summaryrefslogtreecommitdiff
path: root/media/libjxl/src/lib/jxl/quant_weights.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjxl/src/lib/jxl/quant_weights.cc')
-rw-r--r--media/libjxl/src/lib/jxl/quant_weights.cc1234
1 files changed, 1234 insertions, 0 deletions
diff --git a/media/libjxl/src/lib/jxl/quant_weights.cc b/media/libjxl/src/lib/jxl/quant_weights.cc
new file mode 100644
index 0000000000..e8d9a10ed6
--- /dev/null
+++ b/media/libjxl/src/lib/jxl/quant_weights.cc
@@ -0,0 +1,1234 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+#include "lib/jxl/quant_weights.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <algorithm>
+#include <cmath>
+#include <limits>
+#include <utility>
+
+#include "lib/jxl/base/bits.h"
+#include "lib/jxl/base/printf_macros.h"
+#include "lib/jxl/base/status.h"
+#include "lib/jxl/common.h"
+#include "lib/jxl/dct_scales.h"
+#include "lib/jxl/dec_modular.h"
+#include "lib/jxl/fields.h"
+#include "lib/jxl/image.h"
+
+#undef HWY_TARGET_INCLUDE
+#define HWY_TARGET_INCLUDE "lib/jxl/quant_weights.cc"
+#include <hwy/foreach_target.h>
+#include <hwy/highway.h>
+
+#include "lib/jxl/fast_math-inl.h"
+
+HWY_BEFORE_NAMESPACE();
+namespace jxl {
+namespace HWY_NAMESPACE {
+
+// kQuantWeights[N * N * c + N * y + x] is the relative weight of the (x, y)
+// coefficient in component c. Higher weights correspond to finer quantization
+// intervals and more bits spent in encoding.
+
+static constexpr const float kAlmostZero = 1e-8f;
+
+void GetQuantWeightsDCT2(const QuantEncoding::DCT2Weights& dct2weights,
+ float* weights) {
+ for (size_t c = 0; c < 3; c++) {
+ size_t start = c * 64;
+ weights[start] = 0xBAD;
+ weights[start + 1] = weights[start + 8] = dct2weights[c][0];
+ weights[start + 9] = dct2weights[c][1];
+ for (size_t y = 0; y < 2; y++) {
+ for (size_t x = 0; x < 2; x++) {
+ weights[start + y * 8 + x + 2] = dct2weights[c][2];
+ weights[start + (y + 2) * 8 + x] = dct2weights[c][2];
+ }
+ }
+ for (size_t y = 0; y < 2; y++) {
+ for (size_t x = 0; x < 2; x++) {
+ weights[start + (y + 2) * 8 + x + 2] = dct2weights[c][3];
+ }
+ }
+ for (size_t y = 0; y < 4; y++) {
+ for (size_t x = 0; x < 4; x++) {
+ weights[start + y * 8 + x + 4] = dct2weights[c][4];
+ weights[start + (y + 4) * 8 + x] = dct2weights[c][4];
+ }
+ }
+ for (size_t y = 0; y < 4; y++) {
+ for (size_t x = 0; x < 4; x++) {
+ weights[start + (y + 4) * 8 + x + 4] = dct2weights[c][5];
+ }
+ }
+ }
+}
+
+void GetQuantWeightsIdentity(const QuantEncoding::IdWeights& idweights,
+ float* weights) {
+ for (size_t c = 0; c < 3; c++) {
+ for (int i = 0; i < 64; i++) {
+ weights[64 * c + i] = idweights[c][0];
+ }
+ weights[64 * c + 1] = idweights[c][1];
+ weights[64 * c + 8] = idweights[c][1];
+ weights[64 * c + 9] = idweights[c][2];
+ }
+}
+
+float Interpolate(float pos, float max, const float* array, size_t len) {
+ float scaled_pos = pos * (len - 1) / max;
+ size_t idx = scaled_pos;
+ JXL_DASSERT(idx + 1 < len);
+ float a = array[idx];
+ float b = array[idx + 1];
+ return a * FastPowf(b / a, scaled_pos - idx);
+}
+
+float Mult(float v) {
+ if (v > 0.0f) return 1.0f + v;
+ return 1.0f / (1.0f - v);
+}
+
+using DF4 = HWY_CAPPED(float, 4);
+
+hwy::HWY_NAMESPACE::Vec<DF4> InterpolateVec(
+ hwy::HWY_NAMESPACE::Vec<DF4> scaled_pos, const float* array) {
+ HWY_CAPPED(int32_t, 4) di;
+
+ auto idx = ConvertTo(di, scaled_pos);
+
+ auto frac = scaled_pos - ConvertTo(DF4(), idx);
+
+ // TODO(veluca): in theory, this could be done with 8 TableLookupBytes, but
+ // it's probably slower.
+ auto a = GatherIndex(DF4(), array, idx);
+ auto b = GatherIndex(DF4(), array + 1, idx);
+
+ return a * FastPowf(DF4(), b / a, frac);
+}
+
+// Computes quant weights for a COLS*ROWS-sized transform, using num_bands
+// eccentricity bands and num_ebands eccentricity bands. If print_mode is 1,
+// prints the resulting matrix; if print_mode is 2, prints the matrix in a
+// format suitable for a 3d plot with gnuplot.
+Status GetQuantWeights(
+ size_t ROWS, size_t COLS,
+ const DctQuantWeightParams::DistanceBandsArray& distance_bands,
+ size_t num_bands, float* out) {
+ for (size_t c = 0; c < 3; c++) {
+ float bands[DctQuantWeightParams::kMaxDistanceBands] = {
+ distance_bands[c][0]};
+ if (bands[0] < kAlmostZero) return JXL_FAILURE("Invalid distance bands");
+ for (size_t i = 1; i < num_bands; i++) {
+ bands[i] = bands[i - 1] * Mult(distance_bands[c][i]);
+ if (bands[i] < kAlmostZero) return JXL_FAILURE("Invalid distance bands");
+ }
+ float scale = (num_bands - 1) / (kSqrt2 + 1e-6f);
+ float rcpcol = scale / (COLS - 1);
+ float rcprow = scale / (ROWS - 1);
+ JXL_ASSERT(COLS >= Lanes(DF4()));
+ HWY_ALIGN float l0123[4] = {0, 1, 2, 3};
+ for (uint32_t y = 0; y < ROWS; y++) {
+ float dy = y * rcprow;
+ float dy2 = dy * dy;
+ for (uint32_t x = 0; x < COLS; x += Lanes(DF4())) {
+ auto dx = (Set(DF4(), x) + Load(DF4(), l0123)) * Set(DF4(), rcpcol);
+ auto scaled_distance = Sqrt(MulAdd(dx, dx, Set(DF4(), dy2)));
+ auto weight = num_bands == 1 ? Set(DF4(), bands[0])
+ : InterpolateVec(scaled_distance, bands);
+ StoreU(weight, DF4(), out + c * COLS * ROWS + y * COLS + x);
+ }
+ }
+ }
+ return true;
+}
+
+// TODO(veluca): SIMD-fy. With 256x256, this is actually slow.
+Status ComputeQuantTable(const QuantEncoding& encoding,
+ float* JXL_RESTRICT table,
+ float* JXL_RESTRICT inv_table, size_t table_num,
+ DequantMatrices::QuantTable kind, size_t* pos) {
+ constexpr size_t N = kBlockDim;
+ size_t wrows = 8 * DequantMatrices::required_size_x[kind],
+ wcols = 8 * DequantMatrices::required_size_y[kind];
+ size_t num = wrows * wcols;
+
+ std::vector<float> weights(3 * num);
+
+ switch (encoding.mode) {
+ case QuantEncoding::kQuantModeLibrary: {
+ // Library and copy quant encoding should get replaced by the actual
+ // parameters by the caller.
+ JXL_ASSERT(false);
+ break;
+ }
+ case QuantEncoding::kQuantModeID: {
+ JXL_ASSERT(num == kDCTBlockSize);
+ GetQuantWeightsIdentity(encoding.idweights, weights.data());
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT2: {
+ JXL_ASSERT(num == kDCTBlockSize);
+ GetQuantWeightsDCT2(encoding.dct2weights, weights.data());
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT4: {
+ JXL_ASSERT(num == kDCTBlockSize);
+ float weights4x4[3 * 4 * 4];
+ // Always use 4x4 GetQuantWeights for DCT4 quantization tables.
+ JXL_RETURN_IF_ERROR(
+ GetQuantWeights(4, 4, encoding.dct_params.distance_bands,
+ encoding.dct_params.num_distance_bands, weights4x4));
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t y = 0; y < kBlockDim; y++) {
+ for (size_t x = 0; x < kBlockDim; x++) {
+ weights[c * num + y * kBlockDim + x] =
+ weights4x4[c * 16 + (y / 2) * 4 + (x / 2)];
+ }
+ }
+ weights[c * num + 1] /= encoding.dct4multipliers[c][0];
+ weights[c * num + N] /= encoding.dct4multipliers[c][0];
+ weights[c * num + N + 1] /= encoding.dct4multipliers[c][1];
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT4X8: {
+ JXL_ASSERT(num == kDCTBlockSize);
+ float weights4x8[3 * 4 * 8];
+ // Always use 4x8 GetQuantWeights for DCT4X8 quantization tables.
+ JXL_RETURN_IF_ERROR(
+ GetQuantWeights(4, 8, encoding.dct_params.distance_bands,
+ encoding.dct_params.num_distance_bands, weights4x8));
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t y = 0; y < kBlockDim; y++) {
+ for (size_t x = 0; x < kBlockDim; x++) {
+ weights[c * num + y * kBlockDim + x] =
+ weights4x8[c * 32 + (y / 2) * 8 + x];
+ }
+ }
+ weights[c * num + N] /= encoding.dct4x8multipliers[c];
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT: {
+ JXL_RETURN_IF_ERROR(GetQuantWeights(
+ wrows, wcols, encoding.dct_params.distance_bands,
+ encoding.dct_params.num_distance_bands, weights.data()));
+ break;
+ }
+ case QuantEncoding::kQuantModeRAW: {
+ if (!encoding.qraw.qtable || encoding.qraw.qtable->size() != 3 * num) {
+ return JXL_FAILURE("Invalid table encoding");
+ }
+ for (size_t i = 0; i < 3 * num; i++) {
+ weights[i] =
+ 1.f / (encoding.qraw.qtable_den * (*encoding.qraw.qtable)[i]);
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeAFV: {
+ constexpr float kFreqs[] = {
+ 0xBAD,
+ 0xBAD,
+ 0.8517778890324296,
+ 5.37778436506804,
+ 0xBAD,
+ 0xBAD,
+ 4.734747904497923,
+ 5.449245381693219,
+ 1.6598270267479331,
+ 4,
+ 7.275749096817861,
+ 10.423227632456525,
+ 2.662932286148962,
+ 7.630657783650829,
+ 8.962388608184032,
+ 12.97166202570235,
+ };
+
+ float weights4x8[3 * 4 * 8];
+ JXL_RETURN_IF_ERROR((
+ GetQuantWeights(4, 8, encoding.dct_params.distance_bands,
+ encoding.dct_params.num_distance_bands, weights4x8)));
+ float weights4x4[3 * 4 * 4];
+ JXL_RETURN_IF_ERROR((GetQuantWeights(
+ 4, 4, encoding.dct_params_afv_4x4.distance_bands,
+ encoding.dct_params_afv_4x4.num_distance_bands, weights4x4)));
+
+ constexpr float lo = 0.8517778890324296;
+ constexpr float hi = 12.97166202570235f - lo + 1e-6f;
+ for (size_t c = 0; c < 3; c++) {
+ float bands[4];
+ bands[0] = encoding.afv_weights[c][5];
+ if (bands[0] < kAlmostZero) return JXL_FAILURE("Invalid AFV bands");
+ for (size_t i = 1; i < 4; i++) {
+ bands[i] = bands[i - 1] * Mult(encoding.afv_weights[c][i + 5]);
+ if (bands[i] < kAlmostZero) return JXL_FAILURE("Invalid AFV bands");
+ }
+ size_t start = c * 64;
+ auto set_weight = [&start, &weights](size_t x, size_t y, float val) {
+ weights[start + y * 8 + x] = val;
+ };
+ weights[start] = 1; // Not used, but causes MSAN error otherwise.
+ // Weights for (0, 1) and (1, 0).
+ set_weight(0, 1, encoding.afv_weights[c][0]);
+ set_weight(1, 0, encoding.afv_weights[c][1]);
+ // AFV special weights for 3-pixel corner.
+ set_weight(0, 2, encoding.afv_weights[c][2]);
+ set_weight(2, 0, encoding.afv_weights[c][3]);
+ set_weight(2, 2, encoding.afv_weights[c][4]);
+
+ // All other AFV weights.
+ for (size_t y = 0; y < 4; y++) {
+ for (size_t x = 0; x < 4; x++) {
+ if (x < 2 && y < 2) continue;
+ float val = Interpolate(kFreqs[y * 4 + x] - lo, hi, bands, 4);
+ set_weight(2 * x, 2 * y, val);
+ }
+ }
+
+ // Put 4x8 weights in odd rows, except (1, 0).
+ for (size_t y = 0; y < kBlockDim / 2; y++) {
+ for (size_t x = 0; x < kBlockDim; x++) {
+ if (x == 0 && y == 0) continue;
+ weights[c * num + (2 * y + 1) * kBlockDim + x] =
+ weights4x8[c * 32 + y * 8 + x];
+ }
+ }
+ // Put 4x4 weights in even rows / odd columns, except (0, 1).
+ for (size_t y = 0; y < kBlockDim / 2; y++) {
+ for (size_t x = 0; x < kBlockDim / 2; x++) {
+ if (x == 0 && y == 0) continue;
+ weights[c * num + (2 * y) * kBlockDim + 2 * x + 1] =
+ weights4x4[c * 16 + y * 4 + x];
+ }
+ }
+ }
+ break;
+ }
+ }
+ size_t prev_pos = *pos;
+ HWY_CAPPED(float, 64) d;
+ for (size_t i = 0; i < num * 3; i += Lanes(d)) {
+ auto inv_val = LoadU(d, weights.data() + i);
+ if (JXL_UNLIKELY(!AllFalse(d, inv_val >= Set(d, 1.0f / kAlmostZero)) ||
+ !AllFalse(d, inv_val < Set(d, kAlmostZero)))) {
+ return JXL_FAILURE("Invalid quantization table");
+ }
+ auto val = Set(d, 1.0f) / inv_val;
+ StoreU(val, d, table + *pos + i);
+ StoreU(inv_val, d, inv_table + *pos + i);
+ }
+ (*pos) += 3 * num;
+
+ // Ensure that the lowest frequencies have a 0 inverse table.
+ // This does not affect en/decoding, but allows AC strategy selection to be
+ // slightly simpler.
+ size_t xs = DequantMatrices::required_size_x[kind];
+ size_t ys = DequantMatrices::required_size_y[kind];
+ CoefficientLayout(&ys, &xs);
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t y = 0; y < ys; y++) {
+ for (size_t x = 0; x < xs; x++) {
+ inv_table[prev_pos + c * ys * xs * kDCTBlockSize + y * kBlockDim * xs +
+ x] = 0;
+ }
+ }
+ }
+ return true;
+}
+
+// NOLINTNEXTLINE(google-readability-namespace-comments)
+} // namespace HWY_NAMESPACE
+} // namespace jxl
+HWY_AFTER_NAMESPACE();
+
+#if HWY_ONCE
+
+namespace jxl {
+namespace {
+
+HWY_EXPORT(ComputeQuantTable);
+
+static constexpr const float kAlmostZero = 1e-8f;
+
+Status DecodeDctParams(BitReader* br, DctQuantWeightParams* params) {
+ params->num_distance_bands =
+ br->ReadFixedBits<DctQuantWeightParams::kLog2MaxDistanceBands>() + 1;
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t i = 0; i < params->num_distance_bands; i++) {
+ JXL_RETURN_IF_ERROR(F16Coder::Read(br, &params->distance_bands[c][i]));
+ }
+ if (params->distance_bands[c][0] < kAlmostZero) {
+ return JXL_FAILURE("Distance band seed is too small");
+ }
+ params->distance_bands[c][0] *= 64.0f;
+ }
+ return true;
+}
+
+Status Decode(BitReader* br, QuantEncoding* encoding, size_t required_size_x,
+ size_t required_size_y, size_t idx,
+ ModularFrameDecoder* modular_frame_decoder) {
+ size_t required_size = required_size_x * required_size_y;
+ required_size_x *= kBlockDim;
+ required_size_y *= kBlockDim;
+ int mode = br->ReadFixedBits<kLog2NumQuantModes>();
+ switch (mode) {
+ case QuantEncoding::kQuantModeLibrary: {
+ encoding->predefined = br->ReadFixedBits<kCeilLog2NumPredefinedTables>();
+ if (encoding->predefined >= kNumPredefinedTables) {
+ return JXL_FAILURE("Invalid predefined table");
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeID: {
+ if (required_size != 1) return JXL_FAILURE("Invalid mode");
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t i = 0; i < 3; i++) {
+ JXL_RETURN_IF_ERROR(F16Coder::Read(br, &encoding->idweights[c][i]));
+ if (std::abs(encoding->idweights[c][i]) < kAlmostZero) {
+ return JXL_FAILURE("ID Quantizer is too small");
+ }
+ encoding->idweights[c][i] *= 64;
+ }
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT2: {
+ if (required_size != 1) return JXL_FAILURE("Invalid mode");
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t i = 0; i < 6; i++) {
+ JXL_RETURN_IF_ERROR(F16Coder::Read(br, &encoding->dct2weights[c][i]));
+ if (std::abs(encoding->dct2weights[c][i]) < kAlmostZero) {
+ return JXL_FAILURE("Quantizer is too small");
+ }
+ encoding->dct2weights[c][i] *= 64;
+ }
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT4X8: {
+ if (required_size != 1) return JXL_FAILURE("Invalid mode");
+ for (size_t c = 0; c < 3; c++) {
+ JXL_RETURN_IF_ERROR(
+ F16Coder::Read(br, &encoding->dct4x8multipliers[c]));
+ if (std::abs(encoding->dct4x8multipliers[c]) < kAlmostZero) {
+ return JXL_FAILURE("DCT4X8 multiplier is too small");
+ }
+ }
+ JXL_RETURN_IF_ERROR(DecodeDctParams(br, &encoding->dct_params));
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT4: {
+ if (required_size != 1) return JXL_FAILURE("Invalid mode");
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t i = 0; i < 2; i++) {
+ JXL_RETURN_IF_ERROR(
+ F16Coder::Read(br, &encoding->dct4multipliers[c][i]));
+ if (std::abs(encoding->dct4multipliers[c][i]) < kAlmostZero) {
+ return JXL_FAILURE("DCT4 multiplier is too small");
+ }
+ }
+ }
+ JXL_RETURN_IF_ERROR(DecodeDctParams(br, &encoding->dct_params));
+ break;
+ }
+ case QuantEncoding::kQuantModeAFV: {
+ if (required_size != 1) return JXL_FAILURE("Invalid mode");
+ for (size_t c = 0; c < 3; c++) {
+ for (size_t i = 0; i < 9; i++) {
+ JXL_RETURN_IF_ERROR(F16Coder::Read(br, &encoding->afv_weights[c][i]));
+ }
+ for (size_t i = 0; i < 6; i++) {
+ encoding->afv_weights[c][i] *= 64;
+ }
+ JXL_RETURN_IF_ERROR(DecodeDctParams(br, &encoding->dct_params));
+ JXL_RETURN_IF_ERROR(DecodeDctParams(br, &encoding->dct_params_afv_4x4));
+ }
+ break;
+ }
+ case QuantEncoding::kQuantModeDCT: {
+ JXL_RETURN_IF_ERROR(DecodeDctParams(br, &encoding->dct_params));
+ break;
+ }
+ case QuantEncoding::kQuantModeRAW: {
+ // Set mode early, to avoid mem-leak.
+ encoding->mode = QuantEncoding::kQuantModeRAW;
+ JXL_RETURN_IF_ERROR(ModularFrameDecoder::DecodeQuantTable(
+ required_size_x, required_size_y, br, encoding, idx,
+ modular_frame_decoder));
+ break;
+ }
+ default:
+ return JXL_FAILURE("Invalid quantization table encoding");
+ }
+ encoding->mode = QuantEncoding::Mode(mode);
+ return true;
+}
+
+} // namespace
+
+// These definitions are needed before C++17.
+constexpr size_t DequantMatrices::required_size_[];
+constexpr size_t DequantMatrices::required_size_x[];
+constexpr size_t DequantMatrices::required_size_y[];
+constexpr DequantMatrices::QuantTable DequantMatrices::kQuantTable[];
+
+Status DequantMatrices::Decode(BitReader* br,
+ ModularFrameDecoder* modular_frame_decoder) {
+ size_t all_default = br->ReadBits(1);
+ size_t num_tables = all_default ? 0 : static_cast<size_t>(kNum);
+ encodings_.clear();
+ encodings_.resize(kNum, QuantEncoding::Library(0));
+ for (size_t i = 0; i < num_tables; i++) {
+ JXL_RETURN_IF_ERROR(
+ jxl::Decode(br, &encodings_[i], required_size_x[i % kNum],
+ required_size_y[i % kNum], i, modular_frame_decoder));
+ }
+ computed_mask_ = 0;
+ return true;
+}
+
+Status DequantMatrices::DecodeDC(BitReader* br) {
+ bool all_default = br->ReadBits(1);
+ if (!br->AllReadsWithinBounds()) return JXL_FAILURE("EOS during DecodeDC");
+ if (!all_default) {
+ for (size_t c = 0; c < 3; c++) {
+ JXL_RETURN_IF_ERROR(F16Coder::Read(br, &dc_quant_[c]));
+ dc_quant_[c] *= 1.0f / 128.0f;
+ // Negative values and nearly zero are invalid values.
+ if (dc_quant_[c] < kAlmostZero) {
+ return JXL_FAILURE("Invalid dc_quant: coefficient is too small.");
+ }
+ inv_dc_quant_[c] = 1.0f / dc_quant_[c];
+ }
+ }
+ return true;
+}
+
+constexpr float V(float v) { return static_cast<float>(v); }
+
+namespace {
+struct DequantMatricesLibraryDef {
+ // DCT8
+ static constexpr const QuantEncodingInternal DCT() {
+ return QuantEncodingInternal::DCT(DctQuantWeightParams({{{{
+ V(3150.0),
+ V(0.0),
+ V(-0.4),
+ V(-0.4),
+ V(-0.4),
+ V(-2.0),
+ }},
+ {{
+ V(560.0),
+ V(0.0),
+ V(-0.3),
+ V(-0.3),
+ V(-0.3),
+ V(-0.3),
+ }},
+ {{
+ V(512.0),
+ V(-2.0),
+ V(-1.0),
+ V(0.0),
+ V(-1.0),
+ V(-2.0),
+ }}}},
+ 6));
+ }
+
+ // Identity
+ static constexpr const QuantEncodingInternal IDENTITY() {
+ return QuantEncodingInternal::Identity({{{{
+ V(280.0),
+ V(3160.0),
+ V(3160.0),
+ }},
+ {{
+ V(60.0),
+ V(864.0),
+ V(864.0),
+ }},
+ {{
+ V(18.0),
+ V(200.0),
+ V(200.0),
+ }}}});
+ }
+
+ // DCT2
+ static constexpr const QuantEncodingInternal DCT2X2() {
+ return QuantEncodingInternal::DCT2({{{{
+ V(3840.0),
+ V(2560.0),
+ V(1280.0),
+ V(640.0),
+ V(480.0),
+ V(300.0),
+ }},
+ {{
+ V(960.0),
+ V(640.0),
+ V(320.0),
+ V(180.0),
+ V(140.0),
+ V(120.0),
+ }},
+ {{
+ V(640.0),
+ V(320.0),
+ V(128.0),
+ V(64.0),
+ V(32.0),
+ V(16.0),
+ }}}});
+ }
+
+ // DCT4 (quant_kind 3)
+ static constexpr const QuantEncodingInternal DCT4X4() {
+ return QuantEncodingInternal::DCT4(DctQuantWeightParams({{{{
+ V(2200.0),
+ V(0.0),
+ V(0.0),
+ V(0.0),
+ }},
+ {{
+ V(392.0),
+ V(0.0),
+ V(0.0),
+ V(0.0),
+ }},
+ {{
+ V(112.0),
+ V(-0.25),
+ V(-0.25),
+ V(-0.5),
+ }}}},
+ 4),
+ /* kMul */
+ {{{{
+ V(1.0),
+ V(1.0),
+ }},
+ {{
+ V(1.0),
+ V(1.0),
+ }},
+ {{
+ V(1.0),
+ V(1.0),
+ }}}});
+ }
+
+ // DCT16
+ static constexpr const QuantEncodingInternal DCT16X16() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(8996.8725711814115328),
+ V(-1.3000777393353804),
+ V(-0.49424529824571225),
+ V(-0.439093774457103443),
+ V(-0.6350101832695744),
+ V(-0.90177264050827612),
+ V(-1.6162099239887414),
+ }},
+ {{
+ V(3191.48366296844234752),
+ V(-0.67424582104194355),
+ V(-0.80745813428471001),
+ V(-0.44925837484843441),
+ V(-0.35865440981033403),
+ V(-0.31322389111877305),
+ V(-0.37615025315725483),
+ }},
+ {{
+ V(1157.50408145487200256),
+ V(-2.0531423165804414),
+ V(-1.4),
+ V(-0.50687130033378396),
+ V(-0.42708730624733904),
+ V(-1.4856834539296244),
+ V(-4.9209142884401604),
+ }}}},
+ 7));
+ }
+
+ // DCT32
+ static constexpr const QuantEncodingInternal DCT32X32() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(15718.40830982518931456),
+ V(-1.025),
+ V(-0.98),
+ V(-0.9012),
+ V(-0.4),
+ V(-0.48819395464),
+ V(-0.421064),
+ V(-0.27),
+ }},
+ {{
+ V(7305.7636810695983104),
+ V(-0.8041958212306401),
+ V(-0.7633036457487539),
+ V(-0.55660379990111464),
+ V(-0.49785304658857626),
+ V(-0.43699592683512467),
+ V(-0.40180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(3803.53173721215041536),
+ V(-3.060733579805728),
+ V(-2.0413270132490346),
+ V(-2.0235650159727417),
+ V(-0.5495389509954993),
+ V(-0.4),
+ V(-0.4),
+ V(-0.3),
+ }}}},
+ 8));
+ }
+
+ // DCT16X8
+ static constexpr const QuantEncodingInternal DCT8X16() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(7240.7734393502),
+ V(-0.7),
+ V(-0.7),
+ V(-0.2),
+ V(-0.2),
+ V(-0.2),
+ V(-0.5),
+ }},
+ {{
+ V(1448.15468787004),
+ V(-0.5),
+ V(-0.5),
+ V(-0.5),
+ V(-0.2),
+ V(-0.2),
+ V(-0.2),
+ }},
+ {{
+ V(506.854140754517),
+ V(-1.4),
+ V(-0.2),
+ V(-0.5),
+ V(-0.5),
+ V(-1.5),
+ V(-3.6),
+ }}}},
+ 7));
+ }
+
+ // DCT32X8
+ static constexpr const QuantEncodingInternal DCT8X32() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(16283.2494710648897),
+ V(-1.7812845336559429),
+ V(-1.6309059012653515),
+ V(-1.0382179034313539),
+ V(-0.85),
+ V(-0.7),
+ V(-0.9),
+ V(-1.2360638576849587),
+ }},
+ {{
+ V(5089.15750884921511936),
+ V(-0.320049391452786891),
+ V(-0.35362849922161446),
+ V(-0.30340000000000003),
+ V(-0.61),
+ V(-0.5),
+ V(-0.5),
+ V(-0.6),
+ }},
+ {{
+ V(3397.77603275308720128),
+ V(-0.321327362693153371),
+ V(-0.34507619223117997),
+ V(-0.70340000000000003),
+ V(-0.9),
+ V(-1.0),
+ V(-1.0),
+ V(-1.1754605576265209),
+ }}}},
+ 8));
+ }
+
+ // DCT32X16
+ static constexpr const QuantEncodingInternal DCT16X32() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(13844.97076442300573),
+ V(-0.97113799999999995),
+ V(-0.658),
+ V(-0.42026),
+ V(-0.22712),
+ V(-0.2206),
+ V(-0.226),
+ V(-0.6),
+ }},
+ {{
+ V(4798.964084220744293),
+ V(-0.61125308982767057),
+ V(-0.83770786552491361),
+ V(-0.79014862079498627),
+ V(-0.2692727459704829),
+ V(-0.38272769465388551),
+ V(-0.22924222653091453),
+ V(-0.20719098826199578),
+ }},
+ {{
+ V(1807.236946760964614),
+ V(-1.2),
+ V(-1.2),
+ V(-0.7),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+
+ // DCT4X8 and 8x4
+ static constexpr const QuantEncodingInternal DCT4X8() {
+ return QuantEncodingInternal::DCT4X8(
+ DctQuantWeightParams({{
+ {{
+ V(2198.050556016380522),
+ V(-0.96269623020744692),
+ V(-0.76194253026666783),
+ V(-0.6551140670773547),
+ }},
+ {{
+ V(764.3655248643528689),
+ V(-0.92630200888366945),
+ V(-0.9675229603596517),
+ V(-0.27845290869168118),
+ }},
+ {{
+ V(527.107573587542228),
+ V(-1.4594385811273854),
+ V(-1.450082094097871593),
+ V(-1.5843722511996204),
+ }},
+ }},
+ 4),
+ /* kMuls */
+ {{
+ V(1.0),
+ V(1.0),
+ V(1.0),
+ }});
+ }
+ // AFV
+ static const QuantEncodingInternal AFV0() {
+ return QuantEncodingInternal::AFV(DCT4X8().dct_params, DCT4X4().dct_params,
+ {{{{
+ // 4x4/4x8 DC tendency.
+ V(3072.0),
+ V(3072.0),
+ // AFV corner.
+ V(256.0),
+ V(256.0),
+ V(256.0),
+ // AFV high freqs.
+ V(414.0),
+ V(0.0),
+ V(0.0),
+ V(0.0),
+ }},
+ {{
+ // 4x4/4x8 DC tendency.
+ V(1024.0),
+ V(1024.0),
+ // AFV corner.
+ V(50),
+ V(50),
+ V(50),
+ // AFV high freqs.
+ V(58.0),
+ V(0.0),
+ V(0.0),
+ V(0.0),
+ }},
+ {{
+ // 4x4/4x8 DC tendency.
+ V(384.0),
+ V(384.0),
+ // AFV corner.
+ V(12.0),
+ V(12.0),
+ V(12.0),
+ // AFV high freqs.
+ V(22.0),
+ V(-0.25),
+ V(-0.25),
+ V(-0.25),
+ }}}});
+ }
+
+ // DCT64
+ static const QuantEncodingInternal DCT64X64() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(0.9 * 26629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(0.9 * 9311.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(0.9 * 4992.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+
+ // DCT64X32
+ static const QuantEncodingInternal DCT32X64() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(0.65 * 23629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(0.65 * 8611.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(0.65 * 4492.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+ // DCT128X128
+ static const QuantEncodingInternal DCT128X128() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(1.8 * 26629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(1.8 * 9311.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(1.8 * 4992.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+
+ // DCT128X64
+ static const QuantEncodingInternal DCT64X128() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(1.3 * 23629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(1.3 * 8611.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(1.3 * 4492.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+ // DCT256X256
+ static const QuantEncodingInternal DCT256X256() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(3.6 * 26629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(3.6 * 9311.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(3.6 * 4992.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+
+ // DCT256X128
+ static const QuantEncodingInternal DCT128X256() {
+ return QuantEncodingInternal::DCT(
+ DctQuantWeightParams({{{{
+ V(2.6 * 23629.073922049845),
+ V(-1.025),
+ V(-0.78),
+ V(-0.65012),
+ V(-0.19041574084286472),
+ V(-0.20819395464),
+ V(-0.421064),
+ V(-0.32733845535848671),
+ }},
+ {{
+ V(2.6 * 8611.3238710010046),
+ V(-0.3041958212306401),
+ V(-0.3633036457487539),
+ V(-0.35660379990111464),
+ V(-0.3443074455424403),
+ V(-0.33699592683512467),
+ V(-0.30180866526242109),
+ V(-0.27321683125358037),
+ }},
+ {{
+ V(2.6 * 4492.2486445538634),
+ V(-1.2),
+ V(-1.2),
+ V(-0.8),
+ V(-0.7),
+ V(-0.7),
+ V(-0.4),
+ V(-0.5),
+ }}}},
+ 8));
+ }
+};
+} // namespace
+
+const DequantMatrices::DequantLibraryInternal DequantMatrices::LibraryInit() {
+ static_assert(kNum == 17,
+ "Update this function when adding new quantization kinds.");
+ static_assert(kNumPredefinedTables == 1,
+ "Update this function when adding new quantization matrices to "
+ "the library.");
+
+ // The library and the indices need to be kept in sync manually.
+ static_assert(0 == DCT, "Update the DequantLibrary array below.");
+ static_assert(1 == IDENTITY, "Update the DequantLibrary array below.");
+ static_assert(2 == DCT2X2, "Update the DequantLibrary array below.");
+ static_assert(3 == DCT4X4, "Update the DequantLibrary array below.");
+ static_assert(4 == DCT16X16, "Update the DequantLibrary array below.");
+ static_assert(5 == DCT32X32, "Update the DequantLibrary array below.");
+ static_assert(6 == DCT8X16, "Update the DequantLibrary array below.");
+ static_assert(7 == DCT8X32, "Update the DequantLibrary array below.");
+ static_assert(8 == DCT16X32, "Update the DequantLibrary array below.");
+ static_assert(9 == DCT4X8, "Update the DequantLibrary array below.");
+ static_assert(10 == AFV0, "Update the DequantLibrary array below.");
+ static_assert(11 == DCT64X64, "Update the DequantLibrary array below.");
+ static_assert(12 == DCT32X64, "Update the DequantLibrary array below.");
+ static_assert(13 == DCT128X128, "Update the DequantLibrary array below.");
+ static_assert(14 == DCT64X128, "Update the DequantLibrary array below.");
+ static_assert(15 == DCT256X256, "Update the DequantLibrary array below.");
+ static_assert(16 == DCT128X256, "Update the DequantLibrary array below.");
+ return DequantMatrices::DequantLibraryInternal{{
+ DequantMatricesLibraryDef::DCT(),
+ DequantMatricesLibraryDef::IDENTITY(),
+ DequantMatricesLibraryDef::DCT2X2(),
+ DequantMatricesLibraryDef::DCT4X4(),
+ DequantMatricesLibraryDef::DCT16X16(),
+ DequantMatricesLibraryDef::DCT32X32(),
+ DequantMatricesLibraryDef::DCT8X16(),
+ DequantMatricesLibraryDef::DCT8X32(),
+ DequantMatricesLibraryDef::DCT16X32(),
+ DequantMatricesLibraryDef::DCT4X8(),
+ DequantMatricesLibraryDef::AFV0(),
+ DequantMatricesLibraryDef::DCT64X64(),
+ DequantMatricesLibraryDef::DCT32X64(),
+ // Same default for large transforms (128+) as for 64x* transforms.
+ DequantMatricesLibraryDef::DCT128X128(),
+ DequantMatricesLibraryDef::DCT64X128(),
+ DequantMatricesLibraryDef::DCT256X256(),
+ DequantMatricesLibraryDef::DCT128X256(),
+ }};
+}
+
+const QuantEncoding* DequantMatrices::Library() {
+ static const DequantMatrices::DequantLibraryInternal kDequantLibrary =
+ DequantMatrices::LibraryInit();
+ // Downcast the result to a const QuantEncoding* from QuantEncodingInternal*
+ // since the subclass (QuantEncoding) doesn't add any new members and users
+ // will need to upcast to QuantEncodingInternal to access the members of that
+ // class. This allows to have kDequantLibrary as a constexpr value while still
+ // allowing to create QuantEncoding::RAW() instances that use std::vector in
+ // C++11.
+ return reinterpret_cast<const QuantEncoding*>(kDequantLibrary.data());
+}
+
+DequantMatrices::DequantMatrices() {
+ encodings_.resize(size_t(QuantTable::kNum), QuantEncoding::Library(0));
+ size_t pos = 0;
+ size_t offsets[kNum * 3];
+ for (size_t i = 0; i < size_t(QuantTable::kNum); i++) {
+ size_t num = required_size_[i] * kDCTBlockSize;
+ for (size_t c = 0; c < 3; c++) {
+ offsets[3 * i + c] = pos + c * num;
+ }
+ pos += 3 * num;
+ }
+ for (size_t i = 0; i < AcStrategy::kNumValidStrategies; i++) {
+ for (size_t c = 0; c < 3; c++) {
+ table_offsets_[i * 3 + c] = offsets[kQuantTable[i] * 3 + c];
+ }
+ }
+}
+
+Status DequantMatrices::EnsureComputed(uint32_t acs_mask) {
+ const QuantEncoding* library = Library();
+
+ if (!table_storage_) {
+ table_storage_ = hwy::AllocateAligned<float>(2 * kTotalTableSize);
+ table_ = table_storage_.get();
+ inv_table_ = table_storage_.get() + kTotalTableSize;
+ }
+
+ size_t offsets[kNum * 3 + 1];
+ size_t pos = 0;
+ for (size_t i = 0; i < kNum; i++) {
+ size_t num = required_size_[i] * kDCTBlockSize;
+ for (size_t c = 0; c < 3; c++) {
+ offsets[3 * i + c] = pos + c * num;
+ }
+ pos += 3 * num;
+ }
+ offsets[kNum * 3] = pos;
+ JXL_ASSERT(pos == kTotalTableSize);
+
+ uint32_t kind_mask = 0;
+ for (size_t i = 0; i < AcStrategy::kNumValidStrategies; i++) {
+ if (acs_mask & (1u << i)) {
+ kind_mask |= 1u << kQuantTable[i];
+ }
+ }
+ uint32_t computed_kind_mask = 0;
+ for (size_t i = 0; i < AcStrategy::kNumValidStrategies; i++) {
+ if (computed_mask_ & (1u << i)) {
+ computed_kind_mask |= 1u << kQuantTable[i];
+ }
+ }
+ for (size_t table = 0; table < kNum; table++) {
+ if ((1 << table) & computed_kind_mask) continue;
+ if ((1 << table) & ~kind_mask) continue;
+ size_t pos = offsets[table * 3];
+ if (encodings_[table].mode == QuantEncoding::kQuantModeLibrary) {
+ JXL_CHECK(HWY_DYNAMIC_DISPATCH(ComputeQuantTable)(
+ library[table], table_storage_.get(),
+ table_storage_.get() + kTotalTableSize, table, QuantTable(table),
+ &pos));
+ } else {
+ JXL_RETURN_IF_ERROR(HWY_DYNAMIC_DISPATCH(ComputeQuantTable)(
+ encodings_[table], table_storage_.get(),
+ table_storage_.get() + kTotalTableSize, table, QuantTable(table),
+ &pos));
+ }
+ JXL_ASSERT(pos == offsets[table * 3 + 3]);
+ }
+ computed_mask_ |= acs_mask;
+
+ return true;
+}
+
+} // namespace jxl
+#endif