toObjectOrNull()); RootedObject promiseObj(cx, reaction->promise()); if (!RunResolutionFunction(cx, callee, handlerResult, resolutionMode, promiseObj)) return false; args.rval().setUndefined(); return true; } // ES2016, 25.4.2.2. /** * Callback for resolving a thenable, to be invoked by the embedding during * its processing of the Promise job queue. * * See https://tc39.github.io/ecma262/#sec-jobs-and-job-queues * * A PromiseResolveThenableJob is set as the native function of an extended * JSFunction object, with all information required for the job's * execution stored in the function's extended slots. * * Usage of the function's extended slots is described in the ThenableJobSlots * enum. */ static bool PromiseResolveThenableJob(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedFunction job(cx, &args.callee().as()); RootedValue then(cx, job->getExtendedSlot(ThenableJobSlot_Handler)); MOZ_ASSERT(then.isObject()); MOZ_ASSERT(!IsWrapper(&then.toObject())); RootedNativeObject jobArgs(cx, &job->getExtendedSlot(ThenableJobSlot_JobData) .toObject().as()); RootedObject promise(cx, &jobArgs->getDenseElement(ThenableJobDataIndex_Promise).toObject()); RootedValue thenable(cx, jobArgs->getDenseElement(ThenableJobDataIndex_Thenable)); // Step 1. RootedObject resolveFn(cx); RootedObject rejectFn(cx); if (!CreateResolvingFunctions(cx, promise, &resolveFn, &rejectFn)) return false; // Step 2. FixedInvokeArgs<2> args2(cx); args2[0].setObject(*resolveFn); args2[1].setObject(*rejectFn); // In difference to the usual pattern, we return immediately on success. RootedValue rval(cx); if (Call(cx, then, thenable, args2, &rval)) return true; // Steps 3-4. if (!MaybeGetAndClearException(cx, &rval)) return false; RootedValue rejectVal(cx, ObjectValue(*rejectFn)); return Call(cx, rejectVal, UndefinedHandleValue, rval, &rval); } static MOZ_MUST_USE bool OriginalPromiseThenWithoutSettleHandlers(JSContext* cx, Handle promise, Handle promiseToResolve); /** * Specialization of PromiseResolveThenableJob when the `thenable` is a * built-in Promise object and the `then` property is the built-in * `Promise.prototype.then` function. * * A PromiseResolveBuiltinThenableJob is set as the native function of an * extended JSFunction object, with all information required for the job's * execution stored in the function's extended slots. * * Usage of the function's extended slots is described in the * BuiltinThenableJobSlots enum. */ static bool PromiseResolveBuiltinThenableJob(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); RootedFunction job(cx, &args.callee().as()); RootedObject promise(cx, &job->getExtendedSlot(BuiltinThenableJobSlot_Promise).toObject()); RootedObject thenable(cx, &job->getExtendedSlot(BuiltinThenableJobSlot_Thenable).toObject()); assertSameCompartment(cx, promise, thenable); MOZ_ASSERT(promise->is()); MOZ_ASSERT(thenable->is()); // Step 1 (Skipped). // Step 2. // In difference to the usual pattern, we return immediately on success. if (OriginalPromiseThenWithoutSettleHandlers(cx, thenable.as(), promise.as())) { return true; } // Steps 3-4. RootedValue exception(cx); if (!MaybeGetAndClearException(cx, &exception)) return false; // Testing functions allow to directly settle a promise without going // through the resolving functions. In that case the normal bookkeeping to // ensure only pending promises can be resolved doesn't apply and we need // to manually check for already settled promises. The exception is simply // dropped when this case happens. if (promise->as().state() != JS::PromiseState::Pending) return true; return RejectPromiseInternal(cx, promise.as(), exception); } /** * Tells the embedding to enqueue a Promise resolve thenable job, based on * three parameters: * promiseToResolve_ - The promise to resolve, obviously. * thenable_ - The thenable to resolve the Promise with. * thenVal - The `then` function to invoke with the `thenable` as the receiver. */ static MOZ_MUST_USE bool EnqueuePromiseResolveThenableJob(JSContext* cx, HandleValue promiseToResolve_, HandleValue thenable_, HandleValue thenVal) { // Need to re-root these to enable wrapping them below. RootedValue promiseToResolve(cx, promiseToResolve_); RootedValue thenable(cx, thenable_); // We enter the `then` callable's compartment so that the job function is // created in that compartment. // That guarantees that the embedding ends up with the right entry global. // This is relevant for some html APIs like fetch that derive information // from said global. RootedObject then(cx, CheckedUnwrap(&thenVal.toObject())); AutoCompartment ac(cx, then); // Wrap the `promiseToResolve` and `thenable` arguments. if (!cx->compartment()->wrap(cx, &promiseToResolve)) return false; MOZ_ASSERT(thenable.isObject()); if (!cx->compartment()->wrap(cx, &thenable)) return false; HandlePropertyName funName = cx->names().empty; RootedFunction job(cx, NewNativeFunction(cx, PromiseResolveThenableJob, 0, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!job) return false; // Store the `then` function on the callback. job->setExtendedSlot(ThenableJobSlot_Handler, ObjectValue(*then)); // Create a dense array to hold the data needed for the reaction job to // work. // The layout is described in the ThenableJobDataIndices enum. RootedArrayObject data(cx, NewDenseFullyAllocatedArray(cx, ThenableJobDataLength)); if (!data) return false; // Set the `promiseToResolve` and `thenable` arguments. data->setDenseInitializedLength(ThenableJobDataLength); data->initDenseElement(ThenableJobDataIndex_Promise, promiseToResolve); data->initDenseElement(ThenableJobDataIndex_Thenable, thenable); // Store the data array on the reaction job. job->setExtendedSlot(ThenableJobSlot_JobData, ObjectValue(*data)); // At this point the promise is guaranteed to be wrapped into the job's // compartment. RootedObject promise(cx, &promiseToResolve.toObject()); RootedObject incumbentGlobal(cx, cx->runtime()->getIncumbentGlobal(cx)); return cx->runtime()->enqueuePromiseJob(cx, job, promise, incumbentGlobal); } /** * Tells the embedding to enqueue a Promise resolve thenable built-in job, * based on two parameters: * promiseToResolve - The promise to resolve, obviously. * thenable - The thenable to resolve the Promise with. */ static MOZ_MUST_USE bool EnqueuePromiseResolveThenableBuiltinJob(JSContext* cx, HandleObject promiseToResolve, HandleObject thenable) { assertSameCompartment(cx, promiseToResolve, thenable); MOZ_ASSERT(promiseToResolve->is()); MOZ_ASSERT(thenable->is()); HandlePropertyName funName = cx->names().empty; RootedFunction job(cx, NewNativeFunction(cx, PromiseResolveBuiltinThenableJob, 0, funName, gc::AllocKind::FUNCTION_EXTENDED, GenericObject)); if (!job) return false; // Store the promise and the thenable on the reaction job. job->setExtendedSlot(BuiltinThenableJobSlot_Promise, ObjectValue(*promiseToResolve)); job->setExtendedSlot(BuiltinThenableJobSlot_Thenable, ObjectValue(*thenable)); RootedObject incumbentGlobal(cx, cx->runtime()->getIncumbentGlobal(cx)); return cx->runtime()->enqueuePromiseJob(cx, job, promiseToResolve, incumbentGlobal); } static MOZ_MUST_USE bool AddDummyPromiseReactionForDebugger(JSContext* cx, Handle promise, HandleObject dependentPromise); static MOZ_MUST_USE bool AddPromiseReaction(JSContext* cx, Handle promise, Handle reaction); static JSFunction* GetResolveFunctionFromReject(JSFunction* reject) { MOZ_ASSERT(reject->maybeNative() == RejectPromiseFunction); Value resolveFunVal = reject->getExtendedSlot(RejectFunctionSlot_ResolveFunction); MOZ_ASSERT(IsNativeFunction(resolveFunVal, ResolvePromiseFunction)); return &resolveFunVal.toObject().as(); } static JSFunction* GetRejectFunctionFromResolve(JSFunction* resolve) { MOZ_ASSERT(resolve->maybeNative() == ResolvePromiseFunction); Value rejectFunVal = resolve->getExtendedSlot(ResolveFunctionSlot_RejectFunction); MOZ_ASSERT(IsNativeFunction(rejectFunVal, RejectPromiseFunction)); return &rejectFunVal.toObject().as(); } static JSFunction* GetResolveFunctionFromPromise(PromiseObject* promise) { Value rejectFunVal = promise->getFixedSlot(PromiseSlot_RejectFunction); if (rejectFunVal.isUndefined()) return nullptr; JSObject* rejectFunObj = &rejectFunVal.toObject(); // We can safely unwrap it because all we want is to get the resolve // function. if (IsWrapper(rejectFunObj)) rejectFunObj = UncheckedUnwrap(rejectFunObj); if (!rejectFunObj->is()) return nullptr; JSFunction* rejectFun = &rejectFunObj->as(); // Only the original RejectPromiseFunction has a reference to the resolve // function. if (rejectFun->maybeNative() != &RejectPromiseFunction) return nullptr; // The reject function was already called and cleared its resolve-function // extended slot. if (rejectFun->getExtendedSlot(RejectFunctionSlot_ResolveFunction).isUndefined()) return nullptr; return GetResolveFunctionFromReject(rejectFun); } static void ClearResolutionFunctionSlots(JSFunction* resolutionFun) { JSFunction* resolve; JSFunction* reject; if (resolutionFun->maybeNative() == ResolvePromiseFunction) { resolve = resolutionFun; reject = GetRejectFunctionFromResolve(resolutionFun); } else { resolve = GetResolveFunctionFromReject(resolutionFun); reject = resolutionFun; } resolve->setExtendedSlot(ResolveFunctionSlot_Promise, UndefinedValue()); resolve->setExtendedSlot(ResolveFunctionSlot_RejectFunction, UndefinedValue()); reject->setExtendedSlot(RejectFunctionSlot_Promise, UndefinedValue()); reject->setExtendedSlot(RejectFunctionSlot_ResolveFunction, UndefinedValue()); } // ES2016, 25.4.3.1. steps 3-7. static MOZ_MUST_USE PromiseObject* CreatePromiseObjectInternal(JSContext* cx, HandleObject proto /* = nullptr */, bool protoIsWrapped /* = false */, bool informDebugger /* = true */) { // Step 3. Rooted promise(cx); // Enter the unwrapped proto's compartment, if that's different from // the current one. // All state stored in a Promise's fixed slots must be created in the // same compartment, so we get all of that out of the way here. // (Except for the resolution functions, which are created below.) mozilla::Maybe ac; if (protoIsWrapped) ac.emplace(cx, proto); promise = NewObjectWithClassProto(cx, proto); if (!promise) return nullptr; // Step 4. promise->setFixedSlot(PromiseSlot_Flags, Int32Value(0)); // Steps 5-6. // Omitted, we allocate our single list of reaction records lazily. // Step 7. // Implicit, the handled flag is unset by default. // Store an allocation stack so we can later figure out what the // control flow was for some unexpected results. Frightfully expensive, // but oh well. if (ShouldCaptureDebugInfo(cx)) { PromiseDebugInfo* debugInfo = PromiseDebugInfo::create(cx, promise); if (!debugInfo) return nullptr; } // Let the Debugger know about this Promise. if (informDebugger) JS::dbg::onNewPromise(cx, promise); return promise; } // ES2016, 25.4.3.1. static bool PromiseConstructor(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); // Step 1. if (!ThrowIfNotConstructing(cx, args, "Promise")) return false; // Step 2. HandleValue executorVal = args.get(0); if (!IsCallable(executorVal)) return ReportIsNotFunction(cx, executorVal); RootedObject executor(cx, &executorVal.toObject()); // Steps 3-10. RootedObject newTarget(cx, &args.newTarget().toObject()); RootedObject originalNewTarget(cx, newTarget); bool needsWrapping = false; // If the constructor is called via an Xray wrapper, then the newTarget // hasn't been unwrapped. We want that because, while the actual instance // should be created in the target compartment, the constructor's code // should run in the wrapper's compartment. // // This is so that the resolve and reject callbacks get created in the // wrapper's compartment, which is required for code in that compartment // to freely interact with it, and, e.g., pass objects as arguments, which // it wouldn't be able to if the callbacks were themselves wrapped in Xray // wrappers. // // At the same time, just creating the Promise itself in the wrapper's // compartment wouldn't be helpful: if the wrapper forbids interactions // with objects except for specific actions, such as calling them, then // the code we want to expose it to can't actually treat it as a Promise: // calling .then on it would throw, for example. // // Another scenario where it's important to create the Promise in a // different compartment from the resolution functions is when we want to // give non-privileged code a Promise resolved with the result of a // Promise from privileged code; as a return value of a JS-implemented // API, say. If the resolution functions were unprivileged, then resolving // with a privileged Promise would cause `resolve` to attempt accessing // .then on the passed Promise, which would throw an exception, so we'd // just end up with a rejected Promise. Really, we want to chain the two // Promises, with the unprivileged one resolved with the resolution of the // privileged one. if (IsWrapper(newTarget)) { JSObject* unwrappedNewTarget = CheckedUnwrap(newTarget); MOZ_ASSERT(unwrappedNewTarget); MOZ_ASSERT(unwrappedNewTarget != newTarget); newTarget = unwrappedNewTarget; { AutoCompartment ac(cx, newTarget); Handle global = cx->global(); JSFunction* promiseCtor = GlobalObject::getOrCreatePromiseConstructor(cx, global); if (!promiseCtor) return false; // Promise subclasses don't get the special Xray treatment, so // we only need to do the complex wrapping and unwrapping scheme // described above for instances of Promise itself. if (newTarget == promiseCtor) needsWrapping = true; } } RootedObject proto(cx); if (!GetPrototypeFromConstructor(cx, needsWrapping ? newTarget : originalNewTarget, &proto)) return false; if (needsWrapping && !cx->compartment()->wrap(cx, &proto)) return false; Rooted promise(cx, PromiseObject::create(cx, executor, proto, needsWrapping)); if (!promise) return false; // Step 11. args.rval().setObject(*promise); if (needsWrapping) return cx->compartment()->wrap(cx, args.rval()); return true; } // ES2016, 25.4.3.1. steps 3-11. /* static */ PromiseObject* PromiseObject::create(JSContext* cx, HandleObject executor, HandleObject proto /* = nullptr */, bool needsWrapping /* = false */) { MOZ_ASSERT(executor->isCallable()); RootedObject usedProto(cx, proto); // If the proto is wrapped, that means the current function is running // with a different compartment active from the one the Promise instance // is to be created in. // See the comment in PromiseConstructor for details. if (needsWrapping) { MOZ_ASSERT(proto); usedProto = CheckedUnwrap(proto); if (!usedProto) { /* ReportAccessDenied(cx); */ return nullptr; } } // Steps 3-7. Rooted promise(cx, CreatePromiseObjectInternal(cx, usedProto, needsWrapping, false)); if (!promise) return nullptr; RootedObject promiseObj(cx, promise); if (needsWrapping && !cx->compartment()->wrap(cx, &promiseObj)) return nullptr; // Step 8. // The resolving functions are created in the compartment active when the // (maybe wrapped) Promise constructor was called. They contain checks and // can unwrap the Promise if required. RootedObject resolveFn(cx); RootedObject rejectFn(cx); if (!CreateResolvingFunctions(cx, promiseObj, &resolveFn, &rejectFn)) return nullptr; // Need to wrap the resolution functions before storing them on the Promise. if (needsWrapping) { AutoCompartment ac(cx, promise); RootedObject wrappedRejectFn(cx, rejectFn); if (!cx->compartment()->wrap(cx, &wrappedRejectFn)) return nullptr; promise->setFixedSlot(PromiseSlot_RejectFunction, ObjectValue(*wrappedRejectFn)); } else { promise->setFixedSlot(PromiseSlot_RejectFunction, ObjectValue(*rejectFn)); } // Step 9. bool success; { FixedInvokeArgs<2> args(cx); args[0].setObject(*resolveFn); args[1].setObject(*rejectFn); RootedValue calleeOrRval(cx, ObjectValue(*executor)); success = Call(cx, calleeOrRval, UndefinedHandleValue, args, &calleeOrRval); } // Step 10. if (!success) { RootedValue exceptionVal(cx); if (!MaybeGetAndClearException(cx, &exceptionVal)) return nullptr; RootedValue calleeOrRval(cx, ObjectValue(*rejectFn)); if (!Call(cx, calleeOrRval, UndefinedHandleValue, exceptionVal, &calleeOrRval)) return nullptr; } // Let the Debugger know about this Promise. JS::dbg::onNewPromise(cx, promise); // Step 11. return promise; } // ES2016, 25.4.3.1. skipping creation of resolution functions and executor // function invocation. /* static */ PromiseObject* PromiseObject::createSkippingExecutor(JSContext* cx) { return CreatePromiseObjectWithoutResolutionFunctions(cx); } class MOZ_STACK_CLASS PromiseForOfIterator : public JS::ForOfIterator { public: using JS::ForOfIterator::ForOfIterator; bool isOptimizedDenseArrayIteration() { MOZ_ASSERT(valueIsIterable()); return index != NOT_ARRAY && IsPackedArray(iterator); } }; static MOZ_MUST_USE bool PerformPromiseAll(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done); static MOZ_MUST_USE bool PerformPromiseAllSettled(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done); static MOZ_MUST_USE bool PerformPromiseAny(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done); static MOZ_MUST_USE bool PerformPromiseRace(JSContext* cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done); enum class CombinatorKind { All, AllSettled, Any, Race }; // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // // Unified implementation of // 25.6.4.1 Promise.all ( iterable ) // 25.6.4.2 Promise.allSettled ( iterable ) // 25.6.4.4 Promise.race ( iterable ) // // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // Promise.any ( iterable ) static MOZ_MUST_USE bool CommonPromiseCombinator(JSContext* cx, CallArgs& args, CombinatorKind mode) { HandleValue iterable = args.get(0); // Step 2 (reordered). HandleValue CVal = args.thisv(); if (!CVal.isObject()) { const char* message; switch (mode) { case CombinatorKind::All: message = "Receiver of Promise.all call"; break; case CombinatorKind::AllSettled: message = "Receiver of Promise.allSettled call"; break; case CombinatorKind::Any: message = "Receiver of Promise.any call"; break; case CombinatorKind::Race: message = "Receiver of Promise.race call"; break; } JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_NOT_NONNULL_OBJECT, message); return false; } // Step 1. RootedObject C(cx, &CVal.toObject()); // Step 3. Rooted promiseCapability(cx); if (!NewPromiseCapability(cx, C, &promiseCapability, false)) return false; // Regardless of whether we got a fast-path promise from NewPromiseCapability, // the spec requires us to throw TypeError if |Promise.reject| is not callable, // ie. overwritten in this context. Check the prototype here. RootedValue promiseResolve(cx, UndefinedValue()); { JSObject* promiseCtor = GlobalObject::getOrCreatePromiseConstructor(cx, cx->global()); if (!promiseCtor) { return false; } PromiseLookup& promiseLookup = cx->compartment()->promiseLookup; if (C != promiseCtor || !promiseLookup.isDefaultPromiseState(cx)) { // Step 3. Let promiseResolve be GetPromiseResolve(C). // GetPromiseResolve // Step 1. Let promiseResolve be ? Get(promiseConstructor, "resolve"). if (!GetProperty(cx, C, C, cx->names().resolve, &promiseResolve)) { // Step 4. IfAbruptRejectPromise(promiseResolve, promiseCapability). return AbruptRejectPromise(cx, args, promiseCapability); } // GetPromiseResolve // Step 2. If IsCallable(promiseResolve) is false, // throw a TypeError exception. if (!IsCallable(promiseResolve)) { ReportIsNotFunction(cx, promiseResolve); // Step 4. IfAbruptRejectPromise(promiseResolve, promiseCapability). return AbruptRejectPromise(cx, args, promiseCapability); } } } // Steps 5. PromiseForOfIterator iter(cx); if (!iter.init(iterable, JS::ForOfIterator::AllowNonIterable)) return AbruptRejectPromise(cx, args, promiseCapability); if (!iter.valueIsIterable()) { const char* message; switch (mode) { case CombinatorKind::All: message = "Argument of Promise.all"; break; case CombinatorKind::AllSettled: message = "Argument of Promise.allSettled"; break; case CombinatorKind::Any: message = "Argument of Promise.any"; break; case CombinatorKind::Race: message = "Argument of Promise.race"; break; } JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_NOT_ITERABLE, message); return AbruptRejectPromise(cx, args, promiseCapability); } // Step 6 (implicit). // Step 7. bool done, result; switch (mode) { case CombinatorKind::All: result = PerformPromiseAll(cx, iter, C, promiseCapability, promiseResolve, &done); break; case CombinatorKind::AllSettled: result = PerformPromiseAllSettled(cx, iter, C, promiseCapability, promiseResolve, &done); break; case CombinatorKind::Any: result = PerformPromiseAny(cx, iter, C, promiseCapability, promiseResolve, &done); break; case CombinatorKind::Race: result = PerformPromiseRace(cx, iter, C, promiseCapability, promiseResolve, &done); break; } // Step 8. if (!result) { // Step 8.a. if (!done) iter.closeThrow(); // Step 8.b. return AbruptRejectPromise(cx, args, promiseCapability); } // Step 9. args.rval().setObject(*promiseCapability.promise()); return true; } // ES2020 draft rev a09fc232c137800dbf51b6204f37fdede4ba1646 // 25.6.4.1 Promise.all ( iterable ) static bool Promise_static_all(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return CommonPromiseCombinator(cx, args, CombinatorKind::All); } static MOZ_MUST_USE bool PerformPromiseThen(JSContext* cx, Handle promise, HandleValue onFulfilled_, HandleValue onRejected_, Handle resultCapability); static MOZ_MUST_USE bool PerformPromiseThenWithoutSettleHandlers(JSContext* cx, Handle promise, Handle promiseToResolve, Handle resultCapability); static JSFunction* NewPromiseCombinatorElementFunction( JSContext* cx, Native native, Handle dataHolder, uint32_t index); static bool PromiseAllResolveElementFunction(JSContext* cx, unsigned argc, Value* vp); // Unforgeable version of ES2016, 25.4.4.1. MOZ_MUST_USE JSObject* js::GetWaitForAllPromise(JSContext* cx, const JS::AutoObjectVector& promises) { #ifdef DEBUG for (size_t i = 0, len = promises.length(); i < len; i++) { JSObject* obj = promises[i]; assertSameCompartment(cx, obj); MOZ_ASSERT(UncheckedUnwrap(obj)->is()); } #endif // Step 1. RootedObject C(cx, GlobalObject::getOrCreatePromiseConstructor(cx, cx->global())); if (!C) return nullptr; // Step 2 (omitted). // Step 3. Rooted resultCapability(cx); if (!NewPromiseCapability(cx, C, &resultCapability, false)) return nullptr; // Steps 4-6 (omitted). // Step 7. // Implemented as an inlined, simplied version of ES2016 25.4.4.1.1, PerformPromiseAll. { uint32_t promiseCount = promises.length(); // Sub-steps 1-2 (omitted). // Sub-step 3. Rooted values(cx); { auto* valuesArray = NewDenseFullyAllocatedArray(cx, promiseCount); if (!valuesArray) { return nullptr; } valuesArray->ensureDenseInitializedLength(cx, 0, promiseCount); values.initialize(valuesArray); } // Sub-step 4. // Create our data holder that holds all the things shared across // every step of the iterator. In particular, this holds the // remainingElementsCount (as an integer reserved slot), the array of // values, and the resolve function from our PromiseCapability. Rooted dataHolder(cx); dataHolder = PromiseCombinatorDataHolder::New(cx, resultCapability.promise(), values, resultCapability.resolve()); if (!dataHolder) return nullptr; // Call PerformPromiseThen with resolve and reject set to nullptr. Rooted resultCapabilityWithoutResolving(cx); resultCapabilityWithoutResolving.promise().set(resultCapability.promise()); // Sub-step 5 (inline in loop-header below). // Sub-step 6. for (uint32_t index = 0; index < promiseCount; index++) { // Steps a-c (omitted). // Step d (implemented after the loop). // Steps e-g (omitted). // Step h. values.unwrappedArray()->setDenseElement(index, UndefinedHandleValue); // Step i, vastly simplified. RootedObject nextPromiseObj(cx, promises[index]); // Steps j-o. JSFunction* resolveFunc = NewPromiseCombinatorElementFunction( cx, PromiseAllResolveElementFunction, dataHolder, index); if (!resolveFunc) return nullptr; // Step p. dataHolder->increaseRemainingCount(); // Step q, very roughly. RootedValue resolveFunVal(cx, ObjectValue(*resolveFunc)); RootedValue rejectFunVal(cx, ObjectValue(*resultCapability.reject())); Rooted nextPromise(cx); // GetWaitForAllPromise is used internally only and must not // trigger content-observable effects when registering a reaction. // It's also meant to work on wrapped Promises, potentially from // compartments with principals inaccessible from the current // compartment. To make that work, it unwraps promises with // UncheckedUnwrap, nextPromise = &UncheckedUnwrap(nextPromiseObj)->as(); if (!PerformPromiseThen(cx, nextPromise, resolveFunVal, rejectFunVal, resultCapabilityWithoutResolving)) { return nullptr; } // Step r (inline in loop-header). } // Sub-step d.i (implicit). // Sub-step d.ii. int32_t remainingCount = dataHolder->decreaseRemainingCount(); // Sub-step d.iii-iv. if (remainingCount == 0) { if (!ResolvePromiseInternal(cx, resultCapability.promise(), values.value())) return nullptr; } } // Step 8 (omitted). // Step 9. return resultCapability.promise(); } static MOZ_MUST_USE bool RunResolutionFunction(JSContext *cx, HandleObject resolutionFun, HandleValue result, ResolutionMode mode, HandleObject promiseObj) { // The absence of a resolve/reject function can mean that, as an // optimization, those weren't created. In that case, a flag is set on // the Promise object. (It's also possible to not have a resolution // function without that flag being set. This can occur if a Promise // subclass constructor passes null/undefined to `super()`.) // There are also reactions where the Promise itself is missing. For // those, there's nothing left to do here. assertSameCompartment(cx, resolutionFun); assertSameCompartment(cx, result); assertSameCompartment(cx, promiseObj); if (resolutionFun) { RootedValue calleeOrRval(cx, ObjectValue(*resolutionFun)); return Call(cx, calleeOrRval, UndefinedHandleValue, result, &calleeOrRval); } if (!promiseObj) { if (mode == RejectMode) { // The rejection will never be handled, given the returned promise // is known to be unused, and already optimized away. // // Create temporary Promise object and reject it, in order to // report the unhandled rejection. // // Allocation time points wrong time, but won't matter much. Rooted temporaryPromise(cx); temporaryPromise = CreatePromiseObjectWithoutResolutionFunctions(cx); if (!temporaryPromise) { cx->clearPendingException(); return true; } return RejectPromiseInternal(cx, temporaryPromise, result); } return true; } Handle promise = promiseObj.as(); if (promise->state() != JS::PromiseState::Pending) return true; if (!PromiseHasAnyFlag(*promise, PROMISE_FLAG_DEFAULT_RESOLVING_FUNCTIONS)) return true; if (mode == ResolveMode) return ResolvePromiseInternal(cx, promise, result); return RejectPromiseInternal(cx, promise, result); } static MOZ_MUST_USE JSObject* CommonStaticResolveRejectImpl(JSContext* cx, HandleValue thisVal, HandleValue argVal, ResolutionMode mode); static bool IsPromiseSpecies(JSContext* cx, JSFunction* species); // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.1.1 Runtime Semantics: PerformPromiseAll, steps 5-6 and step 8. // 25.6.4.2.1 Runtime Semantics: PerformPromiseAllSettled, steps 5-6 and step 8. // 25.6.4.4.1 Runtime Semantics: PerformPromiseRace, steps 3-5. // // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // Runtime Semantics: PerformPromiseAny, steps 6-8. template static MOZ_MUST_USE bool CommonPerformPromiseCombinator(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, HandleObject resultPromise, HandleValue promiseResolve, bool* done, bool resolveReturnsUndefined, T getResolveAndReject) { RootedObject promiseCtor(cx, GlobalObject::getOrCreatePromiseConstructor(cx, cx->global())); if (!promiseCtor) return false; // Optimized dense array iteration ensures no side-effects take place // during the iteration. bool iterationMayHaveSideEffects = !iterator.isOptimizedDenseArrayIteration(); PromiseLookup& promiseLookup = cx->compartment()->promiseLookup; // Try to optimize when the Promise object is in its default state, seeded // with |C == promiseCtor| because we can only perform this optimization // for the builtin Promise constructor. bool isDefaultPromiseState = C == promiseCtor && promiseLookup.isDefaultPromiseState(cx); bool validatePromiseState = iterationMayHaveSideEffects; RootedValue CVal(cx, ObjectValue(*C)); RootedValue resolveFunVal(cx); RootedValue rejectFunVal(cx); // We're reusing rooted variables in the loop below, so we don't need to // declare a gazillion different rooted variables here. Rooted variables // which are reused include "Or" in their name. RootedValue nextValueOrNextPromise(cx); RootedObject nextPromiseObj(cx); RootedValue resolveOrThen(cx); RootedObject thenSpeciesOrBlockedPromise(cx); Rooted thenCapability(cx); while (true) { // Steps a-c, e-g. RootedValue& nextValue = nextValueOrNextPromise; if (!iterator.next(&nextValue, done)) { // Steps b, f. *done = true; // Steps c, g. return false; } // Step d. if (*done) return true; // Set to false when we can skip the [[Get]] for "then" and instead // use the built-in Promise.prototype.then function. bool getThen = true; if (isDefaultPromiseState && validatePromiseState) isDefaultPromiseState = promiseLookup.isDefaultPromiseState(cx); RootedValue& nextPromise = nextValueOrNextPromise; if (isDefaultPromiseState) { PromiseObject* nextValuePromise = nullptr; if (nextValue.isObject() && nextValue.toObject().is()) nextValuePromise = &nextValue.toObject().as(); if (nextValuePromise && promiseLookup.isDefaultInstanceWhenPromiseStateIsSane(cx, nextValuePromise)) { // The below steps don't produce any side-effects, so we can // skip the Promise state revalidation in the next iteration // when the iterator itself also doesn't produce any // side-effects. validatePromiseState = iterationMayHaveSideEffects; // 25.6.4.1.1, step 6.i. // 25.6.4.3.1, step 3.h. // Promise.resolve is a no-op for the default case. MOZ_ASSERT(&nextPromise.toObject() == nextValuePromise); // `nextPromise` uses the built-in `then` function. getThen = false; } else { // Need to revalidate the Promise state in the next iteration, // because CommonStaticResolveRejectImpl may have modified it. validatePromiseState = true; // 25.6.4.1.1, step 6.i. // 25.6.4.3.1, step 3.h. // Inline the call to Promise.resolve. JSObject* res = CommonStaticResolveRejectImpl(cx, CVal, nextValue, ResolveMode); if (!res) return false; nextPromise.setObject(*res); } } else { // |promiseResolve| gets passed in from |CommonPromiseCombinator| via |PerformPromise*|. // It is undefined when the Promise constructor was initially in its default state. // Otherwise it is the value of |Promise.resolve|. if (promiseResolve.isUndefined()) { // 25.6.4.1.1, step 6.i. // 25.6.4.3.1, step 3.h. // Inline the call to Promise.resolve. JSObject* res = CommonStaticResolveRejectImpl(cx, CVal, nextValue, ResolveMode); if (!res) return false; nextPromise.setObject(*res); } else { // 25.6.4.1.1, step 6.i. // 25.6.4.3.1, step 3.h. // Sadly, because someone could have overridden // "resolve" on the canonical Promise constructor. // Step {i, h}. Let nextPromise be // ? Call(promiseResolve, constructor, « nextValue »). if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) return false; } } // Get the resolving functions for this iteration. // 25.6.4.1.1, steps 6.j-q. if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) return false; // Call |nextPromise.then| with the provided hooks and add // |resultPromise| to the list of dependent promises. // // If |nextPromise.then| is the original |Promise.prototype.then| // function and the call to |nextPromise.then| would use the original // |Promise| constructor to create the resulting promise, we skip the // call to |nextPromise.then| and thus creating a new promise that // would not be observable by content. // 25.6.4.1.1, step 6.r. // 25.6.4.3.1, step 3.i. nextPromiseObj = ToObject(cx, nextPromise); if (!nextPromiseObj) return false; RootedValue& thenVal = resolveOrThen; bool isBuiltinThen; if (getThen) { // We don't use the Promise lookup cache here, because this code // is only called when we had a lookup cache miss, so it's likely // we'd get another cache miss when trying to use the cache here. if (!GetProperty(cx, nextPromiseObj, nextPromise, cx->names().then, &thenVal)) return false; // |nextPromise| is an unwrapped Promise, and |then| is the // original |Promise.prototype.then|, inline it here. isBuiltinThen = nextPromiseObj->is() && IsNativeFunction(thenVal, Promise_then); } else { isBuiltinThen = true; } // By default, the blocked promise is added as an extra entry to the // rejected promises list. bool addToDependent = true; if (isBuiltinThen) { MOZ_ASSERT(nextPromise.isObject()); MOZ_ASSERT(&nextPromise.toObject() == nextPromiseObj); // 25.6.5.4, step 3. RootedObject& thenSpecies = thenSpeciesOrBlockedPromise; if (getThen) { thenSpecies = SpeciesConstructor(cx, nextPromiseObj, JSProto_Promise, IsPromiseSpecies); if (!thenSpecies) return false; } else { thenSpecies = promiseCtor; } // The fast path here and the one in NewPromiseCapability may not // set the resolve and reject handlers, so we need to clear the // fields in case they were set in the previous iteration. thenCapability.resolve().set(nullptr); thenCapability.reject().set(nullptr); // Skip the creation of a built-in Promise object if: // 1. `thenSpecies` is the built-in Promise constructor. // 2. `resolveFun` doesn't return an object, which ensures no // side-effects take place in ResolvePromiseInternal. // 3. The result promise is a built-in Promise object. // 4. The result promise doesn't use the default resolving // functions, which in turn means RunResolutionFunction when // called from PromiseRectionJob won't try to resolve the // promise. if (thenSpecies == promiseCtor && resolveReturnsUndefined && resultPromise->is() && !PromiseHasAnyFlag(resultPromise->as(), PROMISE_FLAG_DEFAULT_RESOLVING_FUNCTIONS)) { thenCapability.promise().set(resultPromise); addToDependent = false; } else { // 25.6.5.4, step 4. if (!NewPromiseCapability(cx, thenSpecies, &thenCapability, true)) return false; } // 25.6.5.4, step 5. Handle promise = nextPromiseObj.as(); if (!PerformPromiseThen(cx, promise, resolveFunVal, rejectFunVal, thenCapability)) return false; } else { // Optimization failed, do the normal call. RootedValue& ignored = thenVal; if (!Call(cx, thenVal, nextPromise, resolveFunVal, rejectFunVal, &ignored)) return false; // In case the value to depend on isn't an object at all, there's // nothing more to do here: we can only add reactions to Promise // objects (potentially after unwrapping them), and non-object // values can't be Promise objects. This can happen if Promise.all // is called on an object with a `resolve` method that returns // primitives. if (!nextPromise.isObject()) addToDependent = false; } // Adds |resultPromise| to the list of dependent promises. if (addToDependent) { // The object created by the |promise.then| call or the inlined // version of it above is visible to content (either because // |promise.then| was overridden by content and could leak it, // or because a constructor other than the original value of // |Promise| was used to create it). To have both that object and // |resultPromise| show up as dependent promises in the debugger, // add a dummy reaction to the list of reject reactions that // contains |resultPromise|, but otherwise does nothing. RootedObject& blockedPromise = thenSpeciesOrBlockedPromise; blockedPromise = resultPromise; mozilla::Maybe ac; if (IsProxy(nextPromiseObj)) { nextPromiseObj = CheckedUnwrap(nextPromiseObj); if (!nextPromiseObj) { return false; } if (JS_IsDeadWrapper(nextPromiseObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } ac.emplace(cx, nextPromiseObj); if (!cx->compartment()->wrap(cx, &blockedPromise)) return false; } // If either the object to depend on or the object that gets // blocked isn't a, maybe-wrapped, Promise instance, we ignore it. // All this does is lose some small amount of debug information in // scenarios that are highly unlikely to occur in useful code. if (nextPromiseObj->is() && resultPromise->is()) { Handle promise = nextPromiseObj.as(); if (!AddDummyPromiseReactionForDebugger(cx, promise, blockedPromise)) return false; } } } } // Create the elements for the Promise combinators Promise.all and // Promise.allSettled. static MOZ_MUST_USE bool NewPromiseCombinatorElements(JSContext* cx, Handle resultCapability, MutableHandle elements) { // We have to be very careful about which compartments we create things for // the Promise combinators. In particular, we have to maintain the invariant // that anything stored in a reserved slot is same-compartment with the object // whose reserved slot it's in. But we want to create the values array in the // compartment of the result capability's Promise, because that array can get // exposed as the Promise's resolution value to code that has access to the // Promise (in particular code from that compartment), and that should work, // even if the Promise compartment is less-privileged than our caller // compartment. // // So the plan is as follows: Create the values array in the promise // compartment. Create the promise resolving functions and the data holder in // our current compartment, i.e. the compartment of the Promise combinator // function. Store a cross-compartment wrapper to the values array in the // holder. This should be OK because the only things we hand the promise // resolving functions to are the "then" calls we do and in the case when the // Promise's compartment is not the current compartment those are happening // over Xrays anyway, which means they get the canonical "then" function and // content can't see our promise resolving functions. if (IsWrapper(resultCapability.promise())) { JSObject* unwrappedPromiseObj = CheckedUnwrap(resultCapability.promise()); MOZ_ASSERT(unwrappedPromiseObj); { AutoCompartment ac(cx, unwrappedPromiseObj); auto* array = NewDenseEmptyArray(cx); if (!array) { return false; } elements.initialize(array); } if (!cx->compartment()->wrap(cx, elements.value())) { return false; } } else { auto* array = NewDenseEmptyArray(cx); if (!array) { return false; } elements.initialize(array); } return true; } // Retrieve the combinator elements from the data holder. static MOZ_MUST_USE bool GetPromiseCombinatorElements(JSContext* cx, Handle data, MutableHandle elements) { bool needsWrapping = false; JSObject* valuesObj = &data->valuesArray().toObject(); if (IsProxy(valuesObj)) { // See comment for NewPromiseCombinatorElements for why we unwrap here. valuesObj = UncheckedUnwrap(valuesObj); if (JS_IsDeadWrapper(valuesObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } needsWrapping = true; } elements.initialize(data, &valuesObj->as(), needsWrapping); return true; } static JSFunction* NewPromiseCombinatorElementFunction(JSContext* cx, Native native, Handle dataHolder, uint32_t index) { JSFunction* fn = NewNativeFunction(cx, native, 1, nullptr, gc::AllocKind::FUNCTION_EXTENDED, GenericObject); if (!fn) { return nullptr; } fn->setExtendedSlot(PromiseCombinatorElementFunctionSlot_Data, ObjectValue(*dataHolder)); fn->setExtendedSlot(PromiseCombinatorElementFunctionSlot_ElementIndex, Int32Value(index)); return fn; } // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.1.2 Promise.all Resolve Element Functions // 25.6.4.2.2 Promise.allSettled Resolve Element Functions // 25.6.4.2.3 Promise.allSettled Reject Element Functions // // Common implementation for Promise combinator element functions to check if // they've already been called. static bool PromiseCombinatorElementFunctionAlreadyCalled(const CallArgs& args, MutableHandle data, uint32_t* index) { // Step 1. JSFunction* fn = &args.callee().as(); // Step 2. const Value& dataVal = fn->getExtendedSlot(PromiseCombinatorElementFunctionSlot_Data); // Step 3. // We use the existence of the data holder as a signal for whether the Promise // combinator element function was already called. Upon resolution, it's reset // to `undefined`. if (dataVal.isUndefined()) { return true; } data.set(&dataVal.toObject().as()); // Step 4. fn->setExtendedSlot(PromiseCombinatorElementFunctionSlot_Data, UndefinedValue()); // Step 5. int32_t idx = fn->getExtendedSlot(PromiseCombinatorElementFunctionSlot_ElementIndex) .toInt32(); MOZ_ASSERT(idx >= 0); *index = uint32_t(idx); return false; } // ES2020 draft rev a09fc232c137800dbf51b6204f37fdede4ba1646 // 25.6.4.1.1 PerformPromiseAll (iteratorRecord, constructor, resultCapability) static MOZ_MUST_USE bool PerformPromiseAll(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done) { *done = false; // Step 1. MOZ_ASSERT(C->isConstructor()); // Step 2 (omitted). // Step 3. Rooted values(cx); if (!NewPromiseCombinatorElements(cx, resultCapability, &values)) { return false; } // Step 4. // Create our data holder that holds all the things shared across // every step of the iterator. In particular, this holds the // remainingElementsCount (as an integer reserved slot), the array of // values, and the resolve function from our PromiseCapability. Rooted dataHolder(cx); dataHolder = PromiseCombinatorDataHolder::New(cx, resultCapability.promise(), values, resultCapability.resolve()); if (!dataHolder) return false; // Step 5. uint32_t index = 0; auto getResolveAndReject = [cx, &resultCapability, &values, &dataHolder, &index](MutableHandleValue resolveFunVal, MutableHandleValue rejectFunVal) { // Step 8.h. if (!values.pushUndefined(cx)) { return false; } // Steps 8.j-p. JSFunction* resolveFunc = NewPromiseCombinatorElementFunction(cx, PromiseAllResolveElementFunction, dataHolder, index); if (!resolveFunc) return false; // Step 8.q. dataHolder->increaseRemainingCount(); // Step 8.s. index++; MOZ_ASSERT(index > 0); resolveFunVal.setObject(*resolveFunc); rejectFunVal.setObject(*resultCapability.reject()); return true; }; // Step 8. if (!CommonPerformPromiseCombinator(cx, iterator, C, resultCapability.promise(), promiseResolve, done, true, getResolveAndReject)) return false; // Step 8.d.ii. int32_t remainingCount = dataHolder->decreaseRemainingCount(); // Steps 8.d.iii-iv. if (remainingCount == 0) { return RunResolutionFunction(cx, resultCapability.resolve(), values.value(), ResolveMode, resultCapability.promise()); } return true; } // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.1.2 Promise.all Resolve Element Functions static bool PromiseAllResolveElementFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue xVal = args.get(0); // Steps 1-5. Rooted data(cx); uint32_t index; if (PromiseCombinatorElementFunctionAlreadyCalled(args, &data, &index)) { args.rval().setUndefined(); return true; } // Step 6. Rooted values(cx); if (!GetPromiseCombinatorElements(cx, data, &values)) { return false; } // Step 7 (moved under step 11). // Step 8 (moved to step 10). // Step 9. if (!values.setElement(cx, index, xVal)) { return false; } // Steps 8,10. uint32_t remainingCount = data->decreaseRemainingCount(); // Step 11. if (remainingCount == 0) { // Step 11.a. (Omitted, happened in PerformPromiseAll.) // Step 11.b. // Step 7 (Adapted to work with PromiseCombinatorDataHolder's layout). RootedObject resolveAllFun(cx, data->resolveOrRejectObj()); RootedObject promiseObj(cx, data->promiseObj()); if (!RunResolutionFunction(cx, resolveAllFun, values.value(), ResolveMode, promiseObj)) return false; } // Step 12. args.rval().setUndefined(); return true; } // ES2020 draft rev a09fc232c137800dbf51b6204f37fdede4ba1646 // 25.6.4.3 Promise.race ( iterable ) static bool Promise_static_race(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return CommonPromiseCombinator(cx, args, CombinatorKind::Race); } // ES2020 draft rev a09fc232c137800dbf51b6204f37fdede4ba1646 // 25.6.4.3.1 PerformPromiseRace (iteratorRecord, constructor, resultCapability) static MOZ_MUST_USE bool PerformPromiseRace(JSContext *cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done) { *done = false; // Step 1. MOZ_ASSERT(C->isConstructor()); // Step 2 (omitted). // BlockOnPromise fast path requires the passed onFulfilled function // doesn't return an object value, because otherwise the skipped promise // creation is detectable due to missing property lookups. bool isDefaultResolveFn = IsNativeFunction(resultCapability.resolve(), ResolvePromiseFunction); auto getResolveAndReject = [&resultCapability]( MutableHandleValue resolveFunVal, MutableHandleValue rejectFunVal) { resolveFunVal.setObject(*resultCapability.resolve()); rejectFunVal.setObject(*resultCapability.reject()); return true; }; // Step 3-5. return CommonPerformPromiseCombinator(cx, iterator, C, resultCapability.promise(), promiseResolve, done, isDefaultResolveFn, getResolveAndReject); } enum class PromiseAllSettledElementFunctionKind { Resolve, Reject }; // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.2 Promise.allSettled ( iterable ) // // Promise.allSettled Resolve Element Functions // Promise.allSettled Reject Element Functions template static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc, Value* vp); // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.2 Promise.allSettled ( iterable ) // // Promise.allSettled ( iterable ) static bool Promise_static_allSettled(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return CommonPromiseCombinator(cx, args, CombinatorKind::AllSettled); } // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.2 Promise.allSettled ( iterable ) // // PerformPromiseAllSettled ( iteratorRecord, constructor, resultCapability ) static MOZ_MUST_USE bool PerformPromiseAllSettled( JSContext* cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done) { *done = false; // Step 1. MOZ_ASSERT(C->isConstructor()); // Step 2 (omitted). // Step 3. Rooted values(cx); if (!NewPromiseCombinatorElements(cx, resultCapability, &values)) { return false; } // Step 4. // Create our data holder that holds all the things shared across every step // of the iterator. In particular, this holds the remainingElementsCount // (as an integer reserved slot), the array of values, and the resolve // function from our PromiseCapability. Rooted dataHolder(cx); dataHolder = PromiseCombinatorDataHolder::New(cx, resultCapability.promise(), values, resultCapability.resolve()); if (!dataHolder) { return false; } // Step 5. uint32_t index = 0; auto getResolveAndReject = [cx, &values, &dataHolder, &index]( MutableHandleValue resolveFunVal, MutableHandleValue rejectFunVal) { // Step 8.h. if (!values.pushUndefined(cx)) { return false; } auto PromiseAllSettledResolveElementFunction = PromiseAllSettledElementFunction< PromiseAllSettledElementFunctionKind::Resolve>; auto PromiseAllSettledRejectElementFunction = PromiseAllSettledElementFunction< PromiseAllSettledElementFunctionKind::Reject>; // Steps 8.j-q. JSFunction* resolveFunc = NewPromiseCombinatorElementFunction( cx, PromiseAllSettledResolveElementFunction, dataHolder, index); if (!resolveFunc) { return false; } resolveFunVal.setObject(*resolveFunc); // Steps 8.r-x. JSFunction* rejectFunc = NewPromiseCombinatorElementFunction( cx, PromiseAllSettledRejectElementFunction, dataHolder, index); if (!rejectFunc) { return false; } rejectFunVal.setObject(*rejectFunc); // Step 6.y. dataHolder->increaseRemainingCount(); // Step 6.aa. index++; MOZ_ASSERT(index > 0); return true; }; // Step 5-6 and 8. if (!CommonPerformPromiseCombinator(cx, iterator, C, resultCapability.promise(), promiseResolve, done, true, getResolveAndReject)) { return false; } // Step 8.d.ii. int32_t remainingCount = dataHolder->decreaseRemainingCount(); // Steps 8.d.iii-iv. if (remainingCount == 0) { return RunResolutionFunction(cx, resultCapability.resolve(), values.value(), ResolveMode, resultCapability.promise()); } return true; } // ES2020 draft rev e97c95d064750fb949b6778584702dd658cf5624 // 25.6.4.2.2 Promise.allSettled Resolve Element Functions // 25.6.4.2.3 Promise.allSettled Reject Element Functions template static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue valueOrReason = args.get(0); // Steps 1-5. Rooted data(cx); uint32_t index; if (PromiseCombinatorElementFunctionAlreadyCalled(args, &data, &index)) { args.rval().setUndefined(); return true; } // Step 6. Rooted values(cx); if (!GetPromiseCombinatorElements(cx, data, &values)) { return false; } // Steps 2-3. // The already-called check above only handles the case when |this| function // is called repeatedly, so we still need to check if the other pair of this // resolving function was already called: // We use the element value as a signal for whether the Promise was already // fulfilled. Upon resolution, it's set to the result object created below. if (!values.unwrappedArray()->getDenseElement(index).isUndefined()) { args.rval().setUndefined(); return true; } // Steps 7-8 (moved below). // Step 9. RootedPlainObject obj(cx, NewBuiltinClassInstance(cx)); if (!obj) { return false; } // Step 10. RootedId id(cx, NameToId(cx->names().status)); RootedValue statusValue(cx); if (Kind == PromiseAllSettledElementFunctionKind::Resolve) { statusValue.setString(cx->names().fulfilled); } else { statusValue.setString(cx->names().rejected); } if (!::JS_DefinePropertyById(cx, obj, id, statusValue, JSPROP_ENUMERATE)) { return false; } // Step 11. if (Kind == PromiseAllSettledElementFunctionKind::Resolve) { id = NameToId(cx->names().value); } else { id = NameToId(cx->names().reason); } if (!::JS_DefinePropertyById(cx, obj, id, valueOrReason, JSPROP_ENUMERATE)) { return false; } // Steps 4, 12. RootedValue objVal(cx, ObjectValue(*obj)); if (!values.setElement(cx, index, objVal)) { return false; } // Steps 8, 13. uint32_t remainingCount = data->decreaseRemainingCount(); // Step 14. if (remainingCount == 0) { // Step 14.a. (Omitted, happened in PerformPromiseAllSettled.) // Step 14.b. // Step 7 (Adapted to work with PromiseCombinatorDataHolder's layout). RootedObject resolveAllFun(cx, data->resolveOrRejectObj()); RootedObject promiseObj(cx, data->promiseObj()); if (!RunResolutionFunction(cx, resolveAllFun, values.value(), ResolveMode, promiseObj)) { return false; } } // Step 15. args.rval().setUndefined(); return true; } // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // Promise.any ( iterable ) static bool Promise_static_any(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return CommonPromiseCombinator(cx, args, CombinatorKind::Any); } // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // Promise.any Reject Element Functions static bool PromiseAnyRejectElementFunction(JSContext* cx, unsigned argc, Value* vp); // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // ThrowAggregateError ( errors ) static void ThrowAggregateError(JSContext* cx, Handle errors, HandleObject promise); // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // PerformPromiseAny ( iteratorRecord, constructor, resultCapability ) static MOZ_MUST_USE bool PerformPromiseAny(JSContext* cx, PromiseForOfIterator& iterator, HandleObject C, Handle resultCapability, HandleValue promiseResolve, bool* done) { *done = false; // Step 1. MOZ_ASSERT(C->isConstructor()); // Step 2 (omitted). // Step 3. Rooted errors(cx); if (!NewPromiseCombinatorElements(cx, resultCapability, &errors)) { return false; } // Step 4. // Create our data holder that holds all the things shared across every step // of the iterator. In particular, this holds the remainingElementsCount (as // an integer reserved slot), the array of errors, and the reject function // from our PromiseCapability. Rooted dataHolder(cx); dataHolder = PromiseCombinatorDataHolder::New( cx, resultCapability.promise(), errors, resultCapability.reject()); if (!dataHolder) { return false; } // Step 5. uint32_t index = 0; auto getResolveAndReject = [cx, &resultCapability, &errors, &dataHolder, &index](MutableHandleValue resolveFunVal, MutableHandleValue rejectFunVal) { // Step 8.h. if (!errors.pushUndefined(cx)) { return false; } // Steps 8.j-p. JSFunction* rejectFunc = NewPromiseCombinatorElementFunction( cx, PromiseAnyRejectElementFunction, dataHolder, index); if (!rejectFunc) { return false; } // Step 8.q. dataHolder->increaseRemainingCount(); // Step 8.s. index++; MOZ_ASSERT(index > 0); resolveFunVal.setObject(*resultCapability.resolve()); rejectFunVal.setObject(*rejectFunc); return true; }; // BlockOnPromise fast path requires the passed onFulfilled function doesn't // return an object value, because otherwise the skipped promise creation is // detectable due to missing property lookups. bool isDefaultResolveFn = IsNativeFunction(resultCapability.resolve(), ResolvePromiseFunction); // Steps 6-8. if (!CommonPerformPromiseCombinator( cx, iterator, C, resultCapability.promise(), promiseResolve, done, isDefaultResolveFn, getResolveAndReject)) { return false; } // Step 8.d.ii. int32_t remainingCount = dataHolder->decreaseRemainingCount(); // Step 8.d.iii. if (remainingCount == 0) { ThrowAggregateError(cx, errors, resultCapability.promise()); return false; } // Step 8.d.iv. return true; } // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // Promise.any Reject Element Functions static bool PromiseAnyRejectElementFunction(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue xVal = args.get(0); // Steps 1-5. Rooted data(cx); uint32_t index; if (PromiseCombinatorElementFunctionAlreadyCalled(args, &data, &index)) { args.rval().setUndefined(); return true; } // Step 6. Rooted errors(cx); if (!GetPromiseCombinatorElements(cx, data, &errors)) { return false; } // Step 9. if (!errors.setElement(cx, index, xVal)) { return false; } // Steps 8, 10. uint32_t remainingCount = data->decreaseRemainingCount(); // Step 11. if (remainingCount == 0) { // Step 7 (Adapted to work with PromiseCombinatorDataHolder's layout). RootedObject rejectFun(cx, data->resolveOrRejectObj()); RootedObject promiseObj(cx, data->promiseObj()); ThrowAggregateError(cx, errors, promiseObj); RootedValue reason(cx); if (!MaybeGetAndClearException(cx, &reason)) { return false; } if (!RunResolutionFunction(cx, rejectFun, reason, RejectMode, promiseObj)) { return false; } } // Step 12. args.rval().setUndefined(); return true; } // Promise.any (Stage 3 proposal) // https://tc39.es/proposal-promise-any/ // // ThrowAggregateError ( errors ) static void ThrowAggregateError(JSContext* cx, Handle errors, HandleObject promise) { MOZ_ASSERT(!cx->isExceptionPending()); // Create the AggregateError in the same compartment as the array object. AutoCompartment ac(cx, errors.unwrappedArray()); RootedObject allocationSite(cx); mozilla::Maybe asyncStack; // Provide a more useful error stack if possible: This function is typically // called from Promise job queue, which doesn't have any JS frames on the // stack. So when we create the AggregateError below, its stack property will // be set to the empty string, which makes it harder to debug the error cause. // To avoid this situation set-up an async stack based on the Promise // allocation site, which should point to calling site of |Promise.any|. if (promise->is()) { allocationSite = promise->as().allocationSite(); if (allocationSite) { asyncStack.emplace( cx, allocationSite, "Promise.any", JS::AutoSetAsyncStackForNewCalls::AsyncCallKind::IMPLICIT); } } // AutoSetAsyncStackForNewCalls requires a new activation before it takes // effect, so call into the self-hosting helper to set-up new call frames. RootedValue error(cx); if (!GetAggregateError(cx, JSMSG_PROMISE_ANY_REJECTION, &error)) { return; } // |error| isn't guaranteed to be an ErrorObject in case of OOM. RootedSavedFrame stack(cx); if (error.isObject() && error.toObject().is()) { Rooted errorObj(cx, &error.toObject().as()); MOZ_ASSERT(errorObj->type() == JSEXN_AGGREGATEERR); RootedValue errorsVal(cx, JS::ObjectValue(*errors.unwrappedArray())); if (!NativeDefineDataProperty(cx, errorObj, cx->names().errors, errorsVal, 0)) { return; } // Adopt the existing saved frames when present. if (JSObject* errorStack = errorObj->stack()) { stack = &errorStack->as(); } } cx->setPendingException(error, stack); } // https://tc39.github.io/ecma262/#sec-promise.reject // // Unified implementation of // 25.6.4.4 Promise.reject ( r ) // 25.6.4.5 Promise.resolve ( x ) // 25.6.4.5.1 PromiseResolve ( C, x ) static MOZ_MUST_USE JSObject* CommonStaticResolveRejectImpl(JSContext* cx, HandleValue thisVal, HandleValue argVal, ResolutionMode mode) { // Steps 1-2. if (!thisVal.isObject()) { const char* msg = mode == ResolveMode ? "Receiver of Promise.resolve call" : "Receiver of Promise.reject call"; JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_NOT_NONNULL_OBJECT, msg); return nullptr; } RootedObject C(cx, &thisVal.toObject()); // Step 3 of Resolve. if (mode == ResolveMode && argVal.isObject()) { RootedObject xObj(cx, &argVal.toObject()); bool isPromise = false; if (xObj->is()) { isPromise = true; } else if (IsWrapper(xObj)) { // Treat instances of Promise from other compartments as Promises // here, too. // It's important to do the GetProperty for the `constructor` // below through the wrapper, because wrappers can change the // outcome, so instead of unwrapping and then performing the // GetProperty, just check here and then operate on the original // object again. JSObject* unwrappedObject = CheckedUnwrap(xObj); if (unwrappedObject && unwrappedObject->is()) isPromise = true; } if (isPromise) { RootedValue ctorVal(cx); if (!GetProperty(cx, xObj, xObj, cx->names().constructor, &ctorVal)) return nullptr; if (ctorVal == thisVal) return xObj; } } // Step 4 of Resolve, 3 of Reject. Rooted capability(cx); if (!NewPromiseCapability(cx, C, &capability, true)) return nullptr; // Step 5 of Resolve, 4 of Reject. if (!RunResolutionFunction(cx, mode == ResolveMode ? capability.resolve() : capability.reject(), argVal, mode, capability.promise())) { return nullptr; } // Step 6 of Resolve, 4 of Reject. return capability.promise(); } MOZ_MUST_USE JSObject* js::PromiseResolve(JSContext* cx, HandleObject constructor, HandleValue value) { RootedValue C(cx, ObjectValue(*constructor)); return CommonStaticResolveRejectImpl(cx, C, value, ResolveMode); } /** * ES2016, 25.4.4.4, Promise.reject. */ static bool Promise_reject(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue thisVal = args.thisv(); HandleValue argVal = args.get(0); JSObject* result = CommonStaticResolveRejectImpl(cx, thisVal, argVal, RejectMode); if (!result) return false; args.rval().setObject(*result); return true; } /** * Unforgeable version of ES2016, 25.4.4.4, Promise.reject. */ /* static */ JSObject* PromiseObject::unforgeableReject(JSContext* cx, HandleValue value) { JSObject* promiseCtor = JS::GetPromiseConstructor(cx); if (!promiseCtor) return nullptr; RootedValue cVal(cx, ObjectValue(*promiseCtor)); return CommonStaticResolveRejectImpl(cx, cVal, value, RejectMode); } /** * ES2016, 25.4.4.5, Promise.resolve. */ static bool Promise_static_resolve(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue thisVal = args.thisv(); HandleValue argVal = args.get(0); JSObject* result = CommonStaticResolveRejectImpl(cx, thisVal, argVal, ResolveMode); if (!result) return false; args.rval().setObject(*result); return true; } /** * Unforgeable version of ES2016, 25.4.4.5, Promise.resolve. */ /* static */ JSObject* PromiseObject::unforgeableResolve(JSContext* cx, HandleValue value) { JSObject* promiseCtor = JS::GetPromiseConstructor(cx); if (!promiseCtor) return nullptr; RootedValue cVal(cx, ObjectValue(*promiseCtor)); return CommonStaticResolveRejectImpl(cx, cVal, value, ResolveMode); } /** * ES2016, 25.4.4.6 get Promise [ @@species ] */ static bool Promise_static_species(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); // Step 1: Return the this value. args.rval().set(args.thisv()); return true; } // ES2016, 25.4.5.1, implemented in Promise.js. enum class IncumbentGlobalObject { Yes, No }; static PromiseReactionRecord* NewReactionRecord(JSContext* cx, Handle resultCapability, HandleValue onFulfilled, HandleValue onRejected, IncumbentGlobalObject incumbentGlobalObjectOption) { // Either of the following conditions must be met: // * resultCapability.promise is a PromiseObject // * resultCapability.resolve and resultCapability.resolve are callable // except for Async Generator, there resultPromise can be nullptr. #ifdef DEBUG if (resultCapability.promise() && !resultCapability.promise()->is()) { MOZ_ASSERT(resultCapability.resolve()); MOZ_ASSERT(IsCallable(resultCapability.resolve())); MOZ_ASSERT(resultCapability.reject()); MOZ_ASSERT(IsCallable(resultCapability.reject())); } #endif // Ensure the onFulfilled handler has the expected type. MOZ_ASSERT(onFulfilled.isInt32() || onFulfilled.isObjectOrNull()); MOZ_ASSERT_IF(onFulfilled.isObject(), IsCallable(onFulfilled)); MOZ_ASSERT_IF(onFulfilled.isInt32(), 0 <= onFulfilled.toInt32() && onFulfilled.toInt32() < PromiseHandlerLimit); // Ensure the onRejected handler has the expected type. MOZ_ASSERT(onRejected.isInt32() || onRejected.isObjectOrNull()); MOZ_ASSERT_IF(onRejected.isObject(), IsCallable(onRejected)); MOZ_ASSERT_IF(onRejected.isInt32(), 0 <= onRejected.toInt32() && onRejected.toInt32() < PromiseHandlerLimit); // Handlers must either both be present or both be absent. MOZ_ASSERT(onFulfilled.isNull() == onRejected.isNull()); RootedObject incumbentGlobalObject(cx); if (incumbentGlobalObjectOption == IncumbentGlobalObject::Yes) { if (!GetObjectFromIncumbentGlobal(cx, &incumbentGlobalObject)) return nullptr; } PromiseReactionRecord* reaction = NewObjectWithClassProto(cx); if (!reaction) return nullptr; assertSameCompartment(cx, resultCapability.promise()); assertSameCompartment(cx, onFulfilled); assertSameCompartment(cx, onRejected); assertSameCompartment(cx, resultCapability.resolve()); assertSameCompartment(cx, resultCapability.reject()); assertSameCompartment(cx, incumbentGlobalObject); reaction->setFixedSlot(ReactionRecordSlot_Promise, ObjectOrNullValue(resultCapability.promise())); reaction->setFixedSlot(ReactionRecordSlot_Flags, Int32Value(0)); reaction->setFixedSlot(ReactionRecordSlot_OnFulfilled, onFulfilled); reaction->setFixedSlot(ReactionRecordSlot_OnRejected, onRejected); reaction->setFixedSlot(ReactionRecordSlot_Resolve, ObjectOrNullValue(resultCapability.resolve())); reaction->setFixedSlot(ReactionRecordSlot_Reject, ObjectOrNullValue(resultCapability.reject())); reaction->setFixedSlot(ReactionRecordSlot_IncumbentGlobalObject, ObjectOrNullValue(incumbentGlobalObject)); return reaction; } static bool IsPromiseSpecies(JSContext* cx, JSFunction* species) { return species->maybeNative() == Promise_static_species; } static bool PromiseThenNewPromiseCapability(JSContext* cx, HandleObject promiseObj, CreateDependentPromise createDependent, MutableHandle resultCapability) { if (createDependent != CreateDependentPromise::Never) { // Step 3. RootedObject C(cx, SpeciesConstructor(cx, promiseObj, JSProto_Promise, IsPromiseSpecies)); if (!C) return false; if (createDependent == CreateDependentPromise::Always || !IsNativeFunction(C, PromiseConstructor)) { // Step 4. if (!NewPromiseCapability(cx, C, resultCapability, true)) return false; } } return true; } // ES2016, 25.4.5.3., steps 3-5. MOZ_MUST_USE bool js::OriginalPromiseThen(JSContext* cx, Handle promise, HandleValue onFulfilled, HandleValue onRejected, MutableHandleObject dependent, CreateDependentPromise createDependent) { RootedObject promiseObj(cx, promise); if (promise->compartment() != cx->compartment()) { if (!cx->compartment()->wrap(cx, &promiseObj)) return false; } // Steps 3-4. Rooted resultCapability(cx); if (!PromiseThenNewPromiseCapability(cx, promiseObj, createDependent, &resultCapability)) return false; // Step 5. if (!PerformPromiseThen(cx, promise, onFulfilled, onRejected, resultCapability)) return false; dependent.set(resultCapability.promise()); return true; } static MOZ_MUST_USE bool OriginalPromiseThenWithoutSettleHandlers(JSContext* cx, Handle promise, Handle promiseToResolve) { assertSameCompartment(cx, promise); // Steps 3-4. Rooted resultCapability(cx); if (!PromiseThenNewPromiseCapability(cx, promise, CreateDependentPromise::SkipIfCtorUnobservable, &resultCapability)) { return false; } // Step 5. return PerformPromiseThenWithoutSettleHandlers(cx, promise, promiseToResolve, resultCapability); } static bool CanCallOriginalPromiseThenBuiltin(JSContext* cx, HandleValue promise) { return promise.isObject() && promise.toObject().is() && cx->compartment()->promiseLookup.isDefaultInstance(cx, &promise.toObject().as()); } // ES2016, 25.4.5.3., steps 3-5. static bool OriginalPromiseThenBuiltin(JSContext* cx, HandleValue promiseVal, HandleValue onFulfilled, HandleValue onRejected, MutableHandleValue rval, bool rvalUsed) { assertSameCompartment(cx, promiseVal, onFulfilled, onRejected); MOZ_ASSERT(CanCallOriginalPromiseThenBuiltin(cx, promiseVal)); Rooted promise(cx, &promiseVal.toObject().as()); // Steps 3-4. Rooted resultCapability(cx); if (rvalUsed) { PromiseObject* resultPromise = CreatePromiseObjectWithoutResolutionFunctions(cx); if (!resultPromise) return false; resultCapability.promise().set(resultPromise); } // Step 5. if (!PerformPromiseThen(cx, promise, onFulfilled, onRejected, resultCapability)) return false; if (rvalUsed) rval.setObject(*resultCapability.promise()); else rval.setUndefined(); return true; } MOZ_MUST_USE bool js::RejectPromiseWithPendingError(JSContext* cx, Handle promise) { // Not much we can do about uncatchable exceptions, just bail. RootedValue exn(cx); if (!GetAndClearException(cx, &exn)) return false; return PromiseObject::reject(cx, promise, exn); } static MOZ_MUST_USE bool PerformPromiseThenWithReaction(JSContext* cx, Handle promise, Handle reaction); // Some async/await functions are implemented here instead of // js/src/builtin/AsyncFunction.cpp, to call Promise internal functions. // ES 2018 draft 14.6.11 and 14.7.14 step 1. MOZ_MUST_USE PromiseObject* js::CreatePromiseObjectForAsync(JSContext* cx, HandleValue generatorVal) { // Step 1. Rooted promise(cx, CreatePromiseObjectWithoutResolutionFunctions(cx)); if (!promise) return nullptr; AddPromiseFlags(*promise, PROMISE_FLAG_ASYNC); promise->setFixedSlot(PromiseSlot_AwaitGenerator, generatorVal); return promise; } bool js::IsPromiseForAsync(JSObject* promise) { return promise->is() && PromiseHasAnyFlag(promise->as(), PROMISE_FLAG_ASYNC); } // ES 2018 draft 25.5.5.2 steps 3.f, 3.g. MOZ_MUST_USE bool js::AsyncFunctionThrown(JSContext* cx, Handle resultPromise) { // Step 3.f. RootedValue exc(cx); if (!MaybeGetAndClearException(cx, &exc)) return false; if (!RejectPromiseInternal(cx, resultPromise, exc)) return false; // Step 3.g. return true; } // ES 2018 draft 25.5.5.2 steps 3.d-e, 3.g. MOZ_MUST_USE bool js::AsyncFunctionReturned(JSContext* cx, Handle resultPromise, HandleValue value) { // Steps 3.d-e. if (!ResolvePromiseInternal(cx, resultPromise, value)) return false; // Step 3.g. return true; } // Helper function that performs the equivalent steps as // Async Iteration proposal 4.1 Await steps 2-3, 6-9 or similar. template static MOZ_MUST_USE bool InternalAwait(JSContext* cx, HandleValue value, HandleObject resultPromise, HandleValue onFulfilled, HandleValue onRejected, T extraStep) { MOZ_ASSERT(onFulfilled.isInt32()); MOZ_ASSERT(onRejected.isInt32()); // Step 2. Rooted promise(cx, CreatePromiseObjectWithoutResolutionFunctions(cx)); if (!promise) return false; // Step 3. if (!ResolvePromiseInternal(cx, promise, value)) return false; // Steps 7-8. Rooted resultCapability(cx); resultCapability.promise().set(resultPromise); Rooted reaction(cx, NewReactionRecord(cx, resultCapability, onFulfilled, onRejected, IncumbentGlobalObject::Yes)); if (!reaction) return false; // Step 6. extraStep(reaction); // Step 9. return PerformPromiseThenWithReaction(cx, promise, reaction); } // ES 2018 draft 25.5.5.3 steps 2-10. MOZ_MUST_USE bool js::AsyncFunctionAwait(JSContext* cx, Handle resultPromise, HandleValue value) { // Steps 4-5. RootedValue onFulfilled(cx, Int32Value(PromiseHandlerAsyncFunctionAwaitedFulfilled)); RootedValue onRejected(cx, Int32Value(PromiseHandlerAsyncFunctionAwaitedRejected)); // Steps 2-3, 6-10. auto extra = [](Handle reaction) { reaction->setIsAsyncFunction(); }; return InternalAwait(cx, value, resultPromise, onFulfilled, onRejected, extra); } // Async Iteration proposal 4.1 Await steps 2-9. MOZ_MUST_USE bool js::AsyncGeneratorAwait(JSContext* cx, Handle asyncGenObj, HandleValue value) { // Steps 4-5. RootedValue onFulfilled(cx, Int32Value(PromiseHandlerAsyncGeneratorAwaitedFulfilled)); RootedValue onRejected(cx, Int32Value(PromiseHandlerAsyncGeneratorAwaitedRejected)); // Steps 2-3, 6-9. auto extra = [&](Handle reaction) { reaction->setIsAsyncGenerator(asyncGenObj); }; return InternalAwait(cx, value, nullptr, onFulfilled, onRejected, extra); } // Async Iteration proposal 11.1.3.2.1 %AsyncFromSyncIteratorPrototype%.next // Async Iteration proposal 11.1.3.2.2 %AsyncFromSyncIteratorPrototype%.return // Async Iteration proposal 11.1.3.2.3 %AsyncFromSyncIteratorPrototype%.throw bool js::AsyncFromSyncIteratorMethod(JSContext* cx, CallArgs& args, CompletionKind completionKind) { // Step 1. HandleValue thisVal = args.thisv(); // Step 2. Rooted resultPromise(cx, CreatePromiseObjectWithoutResolutionFunctions(cx)); if (!resultPromise) return false; // Step 3. if (!thisVal.isObject() || !thisVal.toObject().is()) { // Step 3.a. RootedValue badGeneratorError(cx); if (!GetTypeError(cx, JSMSG_NOT_AN_ASYNC_ITERATOR, &badGeneratorError)) return false; // Step 3.b. if (!RejectPromiseInternal(cx, resultPromise, badGeneratorError)) return false; // Step 3.c. args.rval().setObject(*resultPromise); return true; } Rooted asyncIter( cx, &thisVal.toObject().as()); // Step 4. RootedObject iter(cx, asyncIter->iterator()); RootedValue func(cx); if (completionKind == CompletionKind::Normal) { // 11.1.3.2.1 steps 5-6 (partially). if (!GetProperty(cx, iter, iter, cx->names().next, &func)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); } else if (completionKind == CompletionKind::Return) { // 11.1.3.2.2 steps 5-6. if (!GetProperty(cx, iter, iter, cx->names().return_, &func)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // Step 7. if (func.isNullOrUndefined()) { // Step 7.a. JSObject* resultObj = CreateIterResultObject(cx, args.get(0), true); if (!resultObj) return AbruptRejectPromise(cx, args, resultPromise, nullptr); RootedValue resultVal(cx, ObjectValue(*resultObj)); // Step 7.b. if (!ResolvePromiseInternal(cx, resultPromise, resultVal)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // Step 7.c. args.rval().setObject(*resultPromise); return true; } } else { // 11.1.3.2.3 steps 5-6. MOZ_ASSERT(completionKind == CompletionKind::Throw); if (!GetProperty(cx, iter, iter, cx->names().throw_, &func)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // Step 7. if (func.isNullOrUndefined()) { // Step 7.a. if (!RejectPromiseInternal(cx, resultPromise, args.get(0))) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // Step 7.b. args.rval().setObject(*resultPromise); return true; } } // 11.1.3.2.1 steps 5-6 (partially). // 11.1.3.2.2, 11.1.3.2.3 steps 8-9. RootedValue iterVal(cx, ObjectValue(*iter)); RootedValue resultVal(cx); if (!Call(cx, func, iterVal, args.get(0), &resultVal)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // 11.1.3.2.1 steps 5-6 (partially). // 11.1.3.2.2, 11.1.3.2.3 steps 10. if (!resultVal.isObject()) { CheckIsObjectKind kind; switch (completionKind) { case CompletionKind::Normal: kind = CheckIsObjectKind::IteratorNext; break; case CompletionKind::Throw: kind = CheckIsObjectKind::IteratorThrow; break; case CompletionKind::Return: kind = CheckIsObjectKind::IteratorReturn; break; } MOZ_ALWAYS_FALSE(ThrowCheckIsObject(cx, kind)); return AbruptRejectPromise(cx, args, resultPromise, nullptr); } RootedObject resultObj(cx, &resultVal.toObject()); // Following step numbers are for 11.1.3.2.1. // For 11.1.3.2.2 and 11.1.3.2.3, steps 7-16 corresponds to steps 11-20. // Steps 7-8. RootedValue doneVal(cx); if (!GetProperty(cx, resultObj, resultObj, cx->names().done, &doneVal)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); bool done = ToBoolean(doneVal); // Steps 9-10. RootedValue value(cx); if (!GetProperty(cx, resultObj, resultObj, cx->names().value, &value)) return AbruptRejectPromise(cx, args, resultPromise, nullptr); // Steps 13-14. RootedValue onFulfilled(cx, Int32Value(done ? PromiseHandlerAsyncFromSyncIteratorValueUnwrapDone : PromiseHandlerAsyncFromSyncIteratorValueUnwrapNotDone)); RootedValue onRejected(cx, Int32Value(PromiseHandlerThrower)); // Steps 11-12, 15. auto extra = [](Handle reaction) { }; if (!InternalAwait(cx, value, resultPromise, onFulfilled, onRejected, extra)) return false; // Step 16. args.rval().setObject(*resultPromise); return true; } enum class ResumeNextKind { Enqueue, Reject, Resolve }; static MOZ_MUST_USE bool AsyncGeneratorResumeNext(JSContext* cx, Handle asyncGenObj, ResumeNextKind kind, HandleValue valueOrException = UndefinedHandleValue, bool done = false); // Async Iteration proposal 11.4.3.3. MOZ_MUST_USE bool js::AsyncGeneratorResolve(JSContext* cx, Handle asyncGenObj, HandleValue value, bool done) { return AsyncGeneratorResumeNext(cx, asyncGenObj, ResumeNextKind::Resolve, value, done); } // Async Iteration proposal 11.4.3.4. MOZ_MUST_USE bool js::AsyncGeneratorReject(JSContext* cx, Handle asyncGenObj, HandleValue exception) { return AsyncGeneratorResumeNext(cx, asyncGenObj, ResumeNextKind::Reject, exception); } // Async Iteration proposal 11.4.3.5. static MOZ_MUST_USE bool AsyncGeneratorResumeNext(JSContext* cx, Handle asyncGenObj, ResumeNextKind kind, HandleValue valueOrException_ /* = UndefinedHandleValue */, bool done /* = false */) { RootedValue valueOrException(cx, valueOrException_); while (true) { switch (kind) { case ResumeNextKind::Enqueue: // No further action required. break; case ResumeNextKind::Reject: { // 11.4.3.4 AsyncGeneratorReject ( generator, exception ) HandleValue exception = valueOrException; // Step 1 (implicit). // Steps 2-3. MOZ_ASSERT(!asyncGenObj->isQueueEmpty()); // Step 4. AsyncGeneratorRequest* request = AsyncGeneratorObject::dequeueRequest(cx, asyncGenObj); if (!request) return false; // Step 5. Rooted resultPromise(cx, request->promise()); asyncGenObj->cacheRequest(request); // Step 6. if (!RejectPromiseInternal(cx, resultPromise, exception)) return false; // Steps 7-8. break; } case ResumeNextKind::Resolve: { // 11.4.3.3 AsyncGeneratorResolve ( generator, value, done ) HandleValue value = valueOrException; // Step 1 (implicit). // Steps 2-3. MOZ_ASSERT(!asyncGenObj->isQueueEmpty()); // Step 4. AsyncGeneratorRequest* request = AsyncGeneratorObject::dequeueRequest(cx, asyncGenObj); if (!request) return false; // Step 5. Rooted resultPromise(cx, request->promise()); asyncGenObj->cacheRequest(request); // Step 6. JSObject* resultObj = CreateIterResultObject(cx, value, done); if (!resultObj) return false; RootedValue resultValue(cx, ObjectValue(*resultObj)); // Step 7. if (!ResolvePromiseInternal(cx, resultPromise, resultValue)) return false; // Steps 8-9. break; } } // Step 1 (implicit). // Steps 2-3. MOZ_ASSERT(!asyncGenObj->isExecuting()); // Step 4. if (asyncGenObj->isAwaitingYieldReturn() || asyncGenObj->isAwaitingReturn()) return true; // Steps 5-6. if (asyncGenObj->isQueueEmpty()) return true; // Steps 7-8. Rooted request( cx, AsyncGeneratorObject::peekRequest(cx, asyncGenObj)); if (!request) return false; // Step 9. CompletionKind completionKind = request->completionKind(); // Step 10. if (completionKind != CompletionKind::Normal) { // Step 10.a. if (asyncGenObj->isSuspendedStart()) asyncGenObj->setCompleted(); // Step 10.b. if (asyncGenObj->isCompleted()) { RootedValue value(cx, request->completionValue()); // Step 10.b.i. if (completionKind == CompletionKind::Return) { // Steps 10.b.i.1. asyncGenObj->setAwaitingReturn(); // Steps 10.b.i.4-6 (reordered). static constexpr int32_t ResumeNextReturnFulfilled = PromiseHandlerAsyncGeneratorResumeNextReturnFulfilled; static constexpr int32_t ResumeNextReturnRejected = PromiseHandlerAsyncGeneratorResumeNextReturnRejected; RootedValue onFulfilled(cx, Int32Value(ResumeNextReturnFulfilled)); RootedValue onRejected(cx, Int32Value(ResumeNextReturnRejected)); // Steps 10.b.i.2-3, 7-10. auto extra = [&](Handle reaction) { reaction->setIsAsyncGenerator(asyncGenObj); }; return InternalAwait(cx, value, nullptr, onFulfilled, onRejected, extra); } // Step 10.b.ii.1. MOZ_ASSERT(completionKind == CompletionKind::Throw); // Steps 10.b.ii.2-3. kind = ResumeNextKind::Reject; valueOrException.set(value); // |done| is unused for ResumeNextKind::Reject. continue; } } else if (asyncGenObj->isCompleted()) { // Step 11. kind = ResumeNextKind::Resolve; valueOrException.setUndefined(); done = true; continue; } // Step 12. MOZ_ASSERT(asyncGenObj->isSuspendedStart() || asyncGenObj->isSuspendedYield()); // Step 16 (reordered). asyncGenObj->setExecuting(); RootedValue argument(cx, request->completionValue()); if (completionKind == CompletionKind::Return) { // 11.4.3.7 AsyncGeneratorYield step 8.b-e. // Since we don't have the place that handles return from yield // inside the generator, handle the case here, with extra state // State_AwaitingYieldReturn. asyncGenObj->setAwaitingYieldReturn(); static constexpr int32_t YieldReturnAwaitedFulfilled = PromiseHandlerAsyncGeneratorYieldReturnAwaitedFulfilled; static constexpr int32_t YieldReturnAwaitedRejected = PromiseHandlerAsyncGeneratorYieldReturnAwaitedRejected; RootedValue onFulfilled(cx, Int32Value(YieldReturnAwaitedFulfilled)); RootedValue onRejected(cx, Int32Value(YieldReturnAwaitedRejected)); auto extra = [&](Handle reaction) { reaction->setIsAsyncGenerator(asyncGenObj); }; return InternalAwait(cx, argument, nullptr, onFulfilled, onRejected, extra); } // Steps 13-15, 17-21. return AsyncGeneratorResume(cx, asyncGenObj, completionKind, argument); } } // Async Iteration proposal 11.4.3.6. MOZ_MUST_USE bool js::AsyncGeneratorEnqueue(JSContext* cx, HandleValue asyncGenVal, CompletionKind completionKind, HandleValue completionValue, MutableHandleValue result) { // Step 1 (implicit). // Step 2. Rooted resultPromise(cx, CreatePromiseObjectWithoutResolutionFunctions(cx)); if (!resultPromise) return false; // Step 3. if (!asyncGenVal.isObject() || !asyncGenVal.toObject().is()) { // Step 3.a. RootedValue badGeneratorError(cx); if (!GetTypeError(cx, JSMSG_NOT_AN_ASYNC_GENERATOR, &badGeneratorError)) return false; // Step 3.b. if (!RejectPromiseInternal(cx, resultPromise, badGeneratorError)) return false; // Step 3.c. result.setObject(*resultPromise); return true; } Rooted asyncGenObj( cx, &asyncGenVal.toObject().as()); // Step 5 (reordered). Rooted request( cx, AsyncGeneratorObject::createRequest(cx, asyncGenObj, completionKind, completionValue, resultPromise)); if (!request) return false; // Steps 4, 6. if (!AsyncGeneratorObject::enqueueRequest(cx, asyncGenObj, request)) return false; // Step 7. if (!asyncGenObj->isExecuting()) { // Step 8. if (!AsyncGeneratorResumeNext(cx, asyncGenObj, ResumeNextKind::Enqueue)) return false; } // Step 9. result.setObject(*resultPromise); return true; } static bool Promise_catch_impl(JSContext* cx, unsigned argc, Value* vp, bool rvalUsed) { CallArgs args = CallArgsFromVp(argc, vp); HandleValue thisVal = args.thisv(); HandleValue onFulfilled = UndefinedHandleValue; HandleValue onRejected = args.get(0); // Fast path when the default Promise state is intact. if (CanCallOriginalPromiseThenBuiltin(cx, thisVal)) { return OriginalPromiseThenBuiltin(cx, thisVal, onFulfilled, onRejected, args.rval(), rvalUsed); } // Step 1. RootedValue thenVal(cx); if (!GetProperty(cx, thisVal, cx->names().then, &thenVal)) return false; if (IsNativeFunction(thenVal, &Promise_then)) return Promise_then_impl(cx, thisVal, onFulfilled, onRejected, args.rval(), rvalUsed); return Call(cx, thenVal, thisVal, UndefinedHandleValue, onRejected, args.rval()); } static MOZ_ALWAYS_INLINE bool IsPromiseThenOrCatchRetValImplicitlyUsed(JSContext* cx) { // The returned promise of Promise#then and Promise#catch contains // stack info if async stack is enabled. Even if their return value is not // used explicitly in the script, the stack info is observable in devtools // and profilers. We shouldn't apply the optimization not to allocate the // returned Promise object if the it's implicitly used by them. // // FIXME: Once bug 1280819 gets fixed, we can use ShouldCaptureDebugInfo. if (!cx->options().asyncStack()) return false; // If devtools is opened, the current compartment will become debuggee. if (cx->compartment()->isDebuggee()) return true; // The profiler also makes the call stack observable if (JS::IsProfileTimelineRecordingEnabled()) return true; // The stack is also observable from Error#stack, but we don't care since // it's nonstandard feature. return false; } // ES2016, 25.4.5.3. static bool Promise_catch_noRetVal(JSContext* cx, unsigned argc, Value* vp) { return Promise_catch_impl(cx, argc, vp, IsPromiseThenOrCatchRetValImplicitlyUsed(cx)); } // ES2016, 25.4.5.3. static bool Promise_catch(JSContext* cx, unsigned argc, Value* vp) { return Promise_catch_impl(cx, argc, vp, true); } static bool Promise_then_impl(JSContext* cx, HandleValue promiseVal, HandleValue onFulfilled, HandleValue onRejected, MutableHandleValue rval, bool rvalUsed) { // Step 1 (implicit). // Step 2. if (!promiseVal.isObject()) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_NOT_NONNULL_OBJECT, "Receiver of Promise.prototype.then call"); return false; } // Fast path when the default Promise state is intact. if (CanCallOriginalPromiseThenBuiltin(cx, promiseVal)) return OriginalPromiseThenBuiltin(cx, promiseVal, onFulfilled, onRejected, rval, rvalUsed); RootedObject promiseObj(cx, &promiseVal.toObject()); Rooted promise(cx); if (promiseObj->is()) { promise = &promiseObj->as(); } else { JSObject* unwrappedPromiseObj = CheckedUnwrap(promiseObj); if (!unwrappedPromiseObj) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_UNWRAP_DENIED); return false; } if (!unwrappedPromiseObj->is()) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_INCOMPATIBLE_PROTO, "Promise", "then", "value"); return false; } promise = &unwrappedPromiseObj->as(); } // Steps 3-5. CreateDependentPromise createDependent = rvalUsed ? CreateDependentPromise::Always : CreateDependentPromise::SkipIfCtorUnobservable; RootedObject resultPromise(cx); if (!OriginalPromiseThen(cx, promise, onFulfilled, onRejected, &resultPromise, createDependent)) { return false; } if (rvalUsed) rval.setObject(*resultPromise); else rval.setUndefined(); return true; } // ES2016, 25.4.5.3. bool Promise_then_noRetVal(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return Promise_then_impl(cx, args.thisv(), args.get(0), args.get(1), args.rval(), IsPromiseThenOrCatchRetValImplicitlyUsed(cx)); } // ES2016, 25.4.5.3. static bool Promise_then(JSContext* cx, unsigned argc, Value* vp) { CallArgs args = CallArgsFromVp(argc, vp); return Promise_then_impl(cx, args.thisv(), args.get(0), args.get(1), args.rval(), true); } // ES2016, 25.4.5.3.1. static MOZ_MUST_USE bool PerformPromiseThen(JSContext* cx, Handle promise, HandleValue onFulfilled_, HandleValue onRejected_, Handle resultCapability) { // Step 1 (implicit). // Step 2 (implicit). // Step 3. RootedValue onFulfilled(cx, onFulfilled_); if (!IsCallable(onFulfilled)) onFulfilled = Int32Value(PromiseHandlerIdentity); // Step 4. RootedValue onRejected(cx, onRejected_); if (!IsCallable(onRejected)) onRejected = Int32Value(PromiseHandlerThrower); // Step 7. Rooted reaction(cx, NewReactionRecord(cx, resultCapability, onFulfilled, onRejected, IncumbentGlobalObject::Yes)); if (!reaction) return false; return PerformPromiseThenWithReaction(cx, promise, reaction); } static MOZ_MUST_USE bool PerformPromiseThenWithoutSettleHandlers(JSContext* cx, Handle promise, Handle promiseToResolve, Handle resultCapability) { // Step 1 (implicit). // Step 2 (implicit). // Step 3. HandleValue onFulfilled = NullHandleValue; // Step 4. HandleValue onRejected = NullHandleValue; // Step 7. Rooted reaction(cx, NewReactionRecord(cx, resultCapability, onFulfilled, onRejected, IncumbentGlobalObject::Yes)); if (!reaction) return false; reaction->setIsDefaultResolvingHandler(promiseToResolve); return PerformPromiseThenWithReaction(cx, promise, reaction); } static MOZ_MUST_USE bool PerformPromiseThenWithReaction(JSContext* cx, Handle promise, Handle reaction) { JS::PromiseState state = promise->state(); int32_t flags = promise->flags(); if (state == JS::PromiseState::Pending) { // Steps 5,6 (reordered). // Instead of creating separate reaction records for fulfillment and // rejection, we create a combined record. All places we use the record // can handle that. if (!AddPromiseReaction(cx, promise, reaction)) return false; } // Steps 8,9. else { // Step 9.a. MOZ_ASSERT_IF(state != JS::PromiseState::Fulfilled, state == JS::PromiseState::Rejected); // Step 8.a. / 9.b. RootedValue valueOrReason(cx, promise->valueOrReason()); // We might be operating on a promise from another compartment. In // that case, we need to wrap the result/reason value before using it. if (!cx->compartment()->wrap(cx, &valueOrReason)) return false; // Step 9.c. if (state == JS::PromiseState::Rejected && !(flags & PROMISE_FLAG_HANDLED)) cx->runtime()->removeUnhandledRejectedPromise(cx, promise); // Step 8.b. / 9.d. if (!EnqueuePromiseReactionJob(cx, reaction, valueOrReason, state)) return false; } // Step 10. promise->setFixedSlot(PromiseSlot_Flags, Int32Value(flags | PROMISE_FLAG_HANDLED)); // Step 11. return true; } static MOZ_MUST_USE bool AddPromiseReaction(JSContext* cx, Handle promise, Handle reaction) { RootedValue reactionVal(cx, ObjectValue(*reaction)); // The code that creates Promise reactions can handle wrapped Promises, // unwrapping them as needed. That means that the `promise` and `reaction` // objects we have here aren't necessarily from the same compartment. In // order to store the reaction on the promise, we have to ensure that it // is properly wrapped. mozilla::Maybe ac; if (promise->compartment() != cx->compartment()) { ac.emplace(cx, promise); if (!cx->compartment()->wrap(cx, &reactionVal)) return false; } // 25.4.5.3.1 steps 7.a,b. RootedValue reactionsVal(cx, promise->reactions()); if (reactionsVal.isUndefined()) { // If no reactions existed so far, just store the reaction record directly. promise->setFixedSlot(PromiseSlot_ReactionsOrResult, reactionVal); return true; } RootedObject reactionsObj(cx, &reactionsVal.toObject()); // If only a single reaction exists, it's stored directly instead of in a // list. In that case, `reactionsObj` might be a wrapper, which we can // always safely unwrap. if (IsProxy(reactionsObj)) { reactionsObj = UncheckedUnwrap(reactionsObj); if (JS_IsDeadWrapper(reactionsObj)) { JS_ReportErrorNumberASCII(cx, GetErrorMessage, nullptr, JSMSG_DEAD_OBJECT); return false; } MOZ_ASSERT(reactionsObj->is()); } if (reactionsObj->is()) { // If a single reaction existed so far, create a list and store the // old and the new reaction in it. ArrayObject* reactions = NewDenseFullyAllocatedArray(cx, 2); if (!reactions) return false; reactions->setDenseInitializedLength(2); reactions->initDenseElement(0, reactionsVal); reactions->initDenseElement(1, reactionVal); promise->setFixedSlot(PromiseSlot_ReactionsOrResult, ObjectValue(*reactions)); } else { // Otherwise, just store the new reaction. HandleNativeObject reactions = reactionsObj.as(); uint32_t len = reactions->getDenseInitializedLength(); DenseElementResult result = reactions->ensureDenseElements(cx, len, 1); if (result != DenseElementResult::Success) { MOZ_ASSERT(result == DenseElementResult::Failure); return false; } reactions->setDenseElement(len, reactionVal); } return true; } static MOZ_MUST_USE bool AddDummyPromiseReactionForDebugger(JSContext* cx, Handle promise, HandleObject dependentPromise) { if (promise->state() != JS::PromiseState::Pending) return true; // Leave resolve and reject as null. Rooted capability(cx); capability.promise().set(dependentPromise); Rooted reaction(cx, NewReactionRecord(cx, capability, NullHandleValue, NullHandleValue, IncumbentGlobalObject::No)); if (!reaction) return false; reaction->setIsDebuggerDummy(); return AddPromiseReaction(cx, promise, reaction); } uint64_t PromiseObject::getID() { return PromiseDebugInfo::id(this); } double PromiseObject::lifetime() { return MillisecondsSinceStartup() - allocationTime(); } /** * Returns all promises that directly depend on this one. That means those * created by calling `then` on this promise, or the promise returned by * `Promise.all(iterable)` or `Promise.race(iterable)`, with this promise * being a member of the passed-in `iterable`. * * Per spec, we should have separate lists of reaction records for the * fulfill and reject cases. As an optimization, we have only one of those, * containing the required data for both cases. So we just walk that list * and extract the dependent promises from all reaction records. */ bool PromiseObject::dependentPromises(JSContext* cx, MutableHandle> values) { if (state() != JS::PromiseState::Pending) return true; RootedValue reactionsVal(cx, reactions()); // If no reactions are pending, we don't have list and are done. if (reactionsVal.isNullOrUndefined()) return true; RootedNativeObject reactions(cx, &reactionsVal.toObject().as()); // If only a single reaction is pending, it's stored directly. if (reactions->is()) { // Not all reactions have a Promise on them. RootedObject promiseObj(cx, reactions->as().promise()); if (!promiseObj) return true; if (!values.growBy(1)) return false; values[0].setObject(*promiseObj); return true; } uint32_t len = reactions->getDenseInitializedLength(); MOZ_ASSERT(len >= 2); uint32_t valuesIndex = 0; for (uint32_t i = 0; i < len; i++) { const Value& element = reactions->getDenseElement(i); PromiseReactionRecord* reaction = &element.toObject().as(); // Not all reactions have a Promise on them. RootedObject promiseObj(cx, reaction->promise()); if (!promiseObj) continue; if (!values.growBy(1)) return false; values[valuesIndex++].setObject(*promiseObj); } return true; } /* static */ bool PromiseObject::resolve(JSContext* cx, Handle promise, HandleValue resolutionValue) { MOZ_ASSERT(!PromiseHasAnyFlag(*promise, PROMISE_FLAG_ASYNC)); if (promise->state() != JS::PromiseState::Pending) return true; if (PromiseHasAnyFlag(*promise, PROMISE_FLAG_DEFAULT_RESOLVING_FUNCTIONS)) return ResolvePromiseInternal(cx, promise, resolutionValue); JSFunction* resolveFun = GetResolveFunctionFromPromise(promise); if (!resolveFun) return true; RootedValue funVal(cx, ObjectValue(*resolveFun)); // For xray'd Promises, the resolve fun may have been created in another // compartment. For the call below to work in that case, wrap the // function into the current compartment. if (!cx->compartment()->wrap(cx, &funVal)) return false; RootedValue dummy(cx); return Call(cx, funVal, UndefinedHandleValue, resolutionValue, &dummy); } /* static */ bool PromiseObject::reject(JSContext* cx, Handle promise, HandleValue rejectionValue) { MOZ_ASSERT(!PromiseHasAnyFlag(*promise, PROMISE_FLAG_ASYNC)); if (promise->state() != JS::PromiseState::Pending) return true; if (PromiseHasAnyFlag(*promise, PROMISE_FLAG_DEFAULT_RESOLVING_FUNCTIONS)) return ResolvePromise(cx, promise, rejectionValue, JS::PromiseState::Rejected); RootedValue funVal(cx, promise->getFixedSlot(PromiseSlot_RejectFunction)); MOZ_ASSERT(IsCallable(funVal)); RootedValue dummy(cx); return Call(cx, funVal, UndefinedHandleValue, rejectionValue, &dummy); } /* static */ void PromiseObject::onSettled(JSContext* cx, Handle promise) { PromiseDebugInfo::setResolutionInfo(cx, promise); if (promise->state() == JS::PromiseState::Rejected && promise->isUnhandled()) cx->runtime()->addUnhandledRejectedPromise(cx, promise); JS::dbg::onPromiseSettled(cx, promise); } JSFunction* js::PromiseLookup::getPromiseConstructor(JSContext* cx) { const Value& val = cx->global()->getConstructor(JSProto_Promise); return val.isObject() ? &val.toObject().as() : nullptr; } NativeObject* js::PromiseLookup::getPromisePrototype(JSContext* cx) { const Value& val = cx->global()->getPrototype(JSProto_Promise); return val.isObject() ? &val.toObject().as() : nullptr; } bool js::PromiseLookup::isDataPropertyNative(JSContext* cx, NativeObject* obj, uint32_t slot, JSNative native) { JSFunction* fun; if (!IsFunctionObject(obj->getSlot(slot), &fun)) return false; return fun->maybeNative() == native && fun->compartment() == cx->compartment(); } bool js::PromiseLookup::isAccessorPropertyNative(JSContext* cx, Shape* shape, JSNative native) { JSObject* getter = shape->getterObject(); return getter && IsNativeFunction(getter, native) && getter->as().compartment() == cx->compartment(); } void js::PromiseLookup::initialize(JSContext* cx) { MOZ_ASSERT(state_ == State::Uninitialized); // Get the canonical Promise.prototype. NativeObject* promiseProto = getPromisePrototype(cx); // Check condition 1: // Leave the cache uninitialized if the Promise class itself is not yet // initialized. if (!promiseProto) return; // Get the canonical Promise constructor. JSFunction* promiseCtor = getPromiseConstructor(cx); MOZ_ASSERT(promiseCtor, "The Promise constructor is initialized iff Promise.prototype is initialized"); // Shortcut returns below means Promise[@@species] will never be // optimizable, set to disabled now, and clear it later when we succeed. state_ = State::Disabled; // Check condition 2: // Look up Promise.prototype.constructor and ensure it's a data property. Shape* ctorShape = promiseProto->lookup(cx, cx->names().constructor); if (!ctorShape || !ctorShape->hasSlot()) return; // Get the referred value, and ensure it holds the canonical Promise // constructor. JSFunction* ctorFun; if (!IsFunctionObject(promiseProto->getSlot(ctorShape->slot()), &ctorFun)) return; if (ctorFun != promiseCtor) return; // Check condition 3: // Look up Promise.prototype.then and ensure it's a data property. Shape* thenShape = promiseProto->lookup(cx, cx->names().then); if (!thenShape || !thenShape->hasSlot()) return; // Get the referred value, and ensure it holds the canonical "then" // function. if (!isDataPropertyNative(cx, promiseProto, thenShape->slot(), Promise_then)) return; // Check condition 4: // Look up the '@@species' value on Promise. Shape* speciesShape = promiseCtor->lookup(cx, SYMBOL_TO_JSID(cx->wellKnownSymbols().species)); if (!speciesShape || !speciesShape->hasGetterObject()) return; // Get the referred value, ensure it holds the canonical Promise[@@species] // function. if (!isAccessorPropertyNative(cx, speciesShape, Promise_static_species)) return; // Check condition 5: // Look up Promise.resolve and ensure it's a data property. Shape* resolveShape = promiseCtor->lookup(cx, cx->names().resolve); if (!resolveShape || !resolveShape->hasSlot()) return; // Get the referred value, and ensure it holds the canonical "resolve" // function. if (!isDataPropertyNative(cx, promiseCtor, resolveShape->slot(), Promise_static_resolve)) return; // Store raw pointers below. This is okay to do here, because all objects // are in the tenured heap. MOZ_ASSERT(!IsInsideNursery(promiseCtor->lastProperty())); MOZ_ASSERT(!IsInsideNursery(speciesShape)); MOZ_ASSERT(!IsInsideNursery(promiseProto->lastProperty())); state_ = State::Initialized; promiseConstructorShape_ = promiseCtor->lastProperty(); #ifdef DEBUG promiseSpeciesShape_ = speciesShape; #endif promiseProtoShape_ = promiseProto->lastProperty(); promiseResolveSlot_ = resolveShape->slot(); promiseProtoConstructorSlot_ = ctorShape->slot(); promiseProtoThenSlot_ = thenShape->slot(); } void js::PromiseLookup::reset() { JS_POISON(this, 0xBB, sizeof(this)); state_ = State::Uninitialized; } bool js::PromiseLookup::isPromiseStateStillSane(JSContext* cx) { MOZ_ASSERT(state_ == State::Initialized); NativeObject* promiseProto = getPromisePrototype(cx); MOZ_ASSERT(promiseProto); NativeObject* promiseCtor = getPromiseConstructor(cx); MOZ_ASSERT(promiseCtor); // Ensure that Promise.prototype still has the expected shape. if (promiseProto->lastProperty() != promiseProtoShape_) return false; // Ensure that Promise still has the expected shape. if (promiseCtor->lastProperty() != promiseConstructorShape_) return false; // Ensure that Promise.prototype.constructor is the canonical constructor. if (promiseProto->getSlot(promiseProtoConstructorSlot_) != ObjectValue(*promiseCtor)) return false; // Ensure that Promise.prototype.then is the canonical "then" function. if (!isDataPropertyNative(cx, promiseProto, promiseProtoThenSlot_, Promise_then)) return false; // Ensure the species getter contains the canonical @@species function. // Note: This is currently guaranteed to be always true, because modifying // the getter property implies a new shape is generated. If this ever // changes, convert this assertion into an if-statement. #ifdef DEBUG MOZ_ASSERT(isAccessorPropertyNative(cx, promiseSpeciesShape_, Promise_static_species)); #endif // Ensure that Promise.resolve is the canonical "resolve" function. if (!isDataPropertyNative(cx, promiseCtor, promiseResolveSlot_, Promise_static_resolve)) return false; return true; } bool js::PromiseLookup::ensureInitialized(JSContext* cx, Reinitialize reinitialize) { if (state_ == State::Uninitialized) { // If the cache is not initialized, initialize it. initialize(cx); } else if (state_ == State::Initialized) { if (reinitialize == Reinitialize::Allowed) { if (!isPromiseStateStillSane(cx)) { // If the promise state is no longer sane, reinitialize. reset(); initialize(cx); } } else { // When we're not allowed to reinitialize, the promise state must // still be sane if the cache is already initialized. MOZ_ASSERT(isPromiseStateStillSane(cx)); } } // If the cache is disabled or still uninitialized, don't bother trying to // optimize. if (state_ != State::Initialized) return false; // By the time we get here, we should have a sane promise state. MOZ_ASSERT(isPromiseStateStillSane(cx)); return true; } bool js::PromiseLookup::isDefaultPromiseState(JSContext* cx) { // Promise and Promise.prototype are in their default states iff the // lookup cache was successfully initialized. return ensureInitialized(cx, Reinitialize::Allowed); } bool js::PromiseLookup::hasDefaultProtoAndNoShadowedProperties(JSContext* cx, PromiseObject* promise) { // Ensure |promise|'s prototype is the actual Promise.prototype. if (promise->staticPrototype() != getPromisePrototype(cx)) return false; // Ensure |promise| doesn't define any own properties. This serves as a // quick check to make sure |promise| doesn't define an own "constructor" // or "then" property which may shadow Promise.prototype.constructor or // Promise.prototype.then. return promise->lastProperty()->isEmptyShape(); } bool js::PromiseLookup::isDefaultInstance(JSContext* cx, PromiseObject* promise, Reinitialize reinitialize) { // Promise and Promise.prototype must be in their default states. if (!ensureInitialized(cx, reinitialize)) return false; // The object uses the default properties from Promise.prototype. return hasDefaultProtoAndNoShadowedProperties(cx, promise); } PromiseTask::PromiseTask(JSContext* cx, Handle promise) : runtime_(cx), promise_(cx, promise) {} PromiseTask::~PromiseTask() { MOZ_ASSERT(CurrentThreadCanAccessZone(promise_->zone())); } void PromiseTask::finish(JSContext* cx) { MOZ_ASSERT(cx == runtime_); { // We can't leave a pending exception when returning to the caller so do // the same thing as Gecko, which is to ignore the error. This should // only happen due to OOM or interruption. AutoCompartment ac(cx, promise_); if (!finishPromise(cx, promise_)) cx->clearPendingException(); } js_delete(this); } void PromiseTask::cancel(JSContext* cx) { MOZ_ASSERT(cx == runtime_); js_delete(this); } bool PromiseTask::executeAndFinish(JSContext* cx) { MOZ_ASSERT(!CanUseExtraThreads()); execute(); return finishPromise(cx, promise_); } static JSObject* CreatePromisePrototype(JSContext* cx, JSProtoKey key) { return GlobalObject::createBlankPrototype(cx, cx->global(), &PromiseObject::protoClass_); } const JSJitInfo promise_then_info = { { (JSJitGetterOp)Promise_then_noRetVal }, { 0 }, /* unused */ { 0 }, /* unused */ JSJitInfo::IgnoresReturnValueNative, JSJitInfo::AliasEverything, JSVAL_TYPE_UNDEFINED, }; const JSJitInfo promise_catch_info = { { (JSJitGetterOp)Promise_catch_noRetVal }, { 0 }, /* unused */ { 0 }, /* unused */ JSJitInfo::IgnoresReturnValueNative, JSJitInfo::AliasEverything, JSVAL_TYPE_UNDEFINED, }; static const JSFunctionSpec promise_methods[] = { JS_FNINFO("then", Promise_then, &promise_then_info, 2, 0), JS_FNINFO("catch", Promise_catch, &promise_catch_info, 1, 0), JS_SELF_HOSTED_FN("finally", "Promise_finally", 1, 0), JS_FS_END }; static const JSPropertySpec promise_properties[] = { JS_STRING_SYM_PS(toStringTag, "Promise", JSPROP_READONLY), JS_PS_END }; static const JSFunctionSpec promise_static_methods[] = { JS_FN("all", Promise_static_all, 1, 0), JS_FN("allSettled", Promise_static_allSettled, 1, 0), JS_FN("any", Promise_static_any, 1, 0), JS_FN("race", Promise_static_race, 1, 0), JS_FN("reject", Promise_reject, 1, 0), JS_FN("resolve", Promise_static_resolve, 1, 0), JS_FS_END }; static const JSPropertySpec promise_static_properties[] = { JS_SYM_GET(species, Promise_static_species, 0), JS_PS_END }; static const ClassSpec PromiseObjectClassSpec = { GenericCreateConstructor, CreatePromisePrototype, promise_static_methods, promise_static_properties, promise_methods, promise_properties }; const Class PromiseObject::class_ = { "Promise", JSCLASS_HAS_RESERVED_SLOTS(RESERVED_SLOTS) | JSCLASS_HAS_CACHED_PROTO(JSProto_Promise) | JSCLASS_HAS_XRAYED_CONSTRUCTOR, JS_NULL_CLASS_OPS, &PromiseObjectClassSpec }; static const ClassSpec PromiseObjectProtoClassSpec = { DELEGATED_CLASSSPEC(PromiseObject::class_.spec), nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, ClassSpec::IsDelegated }; const Class PromiseObject::protoClass_ = { "PromiseProto", JSCLASS_HAS_CACHED_PROTO(JSProto_Promise), JS_NULL_CLASS_OPS, &PromiseObjectProtoClassSpec };