diff options
Diffstat (limited to 'media/libcubeb/tests/test_resampler.cpp')
-rw-r--r-- | media/libcubeb/tests/test_resampler.cpp | 554 |
1 files changed, 554 insertions, 0 deletions
diff --git a/media/libcubeb/tests/test_resampler.cpp b/media/libcubeb/tests/test_resampler.cpp new file mode 100644 index 0000000000..7e62a35721 --- /dev/null +++ b/media/libcubeb/tests/test_resampler.cpp @@ -0,0 +1,554 @@ +/* + * Copyright © 2016 Mozilla Foundation + * + * This program is made available under an ISC-style license. See the + * accompanying file LICENSE for details. + */ +#ifndef NOMINMAX +#define NOMINMAX +#endif // NOMINMAX + +#ifdef NDEBUG +#undef NDEBUG +#endif +#include "cubeb_resampler_internal.h" +#include <assert.h> +#include <stdio.h> +#include <algorithm> +#include <iostream> + +/* Windows cmath USE_MATH_DEFINE thing... */ +const float PI = 3.14159265359f; + +/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined, + * only part of the test suite is ran. */ +#ifdef THOROUGH_TESTING +/* Some standard sample rates we're testing with. */ +const uint32_t sample_rates[] = { + 8000, + 16000, + 32000, + 44100, + 48000, + 88200, + 96000, + 192000 +}; +/* The maximum number of channels we're resampling. */ +const uint32_t max_channels = 2; +/* The minimum an maximum number of milliseconds we're resampling for. This is + * used to simulate the fact that the audio stream is resampled in chunks, + * because audio is delivered using callbacks. */ +const uint32_t min_chunks = 10; /* ms */ +const uint32_t max_chunks = 30; /* ms */ +const uint32_t chunk_increment = 1; + +#else + +const uint32_t sample_rates[] = { + 8000, + 44100, + 48000, +}; +const uint32_t max_channels = 2; +const uint32_t min_chunks = 10; /* ms */ +const uint32_t max_chunks = 30; /* ms */ +const uint32_t chunk_increment = 10; +#endif + +#define DUMP_ARRAYS +#ifdef DUMP_ARRAYS +/** + * Files produced by dump(...) can be converted to .wave files using: + * + * sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav + * + * for floating-point audio, or: + * + * sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav + * + * for 16bit integer audio. + */ + +/* Use the correct implementation of fopen, depending on the platform. */ +void fopen_portable(FILE ** f, const char * name, const char * mode) +{ +#ifdef WIN32 + fopen_s(f, name, mode); +#else + *f = fopen(name, mode); +#endif +} + +template<typename T> +void dump(const char * name, T * frames, size_t count) +{ + FILE * file; + fopen_portable(&file, name, "wb"); + + if (!file) { + fprintf(stderr, "error opening %s\n", name); + return; + } + + if (count != fwrite(frames, sizeof(T), count, file)) { + fprintf(stderr, "error writing to %s\n", name); + } + fclose(file); +} +#else +template<typename T> +void dump(const char * name, T * frames, size_t count) +{ } +#endif + +// The more the ratio is far from 1, the more we accept a big error. +float epsilon_tweak_ratio(float ratio) +{ + return ratio >= 1 ? ratio : 1 / ratio; +} + +// Epsilon values for comparing resampled data to expected data. +// The bigger the resampling ratio is, the more lax we are about errors. +template<typename T> +T epsilon(float ratio); + +template<> +float epsilon(float ratio) { + return 0.08f * epsilon_tweak_ratio(ratio); +} + +template<> +int16_t epsilon(float ratio) { + return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio)); +} + +void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms) +{ + const size_t length_s = 2; + const size_t rate = 44100; + const size_t length_frames = rate * length_s; + delay_line<float> delay(delay_frames, channels); + auto_array<float> input; + auto_array<float> output; + uint32_t chunk_length = channels * chunk_ms * rate / 1000; + uint32_t output_offset = 0; + uint32_t channel = 0; + + /** Generate diracs every 100 frames, and check they are delayed. */ + input.push_silence(length_frames * channels); + for (uint32_t i = 0; i < input.length() - 1; i+=100) { + input.data()[i + channel] = 0.5; + channel = (channel + 1) % channels; + } + dump("input.raw", input.data(), input.length()); + while(input.length()) { + uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels); + float * in = delay.input_buffer(to_pop / channels); + input.pop(in, to_pop); + delay.written(to_pop / channels); + output.push_silence(to_pop); + delay.output(output.data() + output_offset, to_pop / channels); + output_offset += to_pop; + } + + // Check the diracs have been shifted by `delay_frames` frames. + for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) { + assert(output.data()[i + channel + delay_frames * channels] == 0.5); + channel = (channel + 1) % channels; + } + + dump("output.raw", output.data(), output.length()); +} +/** + * This takes sine waves with a certain `channels` count, `source_rate`, and + * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`. + * Then a sample-wise comparison is performed against a sine wave generated at + * the correct rate. + */ +template<typename T> +void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration) +{ + size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.)); + float resampling_ratio = static_cast<float>(source_rate) / target_rate; + cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3); + auto_array<T> source(channels * source_rate * 10); + auto_array<T> destination(channels * target_rate * 10); + auto_array<T> expected(channels * target_rate * 10); + uint32_t phase_index = 0; + uint32_t offset = 0; + const uint32_t buf_len = 2; /* seconds */ + + // generate a sine wave in each channel, at the source sample rate + source.push_silence(channels * source_rate * buf_len); + while(offset != source.length()) { + float p = phase_index++ / static_cast<float>(source_rate); + for (uint32_t j = 0; j < channels; j++) { + source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p); + } + } + + dump("input.raw", source.data(), source.length()); + + expected.push_silence(channels * target_rate * buf_len); + // generate a sine wave in each channel, at the target sample rate. + // Insert silent samples at the beginning to account for the resampler latency. + offset = resampler.latency() * channels; + for (uint32_t i = 0; i < offset; i++) { + expected.data()[i] = 0.0f; + } + phase_index = 0; + while (offset != expected.length()) { + float p = phase_index++ / static_cast<float>(target_rate); + for (uint32_t j = 0; j < channels; j++) { + expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p); + } + } + + dump("expected.raw", expected.data(), expected.length()); + + // resample by chunk + uint32_t write_offset = 0; + destination.push_silence(channels * target_rate * buf_len); + while (write_offset < destination.length()) + { + size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio)); + uint32_t input_frames = resampler.input_needed_for_output(output_frames); + resampler.input(source.data(), input_frames); + source.pop(nullptr, input_frames * channels); + resampler.output(destination.data() + write_offset, + std::min(output_frames, (destination.length() - write_offset) / channels)); + write_offset += output_frames * channels; + } + + dump("output.raw", destination.data(), expected.length()); + + // compare, taking the latency into account + bool fuzzy_equal = true; + for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) { + float diff = fabs(expected.data()[i] - destination.data()[i]); + if (diff > epsilon<T>(resampling_ratio)) { + fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff); + fuzzy_equal = false; + } + } + assert(fuzzy_equal); +} + +template<typename T> +cubeb_sample_format cubeb_format(); + +template<> +cubeb_sample_format cubeb_format<float>() +{ + return CUBEB_SAMPLE_FLOAT32NE; +} + +template<> +cubeb_sample_format cubeb_format<short>() +{ + return CUBEB_SAMPLE_S16NE; +} + +struct osc_state { + osc_state() + : input_phase_index(0) + , output_phase_index(0) + , output_offset(0) + , input_channels(0) + , output_channels(0) + {} + uint32_t input_phase_index; + uint32_t max_output_phase_index; + uint32_t output_phase_index; + uint32_t output_offset; + uint32_t input_channels; + uint32_t output_channels; + uint32_t output_rate; + uint32_t target_rate; + auto_array<float> input; + auto_array<float> output; +}; + +uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels, + uint32_t frames, uint32_t initial_phase) +{ + uint32_t offset = 0; + for (uint32_t i = 0; i < frames; i++) { + float p = initial_phase++ / static_cast<float>(rate); + for (uint32_t j = 0; j < channels; j++) { + buf[offset++] = 0.5 * sin(440. * 2 * PI * p); + } + } + return initial_phase; +} + +long data_cb(cubeb_stream * /*stm*/, void * user_ptr, + const void * input_buffer, void * output_buffer, long frame_count) +{ + osc_state * state = reinterpret_cast<osc_state*>(user_ptr); + const float * in = reinterpret_cast<const float*>(input_buffer); + float * out = reinterpret_cast<float*>(output_buffer); + + + state->input.push(in, frame_count * state->input_channels); + + /* Check how much output frames we need to write */ + uint32_t remaining = state->max_output_phase_index - state->output_phase_index; + uint32_t to_write = std::min<uint32_t>(remaining, frame_count); + state->output_phase_index = fill_with_sine(out, + state->target_rate, + state->output_channels, + to_write, + state->output_phase_index); + + return to_write; +} + +template<typename T> +bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi) +{ + uint32_t len = std::min(lhs.length(), rhs.length()); + + for (uint32_t i = 0; i < len; i++) { + if (fabs(lhs.at(i) - rhs.at(i)) > epsi) { + std::cout << "not fuzzy equal at index: " << i + << " lhs: " << lhs.at(i) << " rhs: " << rhs.at(i) + << " delta: " << fabs(lhs.at(i) - rhs.at(i)) + << " epsilon: "<< epsi << std::endl; + return false; + } + } + return true; +} + +template<typename T> +void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels, + uint32_t input_rate, uint32_t output_rate, + uint32_t target_rate, float chunk_duration) +{ + cubeb_stream_params input_params; + cubeb_stream_params output_params; + osc_state state; + + input_params.format = output_params.format = cubeb_format<T>(); + state.input_channels = input_params.channels = input_channels; + state.output_channels = output_params.channels = output_channels; + input_params.rate = input_rate; + state.output_rate = output_params.rate = output_rate; + state.target_rate = target_rate; + long got; + + cubeb_resampler * resampler = + cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate, + data_cb, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP); + + long latency = cubeb_resampler_latency(resampler); + + const uint32_t duration_s = 2; + int32_t duration_frames = duration_s * target_rate; + uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2; + uint32_t output_array_frame_count = chunk_duration * output_rate / 1000; + auto_array<float> input_buffer(input_channels * input_array_frame_count); + auto_array<float> output_buffer(output_channels * output_array_frame_count); + auto_array<float> expected_resampled_input(input_channels * duration_frames); + auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s); + + state.max_output_phase_index = duration_s * target_rate; + + expected_resampled_input.push_silence(input_channels * duration_frames); + expected_resampled_output.push_silence(output_channels * output_rate * duration_s); + + /* expected output is a 440Hz sine wave at 16kHz */ + fill_with_sine(expected_resampled_input.data() + latency, + target_rate, input_channels, duration_frames - latency, 0); + /* expected output is a 440Hz sine wave at 32kHz */ + fill_with_sine(expected_resampled_output.data() + latency, + output_rate, output_channels, output_rate * duration_s - latency, 0); + + + while (state.output_phase_index != state.max_output_phase_index) { + uint32_t leftover_samples = input_buffer.length() * input_channels; + input_buffer.reserve(input_array_frame_count); + state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples, + input_rate, + input_channels, + input_array_frame_count - leftover_samples, + state.input_phase_index); + long input_consumed = input_array_frame_count; + input_buffer.set_length(input_array_frame_count); + + got = cubeb_resampler_fill(resampler, + input_buffer.data(), &input_consumed, + output_buffer.data(), output_array_frame_count); + + /* handle leftover input */ + if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) { + input_buffer.pop(nullptr, input_consumed * input_channels); + } else { + input_buffer.clear(); + } + + state.output.push(output_buffer.data(), got * state.output_channels); + } + + dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length()); + dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length()); + dump("input.raw", state.input.data(), state.input.length()); + dump("output.raw", state.output.data(), state.output.length()); + + assert(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate))); + assert(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate))); + + cubeb_resampler_destroy(resampler); +} + +#define array_size(x) (sizeof(x) / sizeof(x[0])) + +void test_resamplers_one_way() +{ + /* Test one way resamplers */ + for (uint32_t channels = 1; channels <= max_channels; channels++) { + for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) { + for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) { + for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) { + printf("one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n", + channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration); + test_resampler_one_way<float>(channels, sample_rates[source_rate], + sample_rates[dest_rate], chunk_duration); + } + } + } + } +} + +void test_resamplers_duplex() +{ + /* Test duplex resamplers */ + for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) { + for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) { + for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) { + for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) { + for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) { + for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) { + printf("input channels:%d output_channels:%d input_rate:%d " + "output_rate:%d target_rate:%d chunk_ms:%d\n", + input_channels, output_channels, + sample_rates[source_rate_input], + sample_rates[source_rate_output], + sample_rates[dest_rate], + chunk_duration); + test_resampler_duplex<float>(input_channels, output_channels, + sample_rates[source_rate_input], + sample_rates[source_rate_output], + sample_rates[dest_rate], + chunk_duration); + } + } + } + } + } + } +} + +void test_delay_line() +{ + for (uint32_t channel = 1; channel <= 2; channel++) { + for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) { + for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) { + printf("channel: %d, delay_frames: %d, chunk_size: %d\n", + channel, delay_frames, chunk_size); + test_delay_lines(delay_frames, channel, chunk_size); + } + } + } +} + +long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/, + const void * input_buffer, + void * output_buffer, long frame_count) +{ + assert(output_buffer); + assert(!input_buffer); + return frame_count; +} + +void test_output_only_noop() +{ + cubeb_stream_params output_params; + int target_rate; + + output_params.rate = 44100; + output_params.channels = 1; + output_params.format = CUBEB_SAMPLE_FLOAT32NE; + target_rate = output_params.rate; + + cubeb_resampler * resampler = + cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate, + test_output_only_noop_data_cb, nullptr, + CUBEB_RESAMPLER_QUALITY_VOIP); + + const long out_frames = 128; + float out_buffer[out_frames]; + long got; + + got = cubeb_resampler_fill(resampler, nullptr, nullptr, + out_buffer, out_frames); + + assert(got == out_frames); + + cubeb_resampler_destroy(resampler); +} + +long test_drain_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/, + const void * input_buffer, + void * output_buffer, long frame_count) +{ + assert(output_buffer); + assert(!input_buffer); + return frame_count - 10; +} + +void test_resampler_drain() +{ + cubeb_stream_params output_params; + int target_rate; + + output_params.rate = 44100; + output_params.channels = 1; + output_params.format = CUBEB_SAMPLE_FLOAT32NE; + target_rate = 48000; + + cubeb_resampler * resampler = + cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate, + test_drain_data_cb, nullptr, + CUBEB_RESAMPLER_QUALITY_VOIP); + + const long out_frames = 128; + float out_buffer[out_frames]; + long got; + + do { + got = cubeb_resampler_fill(resampler, nullptr, nullptr, + out_buffer, out_frames); + } while (got == out_frames); + + /* If the above is not an infinite loop, the drain was a success, just mark + * this test as such. */ + assert(true); + + cubeb_resampler_destroy(resampler); +} + +int main() +{ + test_resamplers_one_way(); + test_delay_line(); + // This is disabled because the latency estimation in the resampler code is + // slightly off so we can generate expected vectors. + // test_resamplers_duplex(); + test_output_only_noop(); + test_resampler_drain(); + + return 0; +} |