summaryrefslogtreecommitdiff
path: root/media/libjxl/src/lib/jxl/rational_polynomial-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjxl/src/lib/jxl/rational_polynomial-inl.h')
-rw-r--r--media/libjxl/src/lib/jxl/rational_polynomial-inl.h94
1 files changed, 94 insertions, 0 deletions
diff --git a/media/libjxl/src/lib/jxl/rational_polynomial-inl.h b/media/libjxl/src/lib/jxl/rational_polynomial-inl.h
new file mode 100644
index 0000000000..87bddd1bb2
--- /dev/null
+++ b/media/libjxl/src/lib/jxl/rational_polynomial-inl.h
@@ -0,0 +1,94 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Fast SIMD evaluation of rational polynomials for approximating functions.
+
+#if defined(LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_) == defined(HWY_TARGET_TOGGLE)
+#ifdef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
+#undef LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
+#else
+#define LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_
+#endif
+
+#include <stddef.h>
+
+#include <hwy/highway.h>
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+namespace {
+
+// Primary template: default to actual division.
+template <typename T, class V>
+struct FastDivision {
+ HWY_INLINE V operator()(const V n, const V d) const { return n / d; }
+};
+// Partial specialization for float vectors.
+template <class V>
+struct FastDivision<float, V> {
+ // One Newton-Raphson iteration.
+ static HWY_INLINE V ReciprocalNR(const V x) {
+ const auto rcp = ApproximateReciprocal(x);
+ const auto sum = rcp + rcp;
+ const auto x_rcp = x * rcp;
+ return NegMulAdd(x_rcp, rcp, sum);
+ }
+
+ V operator()(const V n, const V d) const {
+#if 1 // Faster on SKX
+ return n / d;
+#else
+ return n * ReciprocalNR(d);
+#endif
+ }
+};
+
+// Approximates smooth functions via rational polynomials (i.e. dividing two
+// polynomials). Evaluates polynomials via Horner's scheme, which is faster than
+// Clenshaw recurrence for Chebyshev polynomials. LoadDup128 allows us to
+// specify constants (replicated 4x) independently of the lane count.
+template <size_t NP, size_t NQ, class D, class V, typename T>
+HWY_INLINE HWY_MAYBE_UNUSED V EvalRationalPolynomial(const D d, const V x,
+ const T (&p)[NP],
+ const T (&q)[NQ]) {
+ constexpr size_t kDegP = NP / 4 - 1;
+ constexpr size_t kDegQ = NQ / 4 - 1;
+ auto yp = LoadDup128(d, &p[kDegP * 4]);
+ auto yq = LoadDup128(d, &q[kDegQ * 4]);
+ // We use pointer arithmetic to refer to &p[(kDegP - n) * 4] to avoid a
+ // compiler warning that the index is out of bounds since we are already
+ // checking that it is not out of bounds with (kDegP >= n) and the access
+ // will be optimized away. Similarly with q and kDegQ.
+ HWY_FENCE;
+ if (kDegP >= 1) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 1) * 4)));
+ if (kDegQ >= 1) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 1) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 2) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 2) * 4)));
+ if (kDegQ >= 2) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 2) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 3) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 3) * 4)));
+ if (kDegQ >= 3) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 3) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 4) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 4) * 4)));
+ if (kDegQ >= 4) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 4) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 5) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 5) * 4)));
+ if (kDegQ >= 5) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 5) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 6) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 6) * 4)));
+ if (kDegQ >= 6) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 6) * 4)));
+ HWY_FENCE;
+ if (kDegP >= 7) yp = MulAdd(yp, x, LoadDup128(d, p + ((kDegP - 7) * 4)));
+ if (kDegQ >= 7) yq = MulAdd(yq, x, LoadDup128(d, q + ((kDegQ - 7) * 4)));
+
+ return FastDivision<T, V>()(yp, yq);
+}
+
+} // namespace
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+#endif // LIB_JXL_RATIONAL_POLYNOMIAL_INL_H_