diff options
Diffstat (limited to 'media/libjxl/src/lib/jxl/huffman_tree.cc')
-rw-r--r-- | media/libjxl/src/lib/jxl/huffman_tree.cc | 328 |
1 files changed, 328 insertions, 0 deletions
diff --git a/media/libjxl/src/lib/jxl/huffman_tree.cc b/media/libjxl/src/lib/jxl/huffman_tree.cc new file mode 100644 index 0000000000..77107b08d2 --- /dev/null +++ b/media/libjxl/src/lib/jxl/huffman_tree.cc @@ -0,0 +1,328 @@ +// Copyright (c) the JPEG XL Project Authors. All rights reserved. +// +// Use of this source code is governed by a BSD-style +// license that can be found in the LICENSE file. + +#include "lib/jxl/huffman_tree.h" + +#include <algorithm> +#include <limits> +#include <vector> + +#include "lib/jxl/base/status.h" + +namespace jxl { + +void SetDepth(const HuffmanTree& p, HuffmanTree* pool, uint8_t* depth, + uint8_t level) { + if (p.index_left >= 0) { + ++level; + SetDepth(pool[p.index_left], pool, depth, level); + SetDepth(pool[p.index_right_or_value], pool, depth, level); + } else { + depth[p.index_right_or_value] = level; + } +} + +// Sort the root nodes, least popular first. +static JXL_INLINE bool Compare(const HuffmanTree& v0, const HuffmanTree& v1) { + return v0.total_count < v1.total_count; +} + +// This function will create a Huffman tree. +// +// The catch here is that the tree cannot be arbitrarily deep. +// Brotli specifies a maximum depth of 15 bits for "code trees" +// and 7 bits for "code length code trees." +// +// count_limit is the value that is to be faked as the minimum value +// and this minimum value is raised until the tree matches the +// maximum length requirement. +// +// This algorithm is not of excellent performance for very long data blocks, +// especially when population counts are longer than 2**tree_limit, but +// we are not planning to use this with extremely long blocks. +// +// See http://en.wikipedia.org/wiki/Huffman_coding +void CreateHuffmanTree(const uint32_t* data, const size_t length, + const int tree_limit, uint8_t* depth) { + // For block sizes below 64 kB, we never need to do a second iteration + // of this loop. Probably all of our block sizes will be smaller than + // that, so this loop is mostly of academic interest. If we actually + // would need this, we would be better off with the Katajainen algorithm. + for (uint32_t count_limit = 1;; count_limit *= 2) { + std::vector<HuffmanTree> tree; + tree.reserve(2 * length + 1); + + for (size_t i = length; i != 0;) { + --i; + if (data[i]) { + const uint32_t count = std::max(data[i], count_limit - 1); + tree.emplace_back(count, -1, static_cast<int16_t>(i)); + } + } + + const size_t n = tree.size(); + if (n == 1) { + // Fake value; will be fixed on upper level. + depth[tree[0].index_right_or_value] = 1; + break; + } + + std::stable_sort(tree.begin(), tree.end(), Compare); + + // The nodes are: + // [0, n): the sorted leaf nodes that we start with. + // [n]: we add a sentinel here. + // [n + 1, 2n): new parent nodes are added here, starting from + // (n+1). These are naturally in ascending order. + // [2n]: we add a sentinel at the end as well. + // There will be (2n+1) elements at the end. + const HuffmanTree sentinel(std::numeric_limits<uint32_t>::max(), -1, -1); + tree.push_back(sentinel); + tree.push_back(sentinel); + + size_t i = 0; // Points to the next leaf node. + size_t j = n + 1; // Points to the next non-leaf node. + for (size_t k = n - 1; k != 0; --k) { + size_t left, right; + if (tree[i].total_count <= tree[j].total_count) { + left = i; + ++i; + } else { + left = j; + ++j; + } + if (tree[i].total_count <= tree[j].total_count) { + right = i; + ++i; + } else { + right = j; + ++j; + } + + // The sentinel node becomes the parent node. + size_t j_end = tree.size() - 1; + tree[j_end].total_count = + tree[left].total_count + tree[right].total_count; + tree[j_end].index_left = static_cast<int16_t>(left); + tree[j_end].index_right_or_value = static_cast<int16_t>(right); + + // Add back the last sentinel node. + tree.push_back(sentinel); + } + JXL_DASSERT(tree.size() == 2 * n + 1); + SetDepth(tree[2 * n - 1], &tree[0], depth, 0); + + // We need to pack the Huffman tree in tree_limit bits. + // If this was not successful, add fake entities to the lowest values + // and retry. + if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) { + break; + } + } +} + +void Reverse(uint8_t* v, size_t start, size_t end) { + --end; + while (start < end) { + uint8_t tmp = v[start]; + v[start] = v[end]; + v[end] = tmp; + ++start; + --end; + } +} + +void WriteHuffmanTreeRepetitions(const uint8_t previous_value, + const uint8_t value, size_t repetitions, + size_t* tree_size, uint8_t* tree, + uint8_t* extra_bits_data) { + JXL_DASSERT(repetitions > 0); + if (previous_value != value) { + tree[*tree_size] = value; + extra_bits_data[*tree_size] = 0; + ++(*tree_size); + --repetitions; + } + if (repetitions == 7) { + tree[*tree_size] = value; + extra_bits_data[*tree_size] = 0; + ++(*tree_size); + --repetitions; + } + if (repetitions < 3) { + for (size_t i = 0; i < repetitions; ++i) { + tree[*tree_size] = value; + extra_bits_data[*tree_size] = 0; + ++(*tree_size); + } + } else { + repetitions -= 3; + size_t start = *tree_size; + while (true) { + tree[*tree_size] = 16; + extra_bits_data[*tree_size] = repetitions & 0x3; + ++(*tree_size); + repetitions >>= 2; + if (repetitions == 0) { + break; + } + --repetitions; + } + Reverse(tree, start, *tree_size); + Reverse(extra_bits_data, start, *tree_size); + } +} + +void WriteHuffmanTreeRepetitionsZeros(size_t repetitions, size_t* tree_size, + uint8_t* tree, uint8_t* extra_bits_data) { + if (repetitions == 11) { + tree[*tree_size] = 0; + extra_bits_data[*tree_size] = 0; + ++(*tree_size); + --repetitions; + } + if (repetitions < 3) { + for (size_t i = 0; i < repetitions; ++i) { + tree[*tree_size] = 0; + extra_bits_data[*tree_size] = 0; + ++(*tree_size); + } + } else { + repetitions -= 3; + size_t start = *tree_size; + while (true) { + tree[*tree_size] = 17; + extra_bits_data[*tree_size] = repetitions & 0x7; + ++(*tree_size); + repetitions >>= 3; + if (repetitions == 0) { + break; + } + --repetitions; + } + Reverse(tree, start, *tree_size); + Reverse(extra_bits_data, start, *tree_size); + } +} + +static void DecideOverRleUse(const uint8_t* depth, const size_t length, + bool* use_rle_for_non_zero, + bool* use_rle_for_zero) { + size_t total_reps_zero = 0; + size_t total_reps_non_zero = 0; + size_t count_reps_zero = 1; + size_t count_reps_non_zero = 1; + for (size_t i = 0; i < length;) { + const uint8_t value = depth[i]; + size_t reps = 1; + for (size_t k = i + 1; k < length && depth[k] == value; ++k) { + ++reps; + } + if (reps >= 3 && value == 0) { + total_reps_zero += reps; + ++count_reps_zero; + } + if (reps >= 4 && value != 0) { + total_reps_non_zero += reps; + ++count_reps_non_zero; + } + i += reps; + } + *use_rle_for_non_zero = total_reps_non_zero > count_reps_non_zero * 2; + *use_rle_for_zero = total_reps_zero > count_reps_zero * 2; +} + +void WriteHuffmanTree(const uint8_t* depth, size_t length, size_t* tree_size, + uint8_t* tree, uint8_t* extra_bits_data) { + uint8_t previous_value = 8; + + // Throw away trailing zeros. + size_t new_length = length; + for (size_t i = 0; i < length; ++i) { + if (depth[length - i - 1] == 0) { + --new_length; + } else { + break; + } + } + + // First gather statistics on if it is a good idea to do rle. + bool use_rle_for_non_zero = false; + bool use_rle_for_zero = false; + if (length > 50) { + // Find rle coding for longer codes. + // Shorter codes seem not to benefit from rle. + DecideOverRleUse(depth, new_length, &use_rle_for_non_zero, + &use_rle_for_zero); + } + + // Actual rle coding. + for (size_t i = 0; i < new_length;) { + const uint8_t value = depth[i]; + size_t reps = 1; + if ((value != 0 && use_rle_for_non_zero) || + (value == 0 && use_rle_for_zero)) { + for (size_t k = i + 1; k < new_length && depth[k] == value; ++k) { + ++reps; + } + } + if (value == 0) { + WriteHuffmanTreeRepetitionsZeros(reps, tree_size, tree, extra_bits_data); + } else { + WriteHuffmanTreeRepetitions(previous_value, value, reps, tree_size, tree, + extra_bits_data); + previous_value = value; + } + i += reps; + } +} + +namespace { + +uint16_t ReverseBits(int num_bits, uint16_t bits) { + static const size_t kLut[16] = {// Pre-reversed 4-bit values. + 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, + 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf}; + size_t retval = kLut[bits & 0xf]; + for (int i = 4; i < num_bits; i += 4) { + retval <<= 4; + bits = static_cast<uint16_t>(bits >> 4); + retval |= kLut[bits & 0xf]; + } + retval >>= (-num_bits & 0x3); + return static_cast<uint16_t>(retval); +} + +} // namespace + +void ConvertBitDepthsToSymbols(const uint8_t* depth, size_t len, + uint16_t* bits) { + // In Brotli, all bit depths are [1..15] + // 0 bit depth means that the symbol does not exist. + const int kMaxBits = 16; // 0..15 are values for bits + uint16_t bl_count[kMaxBits] = {0}; + { + for (size_t i = 0; i < len; ++i) { + ++bl_count[depth[i]]; + } + bl_count[0] = 0; + } + uint16_t next_code[kMaxBits]; + next_code[0] = 0; + { + int code = 0; + for (size_t i = 1; i < kMaxBits; ++i) { + code = (code + bl_count[i - 1]) << 1; + next_code[i] = static_cast<uint16_t>(code); + } + } + for (size_t i = 0; i < len; ++i) { + if (depth[i]) { + bits[i] = ReverseBits(depth[i], next_code[depth[i]]++); + } + } +} + +} // namespace jxl |