diff options
Diffstat (limited to 'media/libjxl/src/lib/jxl/rational_polynomial-inl.h')
-rw-r--r-- | media/libjxl/src/lib/jxl/rational_polynomial-inl.h | 94 |
1 files changed, 94 insertions, 0 deletions
diff --git a/media/libjxl/src/lib/jxl/rational_polynomial-inl.h b/media/libjxl/src/lib/jxl/rational_polynomial-inl.h new file mode 100644 index 0000000000..87bddd1bb2 --- /dev/null +++ b/media/libjxl/src/lib/jxl/rational_polynomial-inl.h @@ -0,0 +1,94 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +// Fast SIMD evaluation of rational polynomials for approximating functions. + +#if defined(LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_) == defined(HWY_TARGET_TOGGLE) +#ifdef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_ +#undef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_ +#else +#define LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_ +#endif + +#include <stddef.h> + +#include <hwy/highway.h> +HWY_BEFORE_NAMESPACE(); +namespace jxl { +namespace HWY_NAMESPACE { +namespace { + +// Primary template: default to actual division. +template <typename T, class V> +struct FastDivision { + HWY_INLINE V operator()(const V n, const V d) const { return n / d; } +}; +// Partial specialization for float vectors. +template <class V> +struct FastDivision<float, V> { + // One Newton-Raphson iteration. + static HWY_INLINE V ReciprocalNR(const V x) { + const auto rcp = ApproximateReciprocal(x); + const auto sum = rcp + rcp; + const auto x_rcp = x * rcp; + return NegMulAdd(x_rcp, rcp, sum); + } + + V operator()(const V n, const V d) const { +#if 1 // Faster on SKX + return n / d; +#else + return n * ReciprocalNR(d); +#endif + } +}; + +// Approximates smooth functions via rational polynomials (i.e. dividing two +// polynomials). Evaluates polynomials via Horner's scheme, which is faster than +// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to +// specify constants (replicated 4x) independently of the lane count. +template <size_t NP, size_t NQ, class D, class V, typename T> +HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x, + const T (&p)[NP], + const T (&q)[NQ]) { + constexpr size_t kDegP = NP / 4 - 1; + constexpr size_t kDegQ = NQ / 4 - 1; + auto yp = LoadDup128(d, &p[kDegP * 4]); + auto yq = LoadDup128(d, &q[kDegQ * 4]); + // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a + // compiler warning that the index is out of bounds since we are already + // checking that it is not out of bounds with (kDegP >= n) and the access + // will be optimized away. Similarly with q and kDegQ. + HWY_FENCE; + if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4))); + if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4))); + HWY_FENCE; + if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4))); + if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4))); + HWY_FENCE; + if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4))); + if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4))); + HWY_FENCE; + if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4))); + if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4))); + HWY_FENCE; + if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4))); + if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4))); + HWY_FENCE; + if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4))); + if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4))); + HWY_FENCE; + if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4))); + if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4))); + + return FastDivision<T, V>()(yp, yq); +} + +} // namespace +// NOLINTNEXTLINE(google-readability-namespace-comments) +} // namespace HWY_NAMESPACE +} // namespace jxl +HWY_AFTER_NAMESPACE(); +#endif // LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_ |