summaryrefslogtreecommitdiff
path: root/media/libjxl/src/lib/jxl/enc_ans.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libjxl/src/lib/jxl/enc_ans.cc')
-rw-r--r--media/libjxl/src/lib/jxl/enc_ans.cc1682
1 files changed, 1682 insertions, 0 deletions
diff --git a/media/libjxl/src/lib/jxl/enc_ans.cc b/media/libjxl/src/lib/jxl/enc_ans.cc
new file mode 100644
index 0000000000..31bd99bee8
--- /dev/null
+++ b/media/libjxl/src/lib/jxl/enc_ans.cc
@@ -0,0 +1,1682 @@
+// Copyright (c) the JPEG XL Project Authors. All rights reserved.
+//
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+#include "lib/jxl/enc_ans.h"
+
+#include <stdint.h>
+
+#include <algorithm>
+#include <array>
+#include <cmath>
+#include <limits>
+#include <numeric>
+#include <type_traits>
+#include <unordered_map>
+#include <utility>
+#include <vector>
+
+#include "lib/jxl/ans_common.h"
+#include "lib/jxl/aux_out.h"
+#include "lib/jxl/aux_out_fwd.h"
+#include "lib/jxl/base/bits.h"
+#include "lib/jxl/dec_ans.h"
+#include "lib/jxl/enc_cluster.h"
+#include "lib/jxl/enc_context_map.h"
+#include "lib/jxl/enc_huffman.h"
+#include "lib/jxl/fast_math-inl.h"
+#include "lib/jxl/fields.h"
+
+namespace jxl {
+
+namespace {
+
+bool ans_fuzzer_friendly_ = false;
+
+static const int kMaxNumSymbolsForSmallCode = 4;
+
+void ANSBuildInfoTable(const ANSHistBin* counts, const AliasTable::Entry* table,
+ size_t alphabet_size, size_t log_alpha_size,
+ ANSEncSymbolInfo* info) {
+ size_t log_entry_size = ANS_LOG_TAB_SIZE - log_alpha_size;
+ size_t entry_size_minus_1 = (1 << log_entry_size) - 1;
+ // create valid alias table for empty streams.
+ for (size_t s = 0; s < std::max<size_t>(1, alphabet_size); ++s) {
+ const ANSHistBin freq = s == alphabet_size ? ANS_TAB_SIZE : counts[s];
+ info[s].freq_ = static_cast<uint16_t>(freq);
+#ifdef USE_MULT_BY_RECIPROCAL
+ if (freq != 0) {
+ info[s].ifreq_ =
+ ((1ull << RECIPROCAL_PRECISION) + info[s].freq_ - 1) / info[s].freq_;
+ } else {
+ info[s].ifreq_ = 1; // shouldn't matter (symbol shouldn't occur), but...
+ }
+#endif
+ info[s].reverse_map_.resize(freq);
+ }
+ for (int i = 0; i < ANS_TAB_SIZE; i++) {
+ AliasTable::Symbol s =
+ AliasTable::Lookup(table, i, log_entry_size, entry_size_minus_1);
+ info[s.value].reverse_map_[s.offset] = i;
+ }
+}
+
+float EstimateDataBits(const ANSHistBin* histogram, const ANSHistBin* counts,
+ size_t len) {
+ float sum = 0.0f;
+ int total_histogram = 0;
+ int total_counts = 0;
+ for (size_t i = 0; i < len; ++i) {
+ total_histogram += histogram[i];
+ total_counts += counts[i];
+ if (histogram[i] > 0) {
+ JXL_ASSERT(counts[i] > 0);
+ // += histogram[i] * -log(counts[i]/total_counts)
+ sum += histogram[i] *
+ std::max(0.0f, ANS_LOG_TAB_SIZE - FastLog2f(counts[i]));
+ }
+ }
+ if (total_histogram > 0) {
+ JXL_ASSERT(total_counts == ANS_TAB_SIZE);
+ }
+ return sum;
+}
+
+float EstimateDataBitsFlat(const ANSHistBin* histogram, size_t len) {
+ const float flat_bits = std::max(FastLog2f(len), 0.0f);
+ int total_histogram = 0;
+ for (size_t i = 0; i < len; ++i) {
+ total_histogram += histogram[i];
+ }
+ return total_histogram * flat_bits;
+}
+
+// Static Huffman code for encoding logcounts. The last symbol is used as RLE
+// sequence.
+static const uint8_t kLogCountBitLengths[ANS_LOG_TAB_SIZE + 2] = {
+ 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 6, 7, 7,
+};
+static const uint8_t kLogCountSymbols[ANS_LOG_TAB_SIZE + 2] = {
+ 17, 11, 15, 3, 9, 7, 4, 2, 5, 6, 0, 33, 1, 65,
+};
+
+// Returns the difference between largest count that can be represented and is
+// smaller than "count" and smallest representable count larger than "count".
+static int SmallestIncrement(uint32_t count, uint32_t shift) {
+ int bits = count == 0 ? -1 : FloorLog2Nonzero(count);
+ int drop_bits = bits - GetPopulationCountPrecision(bits, shift);
+ return drop_bits < 0 ? 1 : (1 << drop_bits);
+}
+
+template <bool minimize_error_of_sum>
+bool RebalanceHistogram(const float* targets, int max_symbol, int table_size,
+ uint32_t shift, int* omit_pos, ANSHistBin* counts) {
+ int sum = 0;
+ float sum_nonrounded = 0.0;
+ int remainder_pos = 0; // if all of them are handled in first loop
+ int remainder_log = -1;
+ for (int n = 0; n < max_symbol; ++n) {
+ if (targets[n] > 0 && targets[n] < 1.0f) {
+ counts[n] = 1;
+ sum_nonrounded += targets[n];
+ sum += counts[n];
+ }
+ }
+ const float discount_ratio =
+ (table_size - sum) / (table_size - sum_nonrounded);
+ JXL_ASSERT(discount_ratio > 0);
+ JXL_ASSERT(discount_ratio <= 1.0f);
+ // Invariant for minimize_error_of_sum == true:
+ // abs(sum - sum_nonrounded)
+ // <= SmallestIncrement(max(targets[])) + max_symbol
+ for (int n = 0; n < max_symbol; ++n) {
+ if (targets[n] >= 1.0f) {
+ sum_nonrounded += targets[n];
+ counts[n] =
+ static_cast<ANSHistBin>(targets[n] * discount_ratio); // truncate
+ if (counts[n] == 0) counts[n] = 1;
+ if (counts[n] == table_size) counts[n] = table_size - 1;
+ // Round the count to the closest nonzero multiple of SmallestIncrement
+ // (when minimize_error_of_sum is false) or one of two closest so as to
+ // keep the sum as close as possible to sum_nonrounded.
+ int inc = SmallestIncrement(counts[n], shift);
+ counts[n] -= counts[n] & (inc - 1);
+ // TODO(robryk): Should we rescale targets[n]?
+ const float target =
+ minimize_error_of_sum ? (sum_nonrounded - sum) : targets[n];
+ if (counts[n] == 0 ||
+ (target > counts[n] + inc / 2 && counts[n] + inc < table_size)) {
+ counts[n] += inc;
+ }
+ sum += counts[n];
+ const int count_log = FloorLog2Nonzero(static_cast<uint32_t>(counts[n]));
+ if (count_log > remainder_log) {
+ remainder_pos = n;
+ remainder_log = count_log;
+ }
+ }
+ }
+ JXL_ASSERT(remainder_pos != -1);
+ // NOTE: This is the only place where counts could go negative. We could
+ // detect that, return false and make ANSHistBin uint32_t.
+ counts[remainder_pos] -= sum - table_size;
+ *omit_pos = remainder_pos;
+ return counts[remainder_pos] > 0;
+}
+
+Status NormalizeCounts(ANSHistBin* counts, int* omit_pos, const int length,
+ const int precision_bits, uint32_t shift,
+ int* num_symbols, int* symbols) {
+ const int32_t table_size = 1 << precision_bits; // target sum / table size
+ uint64_t total = 0;
+ int max_symbol = 0;
+ int symbol_count = 0;
+ for (int n = 0; n < length; ++n) {
+ total += counts[n];
+ if (counts[n] > 0) {
+ if (symbol_count < kMaxNumSymbolsForSmallCode) {
+ symbols[symbol_count] = n;
+ }
+ ++symbol_count;
+ max_symbol = n + 1;
+ }
+ }
+ *num_symbols = symbol_count;
+ if (symbol_count == 0) {
+ return true;
+ }
+ if (symbol_count == 1) {
+ counts[symbols[0]] = table_size;
+ return true;
+ }
+ if (symbol_count > table_size)
+ return JXL_FAILURE("Too many entries in an ANS histogram");
+
+ const float norm = 1.f * table_size / total;
+ std::vector<float> targets(max_symbol);
+ for (size_t n = 0; n < targets.size(); ++n) {
+ targets[n] = norm * counts[n];
+ }
+ if (!RebalanceHistogram<false>(&targets[0], max_symbol, table_size, shift,
+ omit_pos, counts)) {
+ // Use an alternative rebalancing mechanism if the one above failed
+ // to create a histogram that is positive wherever the original one was.
+ if (!RebalanceHistogram<true>(&targets[0], max_symbol, table_size, shift,
+ omit_pos, counts)) {
+ return JXL_FAILURE("Logic error: couldn't rebalance a histogram");
+ }
+ }
+ return true;
+}
+
+struct SizeWriter {
+ size_t size = 0;
+ void Write(size_t num, size_t bits) { size += num; }
+};
+
+template <typename Writer>
+void StoreVarLenUint8(size_t n, Writer* writer) {
+ JXL_DASSERT(n <= 255);
+ if (n == 0) {
+ writer->Write(1, 0);
+ } else {
+ writer->Write(1, 1);
+ size_t nbits = FloorLog2Nonzero(n);
+ writer->Write(3, nbits);
+ writer->Write(nbits, n - (1ULL << nbits));
+ }
+}
+
+template <typename Writer>
+void StoreVarLenUint16(size_t n, Writer* writer) {
+ JXL_DASSERT(n <= 65535);
+ if (n == 0) {
+ writer->Write(1, 0);
+ } else {
+ writer->Write(1, 1);
+ size_t nbits = FloorLog2Nonzero(n);
+ writer->Write(4, nbits);
+ writer->Write(nbits, n - (1ULL << nbits));
+ }
+}
+
+template <typename Writer>
+bool EncodeCounts(const ANSHistBin* counts, const int alphabet_size,
+ const int omit_pos, const int num_symbols, uint32_t shift,
+ const int* symbols, Writer* writer) {
+ bool ok = true;
+ if (num_symbols <= 2) {
+ // Small tree marker to encode 1-2 symbols.
+ writer->Write(1, 1);
+ if (num_symbols == 0) {
+ writer->Write(1, 0);
+ StoreVarLenUint8(0, writer);
+ } else {
+ writer->Write(1, num_symbols - 1);
+ for (int i = 0; i < num_symbols; ++i) {
+ StoreVarLenUint8(symbols[i], writer);
+ }
+ }
+ if (num_symbols == 2) {
+ writer->Write(ANS_LOG_TAB_SIZE, counts[symbols[0]]);
+ }
+ } else {
+ // Mark non-small tree.
+ writer->Write(1, 0);
+ // Mark non-flat histogram.
+ writer->Write(1, 0);
+
+ // Precompute sequences for RLE encoding. Contains the number of identical
+ // values starting at a given index. Only contains the value at the first
+ // element of the series.
+ std::vector<uint32_t> same(alphabet_size, 0);
+ int last = 0;
+ for (int i = 1; i < alphabet_size; i++) {
+ // Store the sequence length once different symbol reached, or we're at
+ // the end, or the length is longer than we can encode, or we are at
+ // the omit_pos. We don't support including the omit_pos in an RLE
+ // sequence because this value may use a different amount of log2 bits
+ // than standard, it is too complex to handle in the decoder.
+ if (counts[i] != counts[last] || i + 1 == alphabet_size ||
+ (i - last) >= 255 || i == omit_pos || i == omit_pos + 1) {
+ same[last] = (i - last);
+ last = i + 1;
+ }
+ }
+
+ int length = 0;
+ std::vector<int> logcounts(alphabet_size);
+ int omit_log = 0;
+ for (int i = 0; i < alphabet_size; ++i) {
+ JXL_ASSERT(counts[i] <= ANS_TAB_SIZE);
+ JXL_ASSERT(counts[i] >= 0);
+ if (i == omit_pos) {
+ length = i + 1;
+ } else if (counts[i] > 0) {
+ logcounts[i] = FloorLog2Nonzero(static_cast<uint32_t>(counts[i])) + 1;
+ length = i + 1;
+ if (i < omit_pos) {
+ omit_log = std::max(omit_log, logcounts[i] + 1);
+ } else {
+ omit_log = std::max(omit_log, logcounts[i]);
+ }
+ }
+ }
+ logcounts[omit_pos] = omit_log;
+
+ // Elias gamma-like code for shift. Only difference is that if the number
+ // of bits to be encoded is equal to FloorLog2(ANS_LOG_TAB_SIZE+1), we skip
+ // the terminating 0 in unary coding.
+ int upper_bound_log = FloorLog2Nonzero(ANS_LOG_TAB_SIZE + 1);
+ int log = FloorLog2Nonzero(shift + 1);
+ writer->Write(log, (1 << log) - 1);
+ if (log != upper_bound_log) writer->Write(1, 0);
+ writer->Write(log, ((1 << log) - 1) & (shift + 1));
+
+ // Since num_symbols >= 3, we know that length >= 3, therefore we encode
+ // length - 3.
+ if (length - 3 > 255) {
+ // Pretend that everything is OK, but complain about correctness later.
+ StoreVarLenUint8(255, writer);
+ ok = false;
+ } else {
+ StoreVarLenUint8(length - 3, writer);
+ }
+
+ // The logcount values are encoded with a static Huffman code.
+ static const size_t kMinReps = 4;
+ size_t rep = ANS_LOG_TAB_SIZE + 1;
+ for (int i = 0; i < length; ++i) {
+ if (i > 0 && same[i - 1] > kMinReps) {
+ // Encode the RLE symbol and skip the repeated ones.
+ writer->Write(kLogCountBitLengths[rep], kLogCountSymbols[rep]);
+ StoreVarLenUint8(same[i - 1] - kMinReps - 1, writer);
+ i += same[i - 1] - 2;
+ continue;
+ }
+ writer->Write(kLogCountBitLengths[logcounts[i]],
+ kLogCountSymbols[logcounts[i]]);
+ }
+ for (int i = 0; i < length; ++i) {
+ if (i > 0 && same[i - 1] > kMinReps) {
+ // Skip symbols encoded by RLE.
+ i += same[i - 1] - 2;
+ continue;
+ }
+ if (logcounts[i] > 1 && i != omit_pos) {
+ int bitcount = GetPopulationCountPrecision(logcounts[i] - 1, shift);
+ int drop_bits = logcounts[i] - 1 - bitcount;
+ JXL_CHECK((counts[i] & ((1 << drop_bits) - 1)) == 0);
+ writer->Write(bitcount, (counts[i] >> drop_bits) - (1 << bitcount));
+ }
+ }
+ }
+ return ok;
+}
+
+void EncodeFlatHistogram(const int alphabet_size, BitWriter* writer) {
+ // Mark non-small tree.
+ writer->Write(1, 0);
+ // Mark uniform histogram.
+ writer->Write(1, 1);
+ JXL_ASSERT(alphabet_size > 0);
+ // Encode alphabet size.
+ StoreVarLenUint8(alphabet_size - 1, writer);
+}
+
+float ComputeHistoAndDataCost(const ANSHistBin* histogram, size_t alphabet_size,
+ uint32_t method) {
+ if (method == 0) { // Flat code
+ return ANS_LOG_TAB_SIZE + 2 +
+ EstimateDataBitsFlat(histogram, alphabet_size);
+ }
+ // Non-flat: shift = method-1.
+ uint32_t shift = method - 1;
+ std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
+ int omit_pos = 0;
+ int num_symbols;
+ int symbols[kMaxNumSymbolsForSmallCode] = {};
+ JXL_CHECK(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
+ ANS_LOG_TAB_SIZE, shift, &num_symbols, symbols));
+ SizeWriter writer;
+ // Ignore the correctness, no real encoding happens at this stage.
+ (void)EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols, shift,
+ symbols, &writer);
+ return writer.size +
+ EstimateDataBits(histogram, counts.data(), alphabet_size);
+}
+
+uint32_t ComputeBestMethod(
+ const ANSHistBin* histogram, size_t alphabet_size, float* cost,
+ HistogramParams::ANSHistogramStrategy ans_histogram_strategy) {
+ size_t method = 0;
+ float fcost = ComputeHistoAndDataCost(histogram, alphabet_size, 0);
+ auto try_shift = [&](size_t shift) {
+ float c = ComputeHistoAndDataCost(histogram, alphabet_size, shift + 1);
+ if (c < fcost) {
+ method = shift + 1;
+ fcost = c;
+ }
+ };
+ switch (ans_histogram_strategy) {
+ case HistogramParams::ANSHistogramStrategy::kPrecise: {
+ for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift++) {
+ try_shift(shift);
+ }
+ break;
+ }
+ case HistogramParams::ANSHistogramStrategy::kApproximate: {
+ for (uint32_t shift = 0; shift <= ANS_LOG_TAB_SIZE; shift += 2) {
+ try_shift(shift);
+ }
+ break;
+ }
+ case HistogramParams::ANSHistogramStrategy::kFast: {
+ try_shift(0);
+ try_shift(ANS_LOG_TAB_SIZE / 2);
+ try_shift(ANS_LOG_TAB_SIZE);
+ break;
+ }
+ };
+ *cost = fcost;
+ return method;
+}
+
+} // namespace
+
+// Returns an estimate of the cost of encoding this histogram and the
+// corresponding data.
+size_t BuildAndStoreANSEncodingData(
+ HistogramParams::ANSHistogramStrategy ans_histogram_strategy,
+ const ANSHistBin* histogram, size_t alphabet_size, size_t log_alpha_size,
+ bool use_prefix_code, ANSEncSymbolInfo* info, BitWriter* writer) {
+ if (use_prefix_code) {
+ if (alphabet_size <= 1) return 0;
+ std::vector<uint32_t> histo(alphabet_size);
+ for (size_t i = 0; i < alphabet_size; i++) {
+ histo[i] = histogram[i];
+ JXL_CHECK(histogram[i] >= 0);
+ }
+ size_t cost = 0;
+ {
+ std::vector<uint8_t> depths(alphabet_size);
+ std::vector<uint16_t> bits(alphabet_size);
+ BitWriter tmp_writer;
+ BitWriter* w = writer ? writer : &tmp_writer;
+ size_t start = w->BitsWritten();
+ BitWriter::Allotment allotment(
+ w, 8 * alphabet_size + 8); // safe upper bound
+ BuildAndStoreHuffmanTree(histo.data(), alphabet_size, depths.data(),
+ bits.data(), w);
+ ReclaimAndCharge(w, &allotment, 0, /*aux_out=*/nullptr);
+
+ for (size_t i = 0; i < alphabet_size; i++) {
+ info[i].bits = depths[i] == 0 ? 0 : bits[i];
+ info[i].depth = depths[i];
+ }
+ cost = w->BitsWritten() - start;
+ }
+ // Estimate data cost.
+ for (size_t i = 0; i < alphabet_size; i++) {
+ cost += histogram[i] * info[i].depth;
+ }
+ return cost;
+ }
+ JXL_ASSERT(alphabet_size <= ANS_TAB_SIZE);
+ // Ensure we ignore trailing zeros in the histogram.
+ if (alphabet_size != 0) {
+ size_t largest_symbol = 0;
+ for (size_t i = 0; i < alphabet_size; i++) {
+ if (histogram[i] != 0) largest_symbol = i;
+ }
+ alphabet_size = largest_symbol + 1;
+ }
+ float cost;
+ uint32_t method = ComputeBestMethod(histogram, alphabet_size, &cost,
+ ans_histogram_strategy);
+ JXL_ASSERT(cost >= 0);
+ int num_symbols;
+ int symbols[kMaxNumSymbolsForSmallCode] = {};
+ std::vector<ANSHistBin> counts(histogram, histogram + alphabet_size);
+ if (!counts.empty()) {
+ size_t sum = 0;
+ for (size_t i = 0; i < counts.size(); i++) {
+ sum += counts[i];
+ }
+ if (sum == 0) {
+ counts[0] = ANS_TAB_SIZE;
+ }
+ }
+ if (method == 0) {
+ counts = CreateFlatHistogram(alphabet_size, ANS_TAB_SIZE);
+ AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE];
+ InitAliasTable(counts, ANS_TAB_SIZE, log_alpha_size, a);
+ ANSBuildInfoTable(counts.data(), a, alphabet_size, log_alpha_size, info);
+ if (writer != nullptr) {
+ EncodeFlatHistogram(alphabet_size, writer);
+ }
+ return cost;
+ }
+ int omit_pos = 0;
+ uint32_t shift = method - 1;
+ JXL_CHECK(NormalizeCounts(counts.data(), &omit_pos, alphabet_size,
+ ANS_LOG_TAB_SIZE, shift, &num_symbols, symbols));
+ AliasTable::Entry a[ANS_MAX_ALPHABET_SIZE];
+ InitAliasTable(counts, ANS_TAB_SIZE, log_alpha_size, a);
+ ANSBuildInfoTable(counts.data(), a, alphabet_size, log_alpha_size, info);
+ if (writer != nullptr) {
+ bool ok = EncodeCounts(counts.data(), alphabet_size, omit_pos, num_symbols,
+ shift, symbols, writer);
+ (void)ok;
+ JXL_DASSERT(ok);
+ }
+ return cost;
+}
+
+float ANSPopulationCost(const ANSHistBin* data, size_t alphabet_size) {
+ float c;
+ ComputeBestMethod(data, alphabet_size, &c,
+ HistogramParams::ANSHistogramStrategy::kFast);
+ return c;
+}
+
+template <typename Writer>
+void EncodeUintConfig(const HybridUintConfig uint_config, Writer* writer,
+ size_t log_alpha_size) {
+ writer->Write(CeilLog2Nonzero(log_alpha_size + 1),
+ uint_config.split_exponent);
+ if (uint_config.split_exponent == log_alpha_size) {
+ return; // msb/lsb don't matter.
+ }
+ size_t nbits = CeilLog2Nonzero(uint_config.split_exponent + 1);
+ writer->Write(nbits, uint_config.msb_in_token);
+ nbits = CeilLog2Nonzero(uint_config.split_exponent -
+ uint_config.msb_in_token + 1);
+ writer->Write(nbits, uint_config.lsb_in_token);
+}
+template <typename Writer>
+void EncodeUintConfigs(const std::vector<HybridUintConfig>& uint_config,
+ Writer* writer, size_t log_alpha_size) {
+ // TODO(veluca): RLE?
+ for (size_t i = 0; i < uint_config.size(); i++) {
+ EncodeUintConfig(uint_config[i], writer, log_alpha_size);
+ }
+}
+template void EncodeUintConfigs(const std::vector<HybridUintConfig>&,
+ BitWriter*, size_t);
+
+namespace {
+
+void ChooseUintConfigs(const HistogramParams& params,
+ const std::vector<std::vector<Token>>& tokens,
+ const std::vector<uint8_t>& context_map,
+ std::vector<Histogram>* clustered_histograms,
+ EntropyEncodingData* codes, size_t* log_alpha_size) {
+ codes->uint_config.resize(clustered_histograms->size());
+
+ if (params.uint_method == HistogramParams::HybridUintMethod::kNone) return;
+ if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
+ codes->uint_config.clear();
+ codes->uint_config.resize(clustered_histograms->size(),
+ HybridUintConfig(0, 0, 0));
+ return;
+ }
+ if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
+ codes->uint_config.clear();
+ codes->uint_config.resize(clustered_histograms->size(),
+ HybridUintConfig(2, 0, 1));
+ return;
+ }
+
+ // Brute-force method that tries a few options.
+ std::vector<HybridUintConfig> configs;
+ if (params.uint_method == HistogramParams::HybridUintMethod::kBest) {
+ configs = {
+ HybridUintConfig(4, 2, 0), // default
+ HybridUintConfig(4, 1, 0), // less precise
+ HybridUintConfig(4, 2, 1), // add sign
+ HybridUintConfig(4, 2, 2), // add sign+parity
+ HybridUintConfig(4, 1, 2), // add parity but less msb
+ // Same as above, but more direct coding.
+ HybridUintConfig(5, 2, 0), HybridUintConfig(5, 1, 0),
+ HybridUintConfig(5, 2, 1), HybridUintConfig(5, 2, 2),
+ HybridUintConfig(5, 1, 2),
+ // Same as above, but less direct coding.
+ HybridUintConfig(3, 2, 0), HybridUintConfig(3, 1, 0),
+ HybridUintConfig(3, 2, 1), HybridUintConfig(3, 1, 2),
+ // For near-lossless.
+ HybridUintConfig(4, 1, 3), HybridUintConfig(5, 1, 4),
+ HybridUintConfig(5, 2, 3), HybridUintConfig(6, 1, 5),
+ HybridUintConfig(6, 2, 4), HybridUintConfig(6, 0, 0),
+ // Other
+ HybridUintConfig(0, 0, 0), // varlenuint
+ HybridUintConfig(2, 0, 1), // works well for ctx map
+ HybridUintConfig(7, 0, 0), // direct coding
+ HybridUintConfig(8, 0, 0), // direct coding
+ HybridUintConfig(9, 0, 0), // direct coding
+ HybridUintConfig(10, 0, 0), // direct coding
+ HybridUintConfig(11, 0, 0), // direct coding
+ HybridUintConfig(12, 0, 0), // direct coding
+ };
+ } else if (params.uint_method == HistogramParams::HybridUintMethod::kFast) {
+ configs = {
+ HybridUintConfig(4, 2, 0), // default
+ HybridUintConfig(4, 1, 2), // add parity but less msb
+ HybridUintConfig(0, 0, 0), // smallest histograms
+ HybridUintConfig(2, 0, 1), // works well for ctx map
+ };
+ }
+
+ std::vector<float> costs(clustered_histograms->size(),
+ std::numeric_limits<float>::max());
+ std::vector<uint32_t> extra_bits(clustered_histograms->size());
+ std::vector<uint8_t> is_valid(clustered_histograms->size());
+ size_t max_alpha =
+ codes->use_prefix_code ? PREFIX_MAX_ALPHABET_SIZE : ANS_MAX_ALPHABET_SIZE;
+ for (HybridUintConfig cfg : configs) {
+ std::fill(is_valid.begin(), is_valid.end(), true);
+ std::fill(extra_bits.begin(), extra_bits.end(), 0);
+
+ for (size_t i = 0; i < clustered_histograms->size(); i++) {
+ (*clustered_histograms)[i].Clear();
+ }
+ for (size_t i = 0; i < tokens.size(); ++i) {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token token = tokens[i][j];
+ // TODO(veluca): do not ignore lz77 commands.
+ if (token.is_lz77_length) continue;
+ size_t histo = context_map[token.context];
+ uint32_t tok, nbits, bits;
+ cfg.Encode(token.value, &tok, &nbits, &bits);
+ if (tok >= max_alpha ||
+ (codes->lz77.enabled && tok >= codes->lz77.min_symbol)) {
+ is_valid[histo] = false;
+ continue;
+ }
+ extra_bits[histo] += nbits;
+ (*clustered_histograms)[histo].Add(tok);
+ }
+ }
+
+ for (size_t i = 0; i < clustered_histograms->size(); i++) {
+ if (!is_valid[i]) continue;
+ float cost = (*clustered_histograms)[i].PopulationCost() + extra_bits[i];
+ // add signaling cost of the hybriduintconfig itself
+ cost += CeilLog2Nonzero(cfg.split_exponent + 1);
+ cost += CeilLog2Nonzero(cfg.split_exponent - cfg.msb_in_token + 1);
+ if (cost < costs[i]) {
+ codes->uint_config[i] = cfg;
+ costs[i] = cost;
+ }
+ }
+ }
+
+ // Rebuild histograms.
+ for (size_t i = 0; i < clustered_histograms->size(); i++) {
+ (*clustered_histograms)[i].Clear();
+ }
+ *log_alpha_size = 4;
+ for (size_t i = 0; i < tokens.size(); ++i) {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token token = tokens[i][j];
+ uint32_t tok, nbits, bits;
+ size_t histo = context_map[token.context];
+ (token.is_lz77_length ? codes->lz77.length_uint_config
+ : codes->uint_config[histo])
+ .Encode(token.value, &tok, &nbits, &bits);
+ tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
+ (*clustered_histograms)[histo].Add(tok);
+ while (tok >= (1u << *log_alpha_size)) (*log_alpha_size)++;
+ }
+ }
+#if JXL_ENABLE_ASSERT
+ size_t max_log_alpha_size = codes->use_prefix_code ? PREFIX_MAX_BITS : 8;
+ JXL_ASSERT(*log_alpha_size <= max_log_alpha_size);
+#endif
+}
+
+class HistogramBuilder {
+ public:
+ explicit HistogramBuilder(const size_t num_contexts)
+ : histograms_(num_contexts) {}
+
+ void VisitSymbol(int symbol, size_t histo_idx) {
+ JXL_DASSERT(histo_idx < histograms_.size());
+ histograms_[histo_idx].Add(symbol);
+ }
+
+ // NOTE: `layer` is only for clustered_entropy; caller does ReclaimAndCharge.
+ size_t BuildAndStoreEntropyCodes(
+ const HistogramParams& params,
+ const std::vector<std::vector<Token>>& tokens, EntropyEncodingData* codes,
+ std::vector<uint8_t>* context_map, bool use_prefix_code,
+ BitWriter* writer, size_t layer, AuxOut* aux_out) const {
+ size_t cost = 0;
+ codes->encoding_info.clear();
+ std::vector<Histogram> clustered_histograms(histograms_);
+ context_map->resize(histograms_.size());
+ if (histograms_.size() > 1) {
+ if (!ans_fuzzer_friendly_) {
+ std::vector<uint32_t> histogram_symbols;
+ ClusterHistograms(params, histograms_, histograms_.size(),
+ kClustersLimit, &clustered_histograms,
+ &histogram_symbols);
+ for (size_t c = 0; c < histograms_.size(); ++c) {
+ (*context_map)[c] = static_cast<uint8_t>(histogram_symbols[c]);
+ }
+ } else {
+ fill(context_map->begin(), context_map->end(), 0);
+ size_t max_symbol = 0;
+ for (const Histogram& h : histograms_) {
+ max_symbol = std::max(h.data_.size(), max_symbol);
+ }
+ size_t num_symbols = 1 << CeilLog2Nonzero(max_symbol + 1);
+ clustered_histograms.resize(1);
+ clustered_histograms[0].Clear();
+ for (size_t i = 0; i < num_symbols; i++) {
+ clustered_histograms[0].Add(i);
+ }
+ }
+ if (writer != nullptr) {
+ EncodeContextMap(*context_map, clustered_histograms.size(), writer);
+ }
+ }
+ if (aux_out != nullptr) {
+ for (size_t i = 0; i < clustered_histograms.size(); ++i) {
+ aux_out->layers[layer].clustered_entropy +=
+ clustered_histograms[i].ShannonEntropy();
+ }
+ }
+ codes->use_prefix_code = use_prefix_code;
+ size_t log_alpha_size = codes->lz77.enabled ? 8 : 7; // Sane default.
+ if (ans_fuzzer_friendly_) {
+ codes->uint_config.clear();
+ codes->uint_config.resize(1, HybridUintConfig(7, 0, 0));
+ } else {
+ ChooseUintConfigs(params, tokens, *context_map, &clustered_histograms,
+ codes, &log_alpha_size);
+ }
+ if (log_alpha_size < 5) log_alpha_size = 5;
+ SizeWriter size_writer; // Used if writer == nullptr to estimate costs.
+ cost += 1;
+ if (writer) writer->Write(1, use_prefix_code);
+
+ if (use_prefix_code) {
+ log_alpha_size = PREFIX_MAX_BITS;
+ } else {
+ cost += 2;
+ }
+ if (writer == nullptr) {
+ EncodeUintConfigs(codes->uint_config, &size_writer, log_alpha_size);
+ } else {
+ if (!use_prefix_code) writer->Write(2, log_alpha_size - 5);
+ EncodeUintConfigs(codes->uint_config, writer, log_alpha_size);
+ }
+ if (use_prefix_code) {
+ for (size_t c = 0; c < clustered_histograms.size(); ++c) {
+ size_t num_symbol = 1;
+ for (size_t i = 0; i < clustered_histograms[c].data_.size(); i++) {
+ if (clustered_histograms[c].data_[i]) num_symbol = i + 1;
+ }
+ if (writer) {
+ StoreVarLenUint16(num_symbol - 1, writer);
+ } else {
+ StoreVarLenUint16(num_symbol - 1, &size_writer);
+ }
+ }
+ }
+ cost += size_writer.size;
+ for (size_t c = 0; c < clustered_histograms.size(); ++c) {
+ size_t num_symbol = 1;
+ for (size_t i = 0; i < clustered_histograms[c].data_.size(); i++) {
+ if (clustered_histograms[c].data_[i]) num_symbol = i + 1;
+ }
+ codes->encoding_info.emplace_back();
+ codes->encoding_info.back().resize(std::max<size_t>(1, num_symbol));
+
+ BitWriter::Allotment allotment(writer, 256 + num_symbol * 24);
+ cost += BuildAndStoreANSEncodingData(
+ params.ans_histogram_strategy, clustered_histograms[c].data_.data(),
+ num_symbol, log_alpha_size, use_prefix_code,
+ codes->encoding_info.back().data(), writer);
+ allotment.FinishedHistogram(writer);
+ ReclaimAndCharge(writer, &allotment, layer, aux_out);
+ }
+ return cost;
+ }
+
+ const Histogram& Histo(size_t i) const { return histograms_[i]; }
+
+ private:
+ std::vector<Histogram> histograms_;
+};
+
+class SymbolCostEstimator {
+ public:
+ SymbolCostEstimator(size_t num_contexts, bool force_huffman,
+ const std::vector<std::vector<Token>>& tokens,
+ const LZ77Params& lz77) {
+ HistogramBuilder builder(num_contexts);
+ // Build histograms for estimating lz77 savings.
+ HybridUintConfig uint_config;
+ for (size_t i = 0; i < tokens.size(); ++i) {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token token = tokens[i][j];
+ uint32_t tok, nbits, bits;
+ (token.is_lz77_length ? lz77.length_uint_config : uint_config)
+ .Encode(token.value, &tok, &nbits, &bits);
+ tok += token.is_lz77_length ? lz77.min_symbol : 0;
+ builder.VisitSymbol(tok, token.context);
+ }
+ }
+ max_alphabet_size_ = 0;
+ for (size_t i = 0; i < num_contexts; i++) {
+ max_alphabet_size_ =
+ std::max(max_alphabet_size_, builder.Histo(i).data_.size());
+ }
+ bits_.resize(num_contexts * max_alphabet_size_);
+ // TODO(veluca): SIMD?
+ add_symbol_cost_.resize(num_contexts);
+ for (size_t i = 0; i < num_contexts; i++) {
+ float inv_total = 1.0f / (builder.Histo(i).total_count_ + 1e-8f);
+ float total_cost = 0;
+ for (size_t j = 0; j < builder.Histo(i).data_.size(); j++) {
+ size_t cnt = builder.Histo(i).data_[j];
+ float cost = 0;
+ if (cnt != 0 && cnt != builder.Histo(i).total_count_) {
+ cost = -FastLog2f(cnt * inv_total);
+ if (force_huffman) cost = std::ceil(cost);
+ } else if (cnt == 0) {
+ cost = ANS_LOG_TAB_SIZE; // Highest possible cost.
+ }
+ bits_[i * max_alphabet_size_ + j] = cost;
+ total_cost += cost * builder.Histo(i).data_[j];
+ }
+ // Penalty for adding a lz77 symbol to this contest (only used for static
+ // cost model). Higher penalty for contexts that have a very low
+ // per-symbol entropy.
+ add_symbol_cost_[i] = std::max(0.0f, 6.0f - total_cost * inv_total);
+ }
+ }
+ float Bits(size_t ctx, size_t sym) const {
+ return bits_[ctx * max_alphabet_size_ + sym];
+ }
+ float LenCost(size_t ctx, size_t len, const LZ77Params& lz77) const {
+ uint32_t nbits, bits, tok;
+ lz77.length_uint_config.Encode(len, &tok, &nbits, &bits);
+ tok += lz77.min_symbol;
+ return nbits + Bits(ctx, tok);
+ }
+ float DistCost(size_t len, const LZ77Params& lz77) const {
+ uint32_t nbits, bits, tok;
+ HybridUintConfig().Encode(len, &tok, &nbits, &bits);
+ return nbits + Bits(lz77.nonserialized_distance_context, tok);
+ }
+ float AddSymbolCost(size_t idx) const { return add_symbol_cost_[idx]; }
+
+ private:
+ size_t max_alphabet_size_;
+ std::vector<float> bits_;
+ std::vector<float> add_symbol_cost_;
+};
+
+void ApplyLZ77_RLE(const HistogramParams& params, size_t num_contexts,
+ const std::vector<std::vector<Token>>& tokens,
+ LZ77Params& lz77,
+ std::vector<std::vector<Token>>& tokens_lz77) {
+ // TODO(veluca): tune heuristics here.
+ SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
+ float bit_decrease = 0;
+ size_t total_symbols = 0;
+ tokens_lz77.resize(tokens.size());
+ std::vector<float> sym_cost;
+ HybridUintConfig uint_config;
+ for (size_t stream = 0; stream < tokens.size(); stream++) {
+ size_t distance_multiplier =
+ params.image_widths.size() > stream ? params.image_widths[stream] : 0;
+ const auto& in = tokens[stream];
+ auto& out = tokens_lz77[stream];
+ total_symbols += in.size();
+ // Cumulative sum of bit costs.
+ sym_cost.resize(in.size() + 1);
+ for (size_t i = 0; i < in.size(); i++) {
+ uint32_t tok, nbits, unused_bits;
+ uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
+ sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
+ }
+ out.reserve(in.size());
+ for (size_t i = 0; i < in.size(); i++) {
+ size_t num_to_copy = 0;
+ size_t distance_symbol = 0; // 1 for RLE.
+ if (distance_multiplier != 0) {
+ distance_symbol = 1; // Special distance 1 if enabled.
+ JXL_DASSERT(kSpecialDistances[1][0] == 1);
+ JXL_DASSERT(kSpecialDistances[1][1] == 0);
+ }
+ if (i > 0) {
+ for (; i + num_to_copy < in.size(); num_to_copy++) {
+ if (in[i + num_to_copy].value != in[i - 1].value) {
+ break;
+ }
+ }
+ }
+ if (num_to_copy == 0) {
+ out.push_back(in[i]);
+ continue;
+ }
+ float cost = sym_cost[i + num_to_copy] - sym_cost[i];
+ // This subtraction might overflow, but that's OK.
+ size_t lz77_len = num_to_copy - lz77.min_length;
+ float lz77_cost = num_to_copy >= lz77.min_length
+ ? CeilLog2Nonzero(lz77_len + 1) + 1
+ : 0;
+ if (num_to_copy < lz77.min_length || cost <= lz77_cost) {
+ for (size_t j = 0; j < num_to_copy; j++) {
+ out.push_back(in[i + j]);
+ }
+ i += num_to_copy - 1;
+ continue;
+ }
+ // Output the LZ77 length
+ out.emplace_back(in[i].context, lz77_len);
+ out.back().is_lz77_length = true;
+ i += num_to_copy - 1;
+ bit_decrease += cost - lz77_cost;
+ // Output the LZ77 copy distance.
+ out.emplace_back(lz77.nonserialized_distance_context, distance_symbol);
+ }
+ }
+
+ if (bit_decrease > total_symbols * 0.2 + 16) {
+ lz77.enabled = true;
+ }
+}
+
+// Hash chain for LZ77 matching
+struct HashChain {
+ size_t size_;
+ std::vector<uint32_t> data_;
+
+ unsigned hash_num_values_ = 32768;
+ unsigned hash_mask_ = hash_num_values_ - 1;
+ unsigned hash_shift_ = 5;
+
+ std::vector<int> head;
+ std::vector<uint32_t> chain;
+ std::vector<int> val;
+
+ // Speed up repetitions of zero
+ std::vector<int> headz;
+ std::vector<uint32_t> chainz;
+ std::vector<uint32_t> zeros;
+ uint32_t numzeros = 0;
+
+ size_t window_size_;
+ size_t window_mask_;
+ size_t min_length_;
+ size_t max_length_;
+
+ // Map of special distance codes.
+ std::unordered_map<int, int> special_dist_table_;
+ size_t num_special_distances_ = 0;
+
+ uint32_t maxchainlength = 256; // window_size_ to allow all
+
+ HashChain(const Token* data, size_t size, size_t window_size,
+ size_t min_length, size_t max_length, size_t distance_multiplier)
+ : size_(size),
+ window_size_(window_size),
+ window_mask_(window_size - 1),
+ min_length_(min_length),
+ max_length_(max_length) {
+ data_.resize(size);
+ for (size_t i = 0; i < size; i++) {
+ data_[i] = data[i].value;
+ }
+
+ head.resize(hash_num_values_, -1);
+ val.resize(window_size_, -1);
+ chain.resize(window_size_);
+ for (uint32_t i = 0; i < window_size_; ++i) {
+ chain[i] = i; // same value as index indicates uninitialized
+ }
+
+ zeros.resize(window_size_);
+ headz.resize(window_size_ + 1, -1);
+ chainz.resize(window_size_);
+ for (uint32_t i = 0; i < window_size_; ++i) {
+ chainz[i] = i;
+ }
+ // Translate distance to special distance code.
+ if (distance_multiplier) {
+ // Count down, so if due to small distance multiplier multiple distances
+ // map to the same code, the smallest code will be used in the end.
+ for (int i = kNumSpecialDistances - 1; i >= 0; --i) {
+ int xi = kSpecialDistances[i][0];
+ int yi = kSpecialDistances[i][1];
+ int distance = yi * distance_multiplier + xi;
+ // Ensure that we map distance 1 to the lowest symbols.
+ if (distance < 1) distance = 1;
+ special_dist_table_[distance] = i;
+ }
+ num_special_distances_ = kNumSpecialDistances;
+ }
+ }
+
+ uint32_t GetHash(size_t pos) const {
+ uint32_t result = 0;
+ if (pos + 2 < size_) {
+ // TODO(lode): take the MSB's of the uint32_t values into account as well,
+ // given that the hash code itself is less than 32 bits.
+ result ^= (uint32_t)(data_[pos + 0] << 0u);
+ result ^= (uint32_t)(data_[pos + 1] << hash_shift_);
+ result ^= (uint32_t)(data_[pos + 2] << (hash_shift_ * 2));
+ } else {
+ // No need to compute hash of last 2 bytes, the length 2 is too short.
+ return 0;
+ }
+ return result & hash_mask_;
+ }
+
+ uint32_t CountZeros(size_t pos, uint32_t prevzeros) const {
+ size_t end = pos + window_size_;
+ if (end > size_) end = size_;
+ if (prevzeros > 0) {
+ if (prevzeros >= window_mask_ && data_[end - 1] == 0 &&
+ end == pos + window_size_) {
+ return prevzeros;
+ } else {
+ return prevzeros - 1;
+ }
+ }
+ uint32_t num = 0;
+ while (pos + num < end && data_[pos + num] == 0) num++;
+ return num;
+ }
+
+ void Update(size_t pos) {
+ uint32_t hashval = GetHash(pos);
+ uint32_t wpos = pos & window_mask_;
+
+ val[wpos] = (int)hashval;
+ if (head[hashval] != -1) chain[wpos] = head[hashval];
+ head[hashval] = wpos;
+
+ if (pos > 0 && data_[pos] != data_[pos - 1]) numzeros = 0;
+ numzeros = CountZeros(pos, numzeros);
+
+ zeros[wpos] = numzeros;
+ if (headz[numzeros] != -1) chainz[wpos] = headz[numzeros];
+ headz[numzeros] = wpos;
+ }
+
+ void Update(size_t pos, size_t len) {
+ for (size_t i = 0; i < len; i++) {
+ Update(pos + i);
+ }
+ }
+
+ template <typename CB>
+ void FindMatches(size_t pos, int max_dist, const CB& found_match) const {
+ uint32_t wpos = pos & window_mask_;
+ uint32_t hashval = GetHash(pos);
+ uint32_t hashpos = chain[wpos];
+
+ int prev_dist = 0;
+ int end = std::min<int>(pos + max_length_, size_);
+ uint32_t chainlength = 0;
+ uint32_t best_len = 0;
+ for (;;) {
+ int dist = (hashpos <= wpos) ? (wpos - hashpos)
+ : (wpos - hashpos + window_mask_ + 1);
+ if (dist < prev_dist) break;
+ prev_dist = dist;
+ uint32_t len = 0;
+ if (dist > 0) {
+ int i = pos;
+ int j = pos - dist;
+ if (numzeros > 3) {
+ int r = std::min<int>(numzeros - 1, zeros[hashpos]);
+ if (i + r >= end) r = end - i - 1;
+ i += r;
+ j += r;
+ }
+ while (i < end && data_[i] == data_[j]) {
+ i++;
+ j++;
+ }
+ len = i - pos;
+ // This can trigger even if the new length is slightly smaller than the
+ // best length, because it is possible for a slightly cheaper distance
+ // symbol to occur.
+ if (len >= min_length_ && len + 2 >= best_len) {
+ auto it = special_dist_table_.find(dist);
+ int dist_symbol = (it == special_dist_table_.end())
+ ? (num_special_distances_ + dist - 1)
+ : it->second;
+ found_match(len, dist_symbol);
+ if (len > best_len) best_len = len;
+ }
+ }
+
+ chainlength++;
+ if (chainlength >= maxchainlength) break;
+
+ if (numzeros >= 3 && len > numzeros) {
+ if (hashpos == chainz[hashpos]) break;
+ hashpos = chainz[hashpos];
+ if (zeros[hashpos] != numzeros) break;
+ } else {
+ if (hashpos == chain[hashpos]) break;
+ hashpos = chain[hashpos];
+ if (val[hashpos] != (int)hashval) break; // outdated hash value
+ }
+ }
+ }
+ void FindMatch(size_t pos, int max_dist, size_t* result_dist_symbol,
+ size_t* result_len) const {
+ *result_dist_symbol = 0;
+ *result_len = 1;
+ FindMatches(pos, max_dist, [&](size_t len, size_t dist_symbol) {
+ if (len > *result_len ||
+ (len == *result_len && *result_dist_symbol > dist_symbol)) {
+ *result_len = len;
+ *result_dist_symbol = dist_symbol;
+ }
+ });
+ }
+};
+
+float LenCost(size_t len) {
+ uint32_t nbits, bits, tok;
+ HybridUintConfig(1, 0, 0).Encode(len, &tok, &nbits, &bits);
+ constexpr float kCostTable[] = {
+ 2.797667318563126, 3.213177690381199, 2.5706009246743737,
+ 2.408392498667534, 2.829649191872326, 3.3923087753324577,
+ 4.029267451554331, 4.415576699706408, 4.509357574741465,
+ 9.21481543803004, 10.020590190114898, 11.858671627804766,
+ 12.45853300490526, 11.713105831990857, 12.561996324849314,
+ 13.775477692278367, 13.174027068768641,
+ };
+ size_t table_size = sizeof kCostTable / sizeof *kCostTable;
+ if (tok >= table_size) tok = table_size - 1;
+ return kCostTable[tok] + nbits;
+}
+
+// TODO(veluca): this does not take into account usage or non-usage of distance
+// multipliers.
+float DistCost(size_t dist) {
+ uint32_t nbits, bits, tok;
+ HybridUintConfig(7, 0, 0).Encode(dist, &tok, &nbits, &bits);
+ constexpr float kCostTable[] = {
+ 6.368282626312716, 5.680793277090298, 8.347404197105247,
+ 7.641619201599141, 6.914328374119438, 7.959808291537444,
+ 8.70023120759855, 8.71378518934703, 9.379132523982769,
+ 9.110472749092708, 9.159029569270908, 9.430936766731973,
+ 7.278284055315169, 7.8278514904267755, 10.026641158289236,
+ 9.976049229827066, 9.64351607048908, 9.563403863480442,
+ 10.171474111762747, 10.45950155077234, 9.994813912104219,
+ 10.322524683741156, 8.465808729388186, 8.756254166066853,
+ 10.160930174662234, 10.247329273413435, 10.04090403724809,
+ 10.129398517544082, 9.342311691539546, 9.07608009102374,
+ 10.104799540677513, 10.378079384990906, 10.165828974075072,
+ 10.337595322341553, 7.940557464567944, 10.575665823319431,
+ 11.023344321751955, 10.736144698831827, 11.118277044595054,
+ 7.468468230648442, 10.738305230932939, 10.906980780216568,
+ 10.163468216353817, 10.17805759656433, 11.167283670483565,
+ 11.147050200274544, 10.517921919244333, 10.651764778156886,
+ 10.17074446448919, 11.217636876224745, 11.261630721139484,
+ 11.403140815247259, 10.892472096873417, 11.1859607804481,
+ 8.017346947551262, 7.895143720278828, 11.036577113822025,
+ 11.170562110315794, 10.326988722591086, 10.40872184751056,
+ 11.213498225466386, 11.30580635516863, 10.672272515665442,
+ 10.768069466228063, 11.145257364153565, 11.64668307145549,
+ 10.593156194627339, 11.207499484844943, 10.767517766396908,
+ 10.826629811407042, 10.737764794499988, 10.6200448518045,
+ 10.191315385198092, 8.468384171390085, 11.731295299170432,
+ 11.824619886654398, 10.41518844301179, 10.16310536548649,
+ 10.539423685097576, 10.495136599328031, 10.469112847728267,
+ 11.72057686174922, 10.910326337834674, 11.378921834673758,
+ 11.847759036098536, 11.92071647623854, 10.810628276345282,
+ 11.008601085273893, 11.910326337834674, 11.949212023423133,
+ 11.298614839104337, 11.611603659010392, 10.472930394619985,
+ 11.835564720850282, 11.523267392285337, 12.01055816679611,
+ 8.413029688994023, 11.895784139536406, 11.984679534970505,
+ 11.220654278717394, 11.716311684833672, 10.61036646226114,
+ 10.89849965960364, 10.203762898863669, 10.997560826267238,
+ 11.484217379438984, 11.792836176993665, 12.24310468755171,
+ 11.464858097919262, 12.212747017409377, 11.425595666074955,
+ 11.572048533398757, 12.742093965163013, 11.381874288645637,
+ 12.191870445817015, 11.683156920035426, 11.152442115262197,
+ 11.90303691580457, 11.653292787169159, 11.938615382266098,
+ 16.970641701570223, 16.853602280380002, 17.26240782594733,
+ 16.644655390108507, 17.14310889757499, 16.910935455445955,
+ 17.505678976959697, 17.213498225466388, 2.4162310293553024,
+ 3.494587244462329, 3.5258600986408344, 3.4959806589517095,
+ 3.098390886949687, 3.343454654302911, 3.588847442290287,
+ 4.14614790111827, 5.152948641990529, 7.433696808092598,
+ 9.716311684833672,
+ };
+ size_t table_size = sizeof kCostTable / sizeof *kCostTable;
+ if (tok >= table_size) tok = table_size - 1;
+ return kCostTable[tok] + nbits;
+}
+
+void ApplyLZ77_LZ77(const HistogramParams& params, size_t num_contexts,
+ const std::vector<std::vector<Token>>& tokens,
+ LZ77Params& lz77,
+ std::vector<std::vector<Token>>& tokens_lz77) {
+ // TODO(veluca): tune heuristics here.
+ SymbolCostEstimator sce(num_contexts, params.force_huffman, tokens, lz77);
+ float bit_decrease = 0;
+ size_t total_symbols = 0;
+ tokens_lz77.resize(tokens.size());
+ HybridUintConfig uint_config;
+ std::vector<float> sym_cost;
+ for (size_t stream = 0; stream < tokens.size(); stream++) {
+ size_t distance_multiplier =
+ params.image_widths.size() > stream ? params.image_widths[stream] : 0;
+ const auto& in = tokens[stream];
+ auto& out = tokens_lz77[stream];
+ total_symbols += in.size();
+ // Cumulative sum of bit costs.
+ sym_cost.resize(in.size() + 1);
+ for (size_t i = 0; i < in.size(); i++) {
+ uint32_t tok, nbits, unused_bits;
+ uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
+ sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
+ }
+
+ out.reserve(in.size());
+ size_t max_distance = in.size();
+ size_t min_length = lz77.min_length;
+ JXL_ASSERT(min_length >= 3);
+ size_t max_length = in.size();
+
+ // Use next power of two as window size.
+ size_t window_size = 1;
+ while (window_size < max_distance && window_size < kWindowSize) {
+ window_size <<= 1;
+ }
+
+ HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
+ distance_multiplier);
+ size_t len, dist_symbol;
+
+ const size_t max_lazy_match_len = 256; // 0 to disable lazy matching
+
+ // Whether the next symbol was already updated (to test lazy matching)
+ bool already_updated = false;
+ for (size_t i = 0; i < in.size(); i++) {
+ out.push_back(in[i]);
+ if (!already_updated) chain.Update(i);
+ already_updated = false;
+ chain.FindMatch(i, max_distance, &dist_symbol, &len);
+ if (len >= min_length) {
+ if (len < max_lazy_match_len && i + 1 < in.size()) {
+ // Try length at next symbol lazy matching
+ chain.Update(i + 1);
+ already_updated = true;
+ size_t len2, dist_symbol2;
+ chain.FindMatch(i + 1, max_distance, &dist_symbol2, &len2);
+ if (len2 > len) {
+ // Use the lazy match. Add literal, and use the next length starting
+ // from the next byte.
+ ++i;
+ already_updated = false;
+ len = len2;
+ dist_symbol = dist_symbol2;
+ out.push_back(in[i]);
+ }
+ }
+
+ float cost = sym_cost[i + len] - sym_cost[i];
+ size_t lz77_len = len - lz77.min_length;
+ float lz77_cost = LenCost(lz77_len) + DistCost(dist_symbol) +
+ sce.AddSymbolCost(out.back().context);
+
+ if (lz77_cost <= cost) {
+ out.back().value = len - min_length;
+ out.back().is_lz77_length = true;
+ out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
+ bit_decrease += cost - lz77_cost;
+ } else {
+ // LZ77 match ignored, and symbol already pushed. Push all other
+ // symbols and skip.
+ for (size_t j = 1; j < len; j++) {
+ out.push_back(in[i + j]);
+ }
+ }
+
+ if (already_updated) {
+ chain.Update(i + 2, len - 2);
+ already_updated = false;
+ } else {
+ chain.Update(i + 1, len - 1);
+ }
+ i += len - 1;
+ } else {
+ // Literal, already pushed
+ }
+ }
+ }
+
+ if (bit_decrease > total_symbols * 0.2 + 16) {
+ lz77.enabled = true;
+ }
+}
+
+void ApplyLZ77_Optimal(const HistogramParams& params, size_t num_contexts,
+ const std::vector<std::vector<Token>>& tokens,
+ LZ77Params& lz77,
+ std::vector<std::vector<Token>>& tokens_lz77) {
+ std::vector<std::vector<Token>> tokens_for_cost_estimate;
+ ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_for_cost_estimate);
+ // If greedy-LZ77 does not give better compression than no-lz77, no reason to
+ // run the optimal matching.
+ if (!lz77.enabled) return;
+ SymbolCostEstimator sce(num_contexts + 1, params.force_huffman,
+ tokens_for_cost_estimate, lz77);
+ tokens_lz77.resize(tokens.size());
+ HybridUintConfig uint_config;
+ std::vector<float> sym_cost;
+ std::vector<uint32_t> dist_symbols;
+ for (size_t stream = 0; stream < tokens.size(); stream++) {
+ size_t distance_multiplier =
+ params.image_widths.size() > stream ? params.image_widths[stream] : 0;
+ const auto& in = tokens[stream];
+ auto& out = tokens_lz77[stream];
+ // Cumulative sum of bit costs.
+ sym_cost.resize(in.size() + 1);
+ for (size_t i = 0; i < in.size(); i++) {
+ uint32_t tok, nbits, unused_bits;
+ uint_config.Encode(in[i].value, &tok, &nbits, &unused_bits);
+ sym_cost[i + 1] = sce.Bits(in[i].context, tok) + nbits + sym_cost[i];
+ }
+
+ out.reserve(in.size());
+ size_t max_distance = in.size();
+ size_t min_length = lz77.min_length;
+ JXL_ASSERT(min_length >= 3);
+ size_t max_length = in.size();
+
+ // Use next power of two as window size.
+ size_t window_size = 1;
+ while (window_size < max_distance && window_size < kWindowSize) {
+ window_size <<= 1;
+ }
+
+ HashChain chain(in.data(), in.size(), window_size, min_length, max_length,
+ distance_multiplier);
+
+ struct MatchInfo {
+ uint32_t len;
+ uint32_t dist_symbol;
+ uint32_t ctx;
+ float total_cost = std::numeric_limits<float>::max();
+ };
+ // Total cost to encode the first N symbols.
+ std::vector<MatchInfo> prefix_costs(in.size() + 1);
+ prefix_costs[0].total_cost = 0;
+
+ size_t rle_length = 0;
+ size_t skip_lz77 = 0;
+ for (size_t i = 0; i < in.size(); i++) {
+ chain.Update(i);
+ float lit_cost =
+ prefix_costs[i].total_cost + sym_cost[i + 1] - sym_cost[i];
+ if (prefix_costs[i + 1].total_cost > lit_cost) {
+ prefix_costs[i + 1].dist_symbol = 0;
+ prefix_costs[i + 1].len = 1;
+ prefix_costs[i + 1].ctx = in[i].context;
+ prefix_costs[i + 1].total_cost = lit_cost;
+ }
+ if (skip_lz77 > 0) {
+ skip_lz77--;
+ continue;
+ }
+ dist_symbols.clear();
+ chain.FindMatches(i, max_distance,
+ [&dist_symbols](size_t len, size_t dist_symbol) {
+ if (dist_symbols.size() <= len) {
+ dist_symbols.resize(len + 1, dist_symbol);
+ }
+ if (dist_symbol < dist_symbols[len]) {
+ dist_symbols[len] = dist_symbol;
+ }
+ });
+ if (dist_symbols.size() <= min_length) continue;
+ {
+ size_t best_cost = dist_symbols.back();
+ for (size_t j = dist_symbols.size() - 1; j >= min_length; j--) {
+ if (dist_symbols[j] < best_cost) {
+ best_cost = dist_symbols[j];
+ }
+ dist_symbols[j] = best_cost;
+ }
+ }
+ for (size_t j = min_length; j < dist_symbols.size(); j++) {
+ // Cost model that uses results from lazy LZ77.
+ float lz77_cost = sce.LenCost(in[i].context, j - min_length, lz77) +
+ sce.DistCost(dist_symbols[j], lz77);
+ float cost = prefix_costs[i].total_cost + lz77_cost;
+ if (prefix_costs[i + j].total_cost > cost) {
+ prefix_costs[i + j].len = j;
+ prefix_costs[i + j].dist_symbol = dist_symbols[j] + 1;
+ prefix_costs[i + j].ctx = in[i].context;
+ prefix_costs[i + j].total_cost = cost;
+ }
+ }
+ // We are in a RLE sequence: skip all the symbols except the first 8 and
+ // the last 8. This avoid quadratic costs for sequences with long runs of
+ // the same symbol.
+ if ((dist_symbols.back() == 0 && distance_multiplier == 0) ||
+ (dist_symbols.back() == 1 && distance_multiplier != 0)) {
+ rle_length++;
+ } else {
+ rle_length = 0;
+ }
+ if (rle_length >= 8 && dist_symbols.size() > 9) {
+ skip_lz77 = dist_symbols.size() - 10;
+ rle_length = 0;
+ }
+ }
+ size_t pos = in.size();
+ while (pos > 0) {
+ bool is_lz77_length = prefix_costs[pos].dist_symbol != 0;
+ if (is_lz77_length) {
+ size_t dist_symbol = prefix_costs[pos].dist_symbol - 1;
+ out.emplace_back(lz77.nonserialized_distance_context, dist_symbol);
+ }
+ size_t val = is_lz77_length ? prefix_costs[pos].len - min_length
+ : in[pos - 1].value;
+ out.emplace_back(prefix_costs[pos].ctx, val);
+ out.back().is_lz77_length = is_lz77_length;
+ pos -= prefix_costs[pos].len;
+ }
+ std::reverse(out.begin(), out.end());
+ }
+}
+
+void ApplyLZ77(const HistogramParams& params, size_t num_contexts,
+ const std::vector<std::vector<Token>>& tokens, LZ77Params& lz77,
+ std::vector<std::vector<Token>>& tokens_lz77) {
+ lz77.enabled = false;
+ if (params.force_huffman) {
+ lz77.min_symbol = std::min(PREFIX_MAX_ALPHABET_SIZE - 32, 512);
+ } else {
+ lz77.min_symbol = 224;
+ }
+ if (params.lz77_method == HistogramParams::LZ77Method::kNone) {
+ return;
+ } else if (params.lz77_method == HistogramParams::LZ77Method::kRLE) {
+ ApplyLZ77_RLE(params, num_contexts, tokens, lz77, tokens_lz77);
+ } else if (params.lz77_method == HistogramParams::LZ77Method::kLZ77) {
+ ApplyLZ77_LZ77(params, num_contexts, tokens, lz77, tokens_lz77);
+ } else if (params.lz77_method == HistogramParams::LZ77Method::kOptimal) {
+ ApplyLZ77_Optimal(params, num_contexts, tokens, lz77, tokens_lz77);
+ } else {
+ JXL_ABORT("Not implemented");
+ }
+}
+} // namespace
+
+size_t BuildAndEncodeHistograms(const HistogramParams& params,
+ size_t num_contexts,
+ std::vector<std::vector<Token>>& tokens,
+ EntropyEncodingData* codes,
+ std::vector<uint8_t>* context_map,
+ BitWriter* writer, size_t layer,
+ AuxOut* aux_out) {
+ size_t total_bits = 0;
+ codes->lz77.nonserialized_distance_context = num_contexts;
+ std::vector<std::vector<Token>> tokens_lz77;
+ ApplyLZ77(params, num_contexts, tokens, codes->lz77, tokens_lz77);
+ if (ans_fuzzer_friendly_) {
+ codes->lz77.length_uint_config = HybridUintConfig(10, 0, 0);
+ codes->lz77.min_symbol = 2048;
+ }
+
+ const size_t max_contexts = std::min(num_contexts, kClustersLimit);
+ BitWriter::Allotment allotment(writer,
+ 128 + num_contexts * 40 + max_contexts * 96);
+ if (writer) {
+ JXL_CHECK(Bundle::Write(codes->lz77, writer, layer, aux_out));
+ } else {
+ size_t ebits, bits;
+ JXL_CHECK(Bundle::CanEncode(codes->lz77, &ebits, &bits));
+ total_bits += bits;
+ }
+ if (codes->lz77.enabled) {
+ if (writer) {
+ size_t b = writer->BitsWritten();
+ EncodeUintConfig(codes->lz77.length_uint_config, writer,
+ /*log_alpha_size=*/8);
+ total_bits += writer->BitsWritten() - b;
+ } else {
+ SizeWriter size_writer;
+ EncodeUintConfig(codes->lz77.length_uint_config, &size_writer,
+ /*log_alpha_size=*/8);
+ total_bits += size_writer.size;
+ }
+ num_contexts += 1;
+ tokens = std::move(tokens_lz77);
+ }
+ size_t total_tokens = 0;
+ // Build histograms.
+ HistogramBuilder builder(num_contexts);
+ HybridUintConfig uint_config; // Default config for clustering.
+ // Unless we are using the kContextMap histogram option.
+ if (params.uint_method == HistogramParams::HybridUintMethod::kContextMap) {
+ uint_config = HybridUintConfig(2, 0, 1);
+ }
+ if (params.uint_method == HistogramParams::HybridUintMethod::k000) {
+ uint_config = HybridUintConfig(0, 0, 0);
+ }
+ if (ans_fuzzer_friendly_) {
+ uint_config = HybridUintConfig(10, 0, 0);
+ }
+ for (size_t i = 0; i < tokens.size(); ++i) {
+ if (codes->lz77.enabled) {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token& token = tokens[i][j];
+ total_tokens++;
+ uint32_t tok, nbits, bits;
+ (token.is_lz77_length ? codes->lz77.length_uint_config : uint_config)
+ .Encode(token.value, &tok, &nbits, &bits);
+ tok += token.is_lz77_length ? codes->lz77.min_symbol : 0;
+ builder.VisitSymbol(tok, token.context);
+ }
+ } else if (num_contexts == 1) {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token& token = tokens[i][j];
+ total_tokens++;
+ uint32_t tok, nbits, bits;
+ uint_config.Encode(token.value, &tok, &nbits, &bits);
+ builder.VisitSymbol(tok, /*token.context=*/0);
+ }
+ } else {
+ for (size_t j = 0; j < tokens[i].size(); ++j) {
+ const Token& token = tokens[i][j];
+ total_tokens++;
+ uint32_t tok, nbits, bits;
+ uint_config.Encode(token.value, &tok, &nbits, &bits);
+ builder.VisitSymbol(tok, token.context);
+ }
+ }
+ }
+
+ bool use_prefix_code =
+ params.force_huffman || total_tokens < 100 ||
+ params.clustering == HistogramParams::ClusteringType::kFastest ||
+ ans_fuzzer_friendly_;
+ if (!use_prefix_code) {
+ bool all_singleton = true;
+ for (size_t i = 0; i < num_contexts; i++) {
+ if (builder.Histo(i).ShannonEntropy() >= 1e-5) {
+ all_singleton = false;
+ }
+ }
+ if (all_singleton) {
+ use_prefix_code = true;
+ }
+ }
+
+ // Encode histograms.
+ total_bits += builder.BuildAndStoreEntropyCodes(params, tokens, codes,
+ context_map, use_prefix_code,
+ writer, layer, aux_out);
+ allotment.FinishedHistogram(writer);
+ ReclaimAndCharge(writer, &allotment, layer, aux_out);
+
+ if (aux_out != nullptr) {
+ aux_out->layers[layer].num_clustered_histograms +=
+ codes->encoding_info.size();
+ }
+ return total_bits;
+}
+
+size_t WriteTokens(const std::vector<Token>& tokens,
+ const EntropyEncodingData& codes,
+ const std::vector<uint8_t>& context_map, BitWriter* writer) {
+ size_t num_extra_bits = 0;
+ if (codes.use_prefix_code) {
+ for (size_t i = 0; i < tokens.size(); i++) {
+ uint32_t tok, nbits, bits;
+ const Token& token = tokens[i];
+ size_t histo = context_map[token.context];
+ (token.is_lz77_length ? codes.lz77.length_uint_config
+ : codes.uint_config[histo])
+ .Encode(token.value, &tok, &nbits, &bits);
+ tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
+ // Combine two calls to the BitWriter. Equivalent to:
+ // writer->Write(codes.encoding_info[histo][tok].depth,
+ // codes.encoding_info[histo][tok].bits);
+ // writer->Write(nbits, bits);
+ uint64_t data = codes.encoding_info[histo][tok].bits;
+ data |= bits << codes.encoding_info[histo][tok].depth;
+ writer->Write(codes.encoding_info[histo][tok].depth + nbits, data);
+ num_extra_bits += nbits;
+ }
+ return num_extra_bits;
+ }
+ std::vector<uint64_t> out;
+ std::vector<uint8_t> out_nbits;
+ out.reserve(tokens.size());
+ out_nbits.reserve(tokens.size());
+ uint64_t allbits = 0;
+ size_t numallbits = 0;
+ // Writes in *reversed* order.
+ auto addbits = [&](size_t bits, size_t nbits) {
+ if (JXL_UNLIKELY(nbits)) {
+ JXL_DASSERT(bits >> nbits == 0);
+ if (JXL_UNLIKELY(numallbits + nbits > BitWriter::kMaxBitsPerCall)) {
+ out.push_back(allbits);
+ out_nbits.push_back(numallbits);
+ numallbits = allbits = 0;
+ }
+ allbits <<= nbits;
+ allbits |= bits;
+ numallbits += nbits;
+ }
+ };
+ const int end = tokens.size();
+ ANSCoder ans;
+ if (codes.lz77.enabled || context_map.size() > 1) {
+ for (int i = end - 1; i >= 0; --i) {
+ const Token token = tokens[i];
+ const uint8_t histo = context_map[token.context];
+ uint32_t tok, nbits, bits;
+ (token.is_lz77_length ? codes.lz77.length_uint_config
+ : codes.uint_config[histo])
+ .Encode(tokens[i].value, &tok, &nbits, &bits);
+ tok += token.is_lz77_length ? codes.lz77.min_symbol : 0;
+ const ANSEncSymbolInfo& info = codes.encoding_info[histo][tok];
+ // Extra bits first as this is reversed.
+ addbits(bits, nbits);
+ num_extra_bits += nbits;
+ uint8_t ans_nbits = 0;
+ uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
+ addbits(ans_bits, ans_nbits);
+ }
+ } else {
+ for (int i = end - 1; i >= 0; --i) {
+ uint32_t tok, nbits, bits;
+ codes.uint_config[0].Encode(tokens[i].value, &tok, &nbits, &bits);
+ const ANSEncSymbolInfo& info = codes.encoding_info[0][tok];
+ // Extra bits first as this is reversed.
+ addbits(bits, nbits);
+ num_extra_bits += nbits;
+ uint8_t ans_nbits = 0;
+ uint32_t ans_bits = ans.PutSymbol(info, &ans_nbits);
+ addbits(ans_bits, ans_nbits);
+ }
+ }
+ const uint32_t state = ans.GetState();
+ writer->Write(32, state);
+ writer->Write(numallbits, allbits);
+ for (int i = out.size(); i > 0; --i) {
+ writer->Write(out_nbits[i - 1], out[i - 1]);
+ }
+ return num_extra_bits;
+}
+
+void WriteTokens(const std::vector<Token>& tokens,
+ const EntropyEncodingData& codes,
+ const std::vector<uint8_t>& context_map, BitWriter* writer,
+ size_t layer, AuxOut* aux_out) {
+ BitWriter::Allotment allotment(writer, 32 * tokens.size() + 32 * 1024 * 4);
+ size_t num_extra_bits = WriteTokens(tokens, codes, context_map, writer);
+ ReclaimAndCharge(writer, &allotment, layer, aux_out);
+ if (aux_out != nullptr) {
+ aux_out->layers[layer].extra_bits += num_extra_bits;
+ }
+}
+
+void SetANSFuzzerFriendly(bool ans_fuzzer_friendly) {
+#if JXL_IS_DEBUG_BUILD // Guard against accidental / malicious changes.
+ ans_fuzzer_friendly_ = ans_fuzzer_friendly;
+#endif
+}
+} // namespace jxl