summaryrefslogtreecommitdiff
path: root/media/libcubeb/gtest/test_resampler.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'media/libcubeb/gtest/test_resampler.cpp')
-rw-r--r--media/libcubeb/gtest/test_resampler.cpp1081
1 files changed, 0 insertions, 1081 deletions
diff --git a/media/libcubeb/gtest/test_resampler.cpp b/media/libcubeb/gtest/test_resampler.cpp
deleted file mode 100644
index 8ac878fc3d..0000000000
--- a/media/libcubeb/gtest/test_resampler.cpp
+++ /dev/null
@@ -1,1081 +0,0 @@
-/*
- * Copyright © 2016 Mozilla Foundation
- *
- * This program is made available under an ISC-style license. See the
- * accompanying file LICENSE for details.
- */
-#ifndef NOMINMAX
-#define NOMINMAX
-#endif // NOMINMAX
-#include "gtest/gtest.h"
-#include "common.h"
-#include "cubeb_resampler_internal.h"
-#include <stdio.h>
-#include <algorithm>
-#include <iostream>
-
-/* Windows cmath USE_MATH_DEFINE thing... */
-const float PI = 3.14159265359f;
-
-/* Testing all sample rates is very long, so if THOROUGH_TESTING is not defined,
- * only part of the test suite is ran. */
-#ifdef THOROUGH_TESTING
-/* Some standard sample rates we're testing with. */
-const uint32_t sample_rates[] = {
- 8000,
- 16000,
- 32000,
- 44100,
- 48000,
- 88200,
- 96000,
- 192000
-};
-/* The maximum number of channels we're resampling. */
-const uint32_t max_channels = 2;
-/* The minimum an maximum number of milliseconds we're resampling for. This is
- * used to simulate the fact that the audio stream is resampled in chunks,
- * because audio is delivered using callbacks. */
-const uint32_t min_chunks = 10; /* ms */
-const uint32_t max_chunks = 30; /* ms */
-const uint32_t chunk_increment = 1;
-
-#else
-
-const uint32_t sample_rates[] = {
- 8000,
- 44100,
- 48000,
-};
-const uint32_t max_channels = 2;
-const uint32_t min_chunks = 10; /* ms */
-const uint32_t max_chunks = 30; /* ms */
-const uint32_t chunk_increment = 10;
-#endif
-
-#define DUMP_ARRAYS
-#ifdef DUMP_ARRAYS
-/**
- * Files produced by dump(...) can be converted to .wave files using:
- *
- * sox -c <channel_count> -r <rate> -e float -b 32 file.raw file.wav
- *
- * for floating-point audio, or:
- *
- * sox -c <channel_count> -r <rate> -e unsigned -b 16 file.raw file.wav
- *
- * for 16bit integer audio.
- */
-
-/* Use the correct implementation of fopen, depending on the platform. */
-void fopen_portable(FILE ** f, const char * name, const char * mode)
-{
-#ifdef WIN32
- fopen_s(f, name, mode);
-#else
- *f = fopen(name, mode);
-#endif
-}
-
-template<typename T>
-void dump(const char * name, T * frames, size_t count)
-{
- FILE * file;
- fopen_portable(&file, name, "wb");
-
- if (!file) {
- fprintf(stderr, "error opening %s\n", name);
- return;
- }
-
- if (count != fwrite(frames, sizeof(T), count, file)) {
- fprintf(stderr, "error writing to %s\n", name);
- }
- fclose(file);
-}
-#else
-template<typename T>
-void dump(const char * name, T * frames, size_t count)
-{ }
-#endif
-
-// The more the ratio is far from 1, the more we accept a big error.
-float epsilon_tweak_ratio(float ratio)
-{
- return ratio >= 1 ? ratio : 1 / ratio;
-}
-
-// Epsilon values for comparing resampled data to expected data.
-// The bigger the resampling ratio is, the more lax we are about errors.
-template<typename T>
-T epsilon(float ratio);
-
-template<>
-float epsilon(float ratio) {
- return 0.08f * epsilon_tweak_ratio(ratio);
-}
-
-template<>
-int16_t epsilon(float ratio) {
- return static_cast<int16_t>(10 * epsilon_tweak_ratio(ratio));
-}
-
-void test_delay_lines(uint32_t delay_frames, uint32_t channels, uint32_t chunk_ms)
-{
- const size_t length_s = 2;
- const size_t rate = 44100;
- const size_t length_frames = rate * length_s;
- delay_line<float> delay(delay_frames, channels, rate);
- auto_array<float> input;
- auto_array<float> output;
- uint32_t chunk_length = channels * chunk_ms * rate / 1000;
- uint32_t output_offset = 0;
- uint32_t channel = 0;
-
- /** Generate diracs every 100 frames, and check they are delayed. */
- input.push_silence(length_frames * channels);
- for (uint32_t i = 0; i < input.length() - 1; i+=100) {
- input.data()[i + channel] = 0.5;
- channel = (channel + 1) % channels;
- }
- dump("input.raw", input.data(), input.length());
- while(input.length()) {
- uint32_t to_pop = std::min<uint32_t>(input.length(), chunk_length * channels);
- float * in = delay.input_buffer(to_pop / channels);
- input.pop(in, to_pop);
- delay.written(to_pop / channels);
- output.push_silence(to_pop);
- delay.output(output.data() + output_offset, to_pop / channels);
- output_offset += to_pop;
- }
-
- // Check the diracs have been shifted by `delay_frames` frames.
- for (uint32_t i = 0; i < output.length() - delay_frames * channels + 1; i+=100) {
- ASSERT_EQ(output.data()[i + channel + delay_frames * channels], 0.5);
- channel = (channel + 1) % channels;
- }
-
- dump("output.raw", output.data(), output.length());
-}
-/**
- * This takes sine waves with a certain `channels` count, `source_rate`, and
- * resample them, by chunk of `chunk_duration` milliseconds, to `target_rate`.
- * Then a sample-wise comparison is performed against a sine wave generated at
- * the correct rate.
- */
-template<typename T>
-void test_resampler_one_way(uint32_t channels, uint32_t source_rate, uint32_t target_rate, float chunk_duration)
-{
- size_t chunk_duration_in_source_frames = static_cast<uint32_t>(ceil(chunk_duration * source_rate / 1000.));
- float resampling_ratio = static_cast<float>(source_rate) / target_rate;
- cubeb_resampler_speex_one_way<T> resampler(channels, source_rate, target_rate, 3);
- auto_array<T> source(channels * source_rate * 10);
- auto_array<T> destination(channels * target_rate * 10);
- auto_array<T> expected(channels * target_rate * 10);
- uint32_t phase_index = 0;
- uint32_t offset = 0;
- const uint32_t buf_len = 2; /* seconds */
-
- // generate a sine wave in each channel, at the source sample rate
- source.push_silence(channels * source_rate * buf_len);
- while(offset != source.length()) {
- float p = phase_index++ / static_cast<float>(source_rate);
- for (uint32_t j = 0; j < channels; j++) {
- source.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
- }
- }
-
- dump("input.raw", source.data(), source.length());
-
- expected.push_silence(channels * target_rate * buf_len);
- // generate a sine wave in each channel, at the target sample rate.
- // Insert silent samples at the beginning to account for the resampler latency.
- offset = resampler.latency() * channels;
- for (uint32_t i = 0; i < offset; i++) {
- expected.data()[i] = 0.0f;
- }
- phase_index = 0;
- while (offset != expected.length()) {
- float p = phase_index++ / static_cast<float>(target_rate);
- for (uint32_t j = 0; j < channels; j++) {
- expected.data()[offset++] = 0.5 * sin(440. * 2 * PI * p);
- }
- }
-
- dump("expected.raw", expected.data(), expected.length());
-
- // resample by chunk
- uint32_t write_offset = 0;
- destination.push_silence(channels * target_rate * buf_len);
- while (write_offset < destination.length())
- {
- size_t output_frames = static_cast<uint32_t>(floor(chunk_duration_in_source_frames / resampling_ratio));
- uint32_t input_frames = resampler.input_needed_for_output(output_frames);
- resampler.input(source.data(), input_frames);
- source.pop(nullptr, input_frames * channels);
- resampler.output(destination.data() + write_offset,
- std::min(output_frames, (destination.length() - write_offset) / channels));
- write_offset += output_frames * channels;
- }
-
- dump("output.raw", destination.data(), expected.length());
-
- // compare, taking the latency into account
- bool fuzzy_equal = true;
- for (uint32_t i = resampler.latency() + 1; i < expected.length(); i++) {
- float diff = fabs(expected.data()[i] - destination.data()[i]);
- if (diff > epsilon<T>(resampling_ratio)) {
- fprintf(stderr, "divergence at %d: %f %f (delta %f)\n", i, expected.data()[i], destination.data()[i], diff);
- fuzzy_equal = false;
- }
- }
- ASSERT_TRUE(fuzzy_equal);
-}
-
-template<typename T>
-cubeb_sample_format cubeb_format();
-
-template<>
-cubeb_sample_format cubeb_format<float>()
-{
- return CUBEB_SAMPLE_FLOAT32NE;
-}
-
-template<>
-cubeb_sample_format cubeb_format<short>()
-{
- return CUBEB_SAMPLE_S16NE;
-}
-
-struct osc_state {
- osc_state()
- : input_phase_index(0)
- , output_phase_index(0)
- , output_offset(0)
- , input_channels(0)
- , output_channels(0)
- {}
- uint32_t input_phase_index;
- uint32_t max_output_phase_index;
- uint32_t output_phase_index;
- uint32_t output_offset;
- uint32_t input_channels;
- uint32_t output_channels;
- uint32_t output_rate;
- uint32_t target_rate;
- auto_array<float> input;
- auto_array<float> output;
-};
-
-uint32_t fill_with_sine(float * buf, uint32_t rate, uint32_t channels,
- uint32_t frames, uint32_t initial_phase)
-{
- uint32_t offset = 0;
- for (uint32_t i = 0; i < frames; i++) {
- float p = initial_phase++ / static_cast<float>(rate);
- for (uint32_t j = 0; j < channels; j++) {
- buf[offset++] = 0.5 * sin(440. * 2 * PI * p);
- }
- }
- return initial_phase;
-}
-
-long data_cb_resampler(cubeb_stream * /*stm*/, void * user_ptr,
- const void * input_buffer, void * output_buffer, long frame_count)
-{
- osc_state * state = reinterpret_cast<osc_state*>(user_ptr);
- const float * in = reinterpret_cast<const float*>(input_buffer);
- float * out = reinterpret_cast<float*>(output_buffer);
-
- state->input.push(in, frame_count * state->input_channels);
-
- /* Check how much output frames we need to write */
- uint32_t remaining = state->max_output_phase_index - state->output_phase_index;
- uint32_t to_write = std::min<uint32_t>(remaining, frame_count);
- state->output_phase_index = fill_with_sine(out,
- state->target_rate,
- state->output_channels,
- to_write,
- state->output_phase_index);
-
- return to_write;
-}
-
-template<typename T>
-bool array_fuzzy_equal(const auto_array<T>& lhs, const auto_array<T>& rhs, T epsi)
-{
- uint32_t len = std::min(lhs.length(), rhs.length());
-
- for (uint32_t i = 0; i < len; i++) {
- if (fabs(lhs.at(i) - rhs.at(i)) > epsi) {
- std::cout << "not fuzzy equal at index: " << i
- << " lhs: " << lhs.at(i) << " rhs: " << rhs.at(i)
- << " delta: " << fabs(lhs.at(i) - rhs.at(i))
- << " epsilon: "<< epsi << std::endl;
- return false;
- }
- }
- return true;
-}
-
-template<typename T>
-void test_resampler_duplex(uint32_t input_channels, uint32_t output_channels,
- uint32_t input_rate, uint32_t output_rate,
- uint32_t target_rate, float chunk_duration)
-{
- cubeb_stream_params input_params;
- cubeb_stream_params output_params;
- osc_state state;
-
- input_params.format = output_params.format = cubeb_format<T>();
- state.input_channels = input_params.channels = input_channels;
- state.output_channels = output_params.channels = output_channels;
- input_params.rate = input_rate;
- state.output_rate = output_params.rate = output_rate;
- state.target_rate = target_rate;
- input_params.prefs = output_params.prefs = CUBEB_STREAM_PREF_NONE;
- long got;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params, target_rate,
- data_cb_resampler, (void*)&state, CUBEB_RESAMPLER_QUALITY_VOIP);
-
- long latency = cubeb_resampler_latency(resampler);
-
- const uint32_t duration_s = 2;
- int32_t duration_frames = duration_s * target_rate;
- uint32_t input_array_frame_count = ceil(chunk_duration * input_rate / 1000) + ceilf(static_cast<float>(input_rate) / target_rate) * 2;
- uint32_t output_array_frame_count = chunk_duration * output_rate / 1000;
- auto_array<float> input_buffer(input_channels * input_array_frame_count);
- auto_array<float> output_buffer(output_channels * output_array_frame_count);
- auto_array<float> expected_resampled_input(input_channels * duration_frames);
- auto_array<float> expected_resampled_output(output_channels * output_rate * duration_s);
-
- state.max_output_phase_index = duration_s * target_rate;
-
- expected_resampled_input.push_silence(input_channels * duration_frames);
- expected_resampled_output.push_silence(output_channels * output_rate * duration_s);
-
- /* expected output is a 440Hz sine wave at 16kHz */
- fill_with_sine(expected_resampled_input.data() + latency,
- target_rate, input_channels, duration_frames - latency, 0);
- /* expected output is a 440Hz sine wave at 32kHz */
- fill_with_sine(expected_resampled_output.data() + latency,
- output_rate, output_channels, output_rate * duration_s - latency, 0);
-
- while (state.output_phase_index != state.max_output_phase_index) {
- uint32_t leftover_samples = input_buffer.length() * input_channels;
- input_buffer.reserve(input_array_frame_count);
- state.input_phase_index = fill_with_sine(input_buffer.data() + leftover_samples,
- input_rate,
- input_channels,
- input_array_frame_count - leftover_samples,
- state.input_phase_index);
- long input_consumed = input_array_frame_count;
- input_buffer.set_length(input_array_frame_count);
-
- got = cubeb_resampler_fill(resampler,
- input_buffer.data(), &input_consumed,
- output_buffer.data(), output_array_frame_count);
-
- /* handle leftover input */
- if (input_array_frame_count != static_cast<uint32_t>(input_consumed)) {
- input_buffer.pop(nullptr, input_consumed * input_channels);
- } else {
- input_buffer.clear();
- }
-
- state.output.push(output_buffer.data(), got * state.output_channels);
- }
-
- dump("input_expected.raw", expected_resampled_input.data(), expected_resampled_input.length());
- dump("output_expected.raw", expected_resampled_output.data(), expected_resampled_output.length());
- dump("input.raw", state.input.data(), state.input.length());
- dump("output.raw", state.output.data(), state.output.length());
-
- // This is disabled because the latency estimation in the resampler code is
- // slightly off so we can generate expected vectors.
- // See https://github.com/kinetiknz/cubeb/issues/93
- // ASSERT_TRUE(array_fuzzy_equal(state.input, expected_resampled_input, epsilon<T>(input_rate/target_rate)));
- // ASSERT_TRUE(array_fuzzy_equal(state.output, expected_resampled_output, epsilon<T>(output_rate/target_rate)));
-
- cubeb_resampler_destroy(resampler);
-}
-
-#define array_size(x) (sizeof(x) / sizeof(x[0]))
-
-TEST(cubeb, resampler_one_way)
-{
- /* Test one way resamplers */
- for (uint32_t channels = 1; channels <= max_channels; channels++) {
- for (uint32_t source_rate = 0; source_rate < array_size(sample_rates); source_rate++) {
- for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
- for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
- fprintf(stderr, "one_way: channels: %d, source_rate: %d, dest_rate: %d, chunk_duration: %d\n",
- channels, sample_rates[source_rate], sample_rates[dest_rate], chunk_duration);
- test_resampler_one_way<float>(channels, sample_rates[source_rate],
- sample_rates[dest_rate], chunk_duration);
- }
- }
- }
- }
-}
-
-TEST(cubeb, DISABLED_resampler_duplex)
-{
- for (uint32_t input_channels = 1; input_channels <= max_channels; input_channels++) {
- for (uint32_t output_channels = 1; output_channels <= max_channels; output_channels++) {
- for (uint32_t source_rate_input = 0; source_rate_input < array_size(sample_rates); source_rate_input++) {
- for (uint32_t source_rate_output = 0; source_rate_output < array_size(sample_rates); source_rate_output++) {
- for (uint32_t dest_rate = 0; dest_rate < array_size(sample_rates); dest_rate++) {
- for (uint32_t chunk_duration = min_chunks; chunk_duration < max_chunks; chunk_duration+=chunk_increment) {
- fprintf(stderr, "input channels:%d output_channels:%d input_rate:%d "
- "output_rate:%d target_rate:%d chunk_ms:%d\n",
- input_channels, output_channels,
- sample_rates[source_rate_input],
- sample_rates[source_rate_output],
- sample_rates[dest_rate],
- chunk_duration);
- test_resampler_duplex<float>(input_channels, output_channels,
- sample_rates[source_rate_input],
- sample_rates[source_rate_output],
- sample_rates[dest_rate],
- chunk_duration);
- }
- }
- }
- }
- }
- }
-}
-
-TEST(cubeb, resampler_delay_line)
-{
- for (uint32_t channel = 1; channel <= 2; channel++) {
- for (uint32_t delay_frames = 4; delay_frames <= 40; delay_frames+=chunk_increment) {
- for (uint32_t chunk_size = 10; chunk_size <= 30; chunk_size++) {
- fprintf(stderr, "channel: %d, delay_frames: %d, chunk_size: %d\n",
- channel, delay_frames, chunk_size);
- test_delay_lines(delay_frames, channel, chunk_size);
- }
- }
- }
-}
-
-long test_output_only_noop_data_cb(cubeb_stream * /*stm*/, void * /*user_ptr*/,
- const void * input_buffer,
- void * output_buffer, long frame_count)
-{
- EXPECT_TRUE(output_buffer);
- EXPECT_TRUE(!input_buffer);
- return frame_count;
-}
-
-TEST(cubeb, resampler_output_only_noop)
-{
- cubeb_stream_params output_params;
- int target_rate;
-
- output_params.rate = 44100;
- output_params.channels = 1;
- output_params.format = CUBEB_SAMPLE_FLOAT32NE;
- target_rate = output_params.rate;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
- test_output_only_noop_data_cb, nullptr,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- const long out_frames = 128;
- float out_buffer[out_frames];
- long got;
-
- got = cubeb_resampler_fill(resampler, nullptr, nullptr,
- out_buffer, out_frames);
-
- ASSERT_EQ(got, out_frames);
-
- cubeb_resampler_destroy(resampler);
-}
-
-long test_drain_data_cb(cubeb_stream * /*stm*/, void * user_ptr,
- const void * input_buffer,
- void * output_buffer, long frame_count)
-{
- EXPECT_TRUE(output_buffer);
- EXPECT_TRUE(!input_buffer);
- auto cb_count = static_cast<int *>(user_ptr);
- (*cb_count)++;
- return frame_count - 1;
-}
-
-TEST(cubeb, resampler_drain)
-{
- cubeb_stream_params output_params;
- int target_rate;
-
- output_params.rate = 44100;
- output_params.channels = 1;
- output_params.format = CUBEB_SAMPLE_FLOAT32NE;
- target_rate = 48000;
- int cb_count = 0;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params, target_rate,
- test_drain_data_cb, &cb_count,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- const long out_frames = 128;
- float out_buffer[out_frames];
- long got;
-
- do {
- got = cubeb_resampler_fill(resampler, nullptr, nullptr,
- out_buffer, out_frames);
- } while (got == out_frames);
-
- /* The callback should be called once but not again after returning <
- * frame_count. */
- ASSERT_EQ(cb_count, 1);
-
- cubeb_resampler_destroy(resampler);
-}
-
-// gtest does not support using ASSERT_EQ and friend in a function that returns
-// a value.
-void check_output(const void * input_buffer, void * output_buffer, long frame_count)
-{
- ASSERT_EQ(input_buffer, nullptr);
- ASSERT_EQ(frame_count, 256);
- ASSERT_TRUE(!!output_buffer);
-}
-
-long cb_passthrough_resampler_output(cubeb_stream * /*stm*/, void * /*user_ptr*/,
- const void * input_buffer,
- void * output_buffer, long frame_count)
-{
- check_output(input_buffer, output_buffer, frame_count);
- return frame_count;
-}
-
-TEST(cubeb, resampler_passthrough_output_only)
-{
- // Test that the passthrough resampler works when there is only an output stream.
- cubeb_stream_params output_params;
-
- const size_t output_channels = 2;
- output_params.channels = output_channels;
- output_params.rate = 44100;
- output_params.format = CUBEB_SAMPLE_FLOAT32NE;
- int target_rate = output_params.rate;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, nullptr, &output_params,
- target_rate, cb_passthrough_resampler_output, nullptr,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- float output_buffer[output_channels * 256];
-
- long got;
- for (uint32_t i = 0; i < 30; i++) {
- got = cubeb_resampler_fill(resampler, nullptr, nullptr, output_buffer, 256);
- ASSERT_EQ(got, 256);
- }
-
- cubeb_resampler_destroy(resampler);
-}
-
-// gtest does not support using ASSERT_EQ and friend in a function that returns
-// a value.
-void check_input(const void * input_buffer, void * output_buffer, long frame_count)
-{
- ASSERT_EQ(output_buffer, nullptr);
- ASSERT_EQ(frame_count, 256);
- ASSERT_TRUE(!!input_buffer);
-}
-
-long cb_passthrough_resampler_input(cubeb_stream * /*stm*/, void * /*user_ptr*/,
- const void * input_buffer,
- void * output_buffer, long frame_count)
-{
- check_input(input_buffer, output_buffer, frame_count);
- return frame_count;
-}
-
-TEST(cubeb, resampler_passthrough_input_only)
-{
- // Test that the passthrough resampler works when there is only an output stream.
- cubeb_stream_params input_params;
-
- const size_t input_channels = 2;
- input_params.channels = input_channels;
- input_params.rate = 44100;
- input_params.format = CUBEB_SAMPLE_FLOAT32NE;
- int target_rate = input_params.rate;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, nullptr,
- target_rate, cb_passthrough_resampler_input, nullptr,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- float input_buffer[input_channels * 256];
-
- long got;
- for (uint32_t i = 0; i < 30; i++) {
- long int frames = 256;
- got = cubeb_resampler_fill(resampler, input_buffer, &frames, nullptr, 0);
- ASSERT_EQ(got, 256);
- }
-
- cubeb_resampler_destroy(resampler);
-}
-
-template<typename T>
-long seq(T* array, int stride, long start, long count)
-{
- uint32_t output_idx = 0;
- for(int i = 0; i < count; i++) {
- for (int j = 0; j < stride; j++) {
- array[output_idx + j] = static_cast<T>(start + i);
- }
- output_idx += stride;
- }
- return start + count;
-}
-
-template<typename T>
-void is_seq(T * array, int stride, long count, long expected_start)
-{
- uint32_t output_index = 0;
- for (long i = 0; i < count; i++) {
- for (int j = 0; j < stride; j++) {
- ASSERT_EQ(array[output_index + j], expected_start + i);
- }
- output_index += stride;
- }
-}
-
-template<typename T>
-void is_not_seq(T * array, int stride, long count, long expected_start)
-{
- uint32_t output_index = 0;
- for (long i = 0; i < count; i++) {
- for (int j = 0; j < stride; j++) {
- ASSERT_NE(array[output_index + j], expected_start + i);
- }
- output_index += stride;
- }
-}
-
-struct closure {
- int input_channel_count;
-};
-
-// gtest does not support using ASSERT_EQ and friend in a function that returns
-// a value.
-template<typename T>
-void check_duplex(const T * input_buffer,
- T * output_buffer, long frame_count,
- int input_channel_count)
-{
- ASSERT_EQ(frame_count, 256);
- // Silence scan-build warning.
- ASSERT_TRUE(!!output_buffer); assert(output_buffer);
- ASSERT_TRUE(!!input_buffer); assert(input_buffer);
-
- int output_index = 0;
- int input_index = 0;
- for (int i = 0; i < frame_count; i++) {
- // output is two channels, input one or two channels.
- if (input_channel_count == 1) {
- output_buffer[output_index] = output_buffer[output_index + 1] = input_buffer[i];
- } else if (input_channel_count == 2) {
- output_buffer[output_index] = input_buffer[input_index];
- output_buffer[output_index + 1] = input_buffer[input_index + 1];
- }
- output_index += 2;
- input_index += input_channel_count;
- }
-}
-
-long cb_passthrough_resampler_duplex(cubeb_stream * /*stm*/, void * user_ptr,
- const void * input_buffer,
- void * output_buffer, long frame_count)
-{
- closure * c = reinterpret_cast<closure*>(user_ptr);
- check_duplex<float>(static_cast<const float*>(input_buffer),
- static_cast<float*>(output_buffer),
- frame_count, c->input_channel_count);
- return frame_count;
-}
-
-
-TEST(cubeb, resampler_passthrough_duplex_callback_reordering)
-{
- // Test that when pre-buffering on resampler creation, we can survive an input
- // callback being delayed.
-
- cubeb_stream_params input_params;
- cubeb_stream_params output_params;
-
- const int input_channels = 1;
- const int output_channels = 2;
-
- input_params.channels = input_channels;
- input_params.rate = 44100;
- input_params.format = CUBEB_SAMPLE_FLOAT32NE;
-
- output_params.channels = output_channels;
- output_params.rate = input_params.rate;
- output_params.format = CUBEB_SAMPLE_FLOAT32NE;
-
- int target_rate = input_params.rate;
-
- closure c;
- c.input_channel_count = input_channels;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params,
- target_rate, cb_passthrough_resampler_duplex, &c,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- const long BUF_BASE_SIZE = 256;
- float input_buffer_prebuffer[input_channels * BUF_BASE_SIZE * 2];
- float input_buffer_glitch[input_channels * BUF_BASE_SIZE * 2];
- float input_buffer_normal[input_channels * BUF_BASE_SIZE];
- float output_buffer[output_channels * BUF_BASE_SIZE];
-
- long seq_idx = 0;
- long output_seq_idx = 0;
-
- long prebuffer_frames = ARRAY_LENGTH(input_buffer_prebuffer) / input_params.channels;
- seq_idx = seq(input_buffer_prebuffer, input_channels, seq_idx,
- prebuffer_frames);
-
- long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer, &prebuffer_frames,
- output_buffer, BUF_BASE_SIZE);
-
- output_seq_idx += BUF_BASE_SIZE;
-
- // prebuffer_frames will hold the frames used by the resampler.
- ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
- ASSERT_EQ(got, BUF_BASE_SIZE);
-
- for (uint32_t i = 0; i < 300; i++) {
- long int frames = BUF_BASE_SIZE;
- // Simulate that sometimes, we don't have the input callback on time
- if (i != 0 && (i % 100) == 0) {
- long zero = 0;
- got = cubeb_resampler_fill(resampler, input_buffer_normal /* unused here */,
- &zero, output_buffer, BUF_BASE_SIZE);
- is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
- output_seq_idx += BUF_BASE_SIZE;
- } else if (i != 0 && (i % 100) == 1) {
- // if this is the case, the on the next iteration, we'll have twice the
- // amount of input frames
- seq_idx = seq(input_buffer_glitch, input_channels, seq_idx, BUF_BASE_SIZE * 2);
- frames = 2 * BUF_BASE_SIZE;
- got = cubeb_resampler_fill(resampler, input_buffer_glitch, &frames, output_buffer, BUF_BASE_SIZE);
- is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
- output_seq_idx += BUF_BASE_SIZE;
- } else {
- // normal case
- seq_idx = seq(input_buffer_normal, input_channels, seq_idx, BUF_BASE_SIZE);
- long normal_input_frame_count = 256;
- got = cubeb_resampler_fill(resampler, input_buffer_normal, &normal_input_frame_count, output_buffer, BUF_BASE_SIZE);
- is_seq(output_buffer, 2, BUF_BASE_SIZE, output_seq_idx);
- output_seq_idx += BUF_BASE_SIZE;
- }
- ASSERT_EQ(got, BUF_BASE_SIZE);
- }
-
- cubeb_resampler_destroy(resampler);
-}
-
-// Artificially simulate output thread underruns,
-// by building up artificial delay in the input.
-// Check that the frame drop logic kicks in.
-TEST(cubeb, resampler_drift_drop_data)
-{
- for (uint32_t input_channels = 1; input_channels < 3; input_channels++) {
- cubeb_stream_params input_params;
- cubeb_stream_params output_params;
-
- const int output_channels = 2;
- const int sample_rate = 44100;
-
- input_params.channels = input_channels;
- input_params.rate = sample_rate;
- input_params.format = CUBEB_SAMPLE_FLOAT32NE;
-
- output_params.channels = output_channels;
- output_params.rate = sample_rate;
- output_params.format = CUBEB_SAMPLE_FLOAT32NE;
-
- int target_rate = input_params.rate;
-
- closure c;
- c.input_channel_count = input_channels;
-
- cubeb_resampler * resampler =
- cubeb_resampler_create((cubeb_stream*)nullptr, &input_params, &output_params,
- target_rate, cb_passthrough_resampler_duplex, &c,
- CUBEB_RESAMPLER_QUALITY_VOIP);
-
- const long BUF_BASE_SIZE = 256;
-
- // The factor by which the deadline is missed. This is intentionally
- // kind of large to trigger the frame drop quickly. In real life, multiple
- // smaller under-runs would accumulate.
- const long UNDERRUN_FACTOR = 10;
- // Number buffer used for pre-buffering, that some backends do.
- const long PREBUFFER_FACTOR = 2;
-
- std::vector<float> input_buffer_prebuffer(input_channels * BUF_BASE_SIZE * PREBUFFER_FACTOR);
- std::vector<float> input_buffer_glitch(input_channels * BUF_BASE_SIZE * UNDERRUN_FACTOR);
- std::vector<float> input_buffer_normal(input_channels * BUF_BASE_SIZE);
- std::vector<float> output_buffer(output_channels * BUF_BASE_SIZE);
-
- long seq_idx = 0;
- long output_seq_idx = 0;
-
- long prebuffer_frames = input_buffer_prebuffer.size() / input_params.channels;
- seq_idx = seq(input_buffer_prebuffer.data(), input_channels, seq_idx,
- prebuffer_frames);
-
- long got = cubeb_resampler_fill(resampler, input_buffer_prebuffer.data(), &prebuffer_frames,
- output_buffer.data(), BUF_BASE_SIZE);
-
- output_seq_idx += BUF_BASE_SIZE;
-
- // prebuffer_frames will hold the frames used by the resampler.
- ASSERT_EQ(prebuffer_frames, BUF_BASE_SIZE);
- ASSERT_EQ(got, BUF_BASE_SIZE);
-
- for (uint32_t i = 0; i < 300; i++) {
- long int frames = BUF_BASE_SIZE;
- if (i != 0 && (i % 100) == 1) {
- // Once in a while, the output thread misses its deadline.
- // The input thread still produces data, so it ends up accumulating. Simulate this by providing a
- // much bigger input buffer. Check that the sequence is now unaligned, meaning we've dropped data
- // to keep everything in sync.
- seq_idx = seq(input_buffer_glitch.data(), input_channels, seq_idx, BUF_BASE_SIZE * UNDERRUN_FACTOR);
- frames = BUF_BASE_SIZE * UNDERRUN_FACTOR;
- got = cubeb_resampler_fill(resampler, input_buffer_glitch.data(), &frames, output_buffer.data(), BUF_BASE_SIZE);
- is_seq(output_buffer.data(), 2, BUF_BASE_SIZE, output_seq_idx);
- output_seq_idx += BUF_BASE_SIZE;
- }
- else if (i != 0 && (i % 100) == 2) {
- // On the next iteration, the sequence should be broken
- seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE);
- long normal_input_frame_count = 256;
- got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE);
- is_not_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx);
- // Reclock so that we can use is_seq again.
- output_seq_idx = output_buffer[BUF_BASE_SIZE * output_channels - 1] + 1;
- }
- else {
- // normal case
- seq_idx = seq(input_buffer_normal.data(), input_channels, seq_idx, BUF_BASE_SIZE);
- long normal_input_frame_count = 256;
- got = cubeb_resampler_fill(resampler, input_buffer_normal.data(), &normal_input_frame_count, output_buffer.data(), BUF_BASE_SIZE);
- is_seq(output_buffer.data(), output_channels, BUF_BASE_SIZE, output_seq_idx);
- output_seq_idx += BUF_BASE_SIZE;
- }
- ASSERT_EQ(got, BUF_BASE_SIZE);
- }
-
- cubeb_resampler_destroy(resampler);
- }
-}
-
-static long
-passthrough_resampler_fill_eq_input(cubeb_stream * stream,
- void * user_ptr,
- void const * input_buffer,
- void * output_buffer,
- long nframes) {
- // gtest does not support using ASSERT_EQ and friends in a
- // function that returns a value.
- [nframes, input_buffer]() {
- ASSERT_EQ(nframes, 32);
- const float* input = static_cast<const float*>(input_buffer);
- for (int i = 0; i < 64; ++i) {
- ASSERT_FLOAT_EQ(input[i], 0.01 * i);
- }
- }();
- return nframes;
-}
-
-TEST(cubeb, passthrough_resampler_fill_eq_input) {
- uint32_t channels = 2;
- uint32_t sample_rate = 44100;
- passthrough_resampler<float> resampler =
- passthrough_resampler<float>(nullptr, passthrough_resampler_fill_eq_input,
- nullptr, channels, sample_rate);
-
- long input_frame_count = 32;
- long output_frame_count = 32;
- float input[64] = {};
- float output[64] = {};
- for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
- input[i] = 0.01 * i;
- }
- long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
- ASSERT_EQ(got, output_frame_count);
- // Input frames used must be equal to output frames.
- ASSERT_EQ(input_frame_count, output_frame_count);
-}
-
-static long
-passthrough_resampler_fill_short_input(cubeb_stream * stream,
- void * user_ptr,
- void const * input_buffer,
- void * output_buffer,
- long nframes) {
- // gtest does not support using ASSERT_EQ and friends in a
- // function that returns a value.
- [nframes, input_buffer]() {
- ASSERT_EQ(nframes, 32);
- const float* input = static_cast<const float*>(input_buffer);
- // First part contains the input
- for (int i = 0; i < 32; ++i) {
- ASSERT_FLOAT_EQ(input[i], 0.01 * i);
- }
- // missing part contains silence
- for (int i = 32; i < 64; ++i) {
- ASSERT_FLOAT_EQ(input[i], 0.0);
- }
- }();
- return nframes;
-}
-
-TEST(cubeb, passthrough_resampler_fill_short_input) {
- uint32_t channels = 2;
- uint32_t sample_rate = 44100;
- passthrough_resampler<float> resampler =
- passthrough_resampler<float>(nullptr, passthrough_resampler_fill_short_input,
- nullptr, channels, sample_rate);
-
- long input_frame_count = 16;
- long output_frame_count = 32;
- float input[64] = {};
- float output[64] = {};
- for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
- input[i] = 0.01 * i;
- }
- long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
- ASSERT_EQ(got, output_frame_count);
- // Input frames used are less than the output frames due to glitch.
- ASSERT_EQ(input_frame_count, output_frame_count - 16);
-}
-
-static long
-passthrough_resampler_fill_input_left(cubeb_stream * stream,
- void * user_ptr,
- void const * input_buffer,
- void * output_buffer,
- long nframes) {
- // gtest does not support using ASSERT_EQ and friends in a
- // function that returns a value.
- int iteration = *static_cast<int*>(user_ptr);
- if (iteration == 1) {
- [nframes, input_buffer]() {
- ASSERT_EQ(nframes, 32);
- const float* input = static_cast<const float*>(input_buffer);
- for (int i = 0; i < 64; ++i) {
- ASSERT_FLOAT_EQ(input[i], 0.01 * i);
- }
- }();
- } else if (iteration == 2) {
- [nframes, input_buffer]() {
- ASSERT_EQ(nframes, 32);
- const float* input = static_cast<const float*>(input_buffer);
- for (int i = 0; i < 32; ++i) {
- // First part contains the reamaining input samples from previous
- // iteration (since they were more).
- ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 64));
- // next part contains the new buffer
- ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
- }
- }();
- } else if (iteration == 3) {
- [nframes, input_buffer]() {
- ASSERT_EQ(nframes, 32);
- const float* input = static_cast<const float*>(input_buffer);
- for (int i = 0; i < 32; ++i) {
- // First part (16 frames) contains the reamaining input samples
- // from previous iteration (since they were more).
- ASSERT_FLOAT_EQ(input[i], 0.01 * (i + 32));
- }
- for (int i = 0; i < 16; ++i) {
- // next part (8 frames) contains the new input buffer.
- ASSERT_FLOAT_EQ(input[i + 32], 0.01 * i);
- // last part (8 frames) contains silence.
- ASSERT_FLOAT_EQ(input[i + 32 + 16], 0.0);
- }
- }();
- }
- return nframes;
-}
-
-TEST(cubeb, passthrough_resampler_fill_input_left) {
- const uint32_t channels = 2;
- const uint32_t sample_rate = 44100;
- int iteration = 0;
- passthrough_resampler<float> resampler =
- passthrough_resampler<float>(nullptr, passthrough_resampler_fill_input_left,
- &iteration, channels, sample_rate);
-
- long input_frame_count = 48; // 32 + 16
- const long output_frame_count = 32;
- float input[96] = {};
- float output[64] = {};
- for (uint32_t i = 0; i < input_frame_count * channels; ++i) {
- input[i] = 0.01 * i;
- }
-
- // 1st iteration, add the extra input.
- iteration = 1;
- long got = resampler.fill(input, &input_frame_count, output, output_frame_count);
- ASSERT_EQ(got, output_frame_count);
- // Input frames used must be equal to output frames.
- ASSERT_EQ(input_frame_count, output_frame_count);
-
- // 2st iteration, use the extra input from previous iteration,
- // 16 frames are remaining in the input buffer.
- input_frame_count = 32; // we need 16 input frames but we get more;
- iteration = 2;
- got = resampler.fill(input, &input_frame_count, output, output_frame_count);
- ASSERT_EQ(got, output_frame_count);
- // Input frames used must be equal to output frames.
- ASSERT_EQ(input_frame_count, output_frame_count);
-
- // 3rd iteration, use the extra input from previous iteration.
- // 16 frames are remaining in the input buffer.
- input_frame_count = 16 - 8; // We need 16 more input frames but we only get 8.
- iteration = 3;
- got = resampler.fill(input, &input_frame_count, output, output_frame_count);
- ASSERT_EQ(got, output_frame_count);
- // Input frames used are less than the output frames due to glitch.
- ASSERT_EQ(input_frame_count, output_frame_count - 8);
-}
-
-TEST(cubeb, individual_methods) {
- const uint32_t channels = 2;
- const uint32_t sample_rate = 44100;
- const uint32_t frames = 256;
-
- delay_line<float> dl(10, channels, sample_rate);
- uint32_t frames_needed1 = dl.input_needed_for_output(0);
- ASSERT_EQ(frames_needed1, 0u);
-
- cubeb_resampler_speex_one_way<float> one_way(channels, sample_rate, sample_rate, CUBEB_RESAMPLER_QUALITY_DEFAULT);
- float buffer[channels * frames] = {0.0};
- // Add all frames in the resampler's internal buffer.
- one_way.input(buffer, frames);
- // Ask for less than the existing frames, this would create a uint overlflow without the fix.
- uint32_t frames_needed2 = one_way.input_needed_for_output(0);
- ASSERT_EQ(frames_needed2, 0u);
-}
-