summaryrefslogtreecommitdiff
path: root/media/libaom/src/test/av1_nn_predict_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'media/libaom/src/test/av1_nn_predict_test.cc')
-rw-r--r--media/libaom/src/test/av1_nn_predict_test.cc217
1 files changed, 217 insertions, 0 deletions
diff --git a/media/libaom/src/test/av1_nn_predict_test.cc b/media/libaom/src/test/av1_nn_predict_test.cc
new file mode 100644
index 0000000000..c03cba8c52
--- /dev/null
+++ b/media/libaom/src/test/av1_nn_predict_test.cc
@@ -0,0 +1,217 @@
+/*
+ * Copyright (c) 2018, Alliance for Open Media. All rights reserved
+ *
+ * This source code is subject to the terms of the BSD 2 Clause License and
+ * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
+ * was not distributed with this source code in the LICENSE file, you can
+ * obtain it at www.aomedia.org/license/software. If the Alliance for Open
+ * Media Patent License 1.0 was not distributed with this source code in the
+ * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
+ */
+
+#include <tuple>
+
+#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
+
+#include "aom/aom_integer.h"
+#include "aom_ports/aom_timer.h"
+#include "av1/encoder/ml.h"
+#include "config/aom_config.h"
+#include "config/aom_dsp_rtcd.h"
+#include "config/av1_rtcd.h"
+#include "test/util.h"
+#include "test/register_state_check.h"
+#include "test/acm_random.h"
+#include "test/clear_system_state.h"
+
+namespace {
+typedef void (*NnPredict_Func)(const float *const input_nodes,
+ const NN_CONFIG *const nn_config,
+ int reduce_prec, float *const output);
+
+typedef std::tuple<const NnPredict_Func> NnPredictTestParam;
+
+const float epsilon = 1e-3f; // Error threshold for functional equivalence
+
+class NnPredictTest : public ::testing::TestWithParam<NnPredictTestParam> {
+ public:
+ virtual void SetUp() {
+ const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
+ // Allocate two massive buffers on the heap for edge weights and node bias
+ // Then set-up the double-dimension arrays pointing into the big buffers
+ weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) *
+ sizeof(*weights_buf));
+ bias_buf =
+ (float *)aom_malloc(NN_MAX_NODES_PER_LAYER *
+ (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf));
+ ASSERT_NE(weights_buf, nullptr);
+ ASSERT_NE(bias_buf, nullptr);
+ for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) {
+ weights[i] = &weights_buf[i * MAX_NODES2];
+ bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER];
+ }
+ target_func_ = GET_PARAM(0);
+ }
+ virtual void TearDown() {
+ aom_free(weights_buf);
+ aom_free(bias_buf);
+ }
+ void RunNnPredictTest(const NN_CONFIG *const shape);
+ void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times);
+ void RunNnPredictTest_all(const NN_CONFIG *const shapes,
+ const int num_shapes);
+ void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes,
+ const int num_shapes, const int run_times);
+
+ private:
+ NnPredict_Func target_func_;
+ libaom_test::ACMRandom rng_;
+ float *weights[NN_MAX_HIDDEN_LAYERS + 1] = { 0 };
+ float *bias[NN_MAX_HIDDEN_LAYERS + 1] = { 0 };
+ float *weights_buf = nullptr, *bias_buf = nullptr;
+};
+
+void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) {
+ libaom_test::ClearSystemState();
+ float inputs[NN_MAX_NODES_PER_LAYER] = { 0 };
+ float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 };
+ float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 };
+
+ NN_CONFIG nn_config;
+ memcpy(&nn_config, shape, sizeof(nn_config));
+
+ char shape_str[32] = { 0 };
+ snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs);
+ for (int layer = 0; layer < shape->num_hidden_layers; layer++)
+ snprintf(&shape_str[strlen(shape_str)],
+ sizeof(shape_str) - strlen(shape_str), "x%d",
+ shape->num_hidden_nodes[layer]);
+ snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str),
+ "x%d", shape->num_outputs);
+
+ for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) {
+ nn_config.weights[i] = weights[i];
+ nn_config.bias[i] = bias[i];
+ }
+
+ for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) {
+ for (int node = 0; node < shape->num_inputs; node++) {
+ inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
+ }
+ for (int layer = 0; layer < shape->num_hidden_layers; layer++) {
+ for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) {
+ bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
+ }
+ for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
+ node++) {
+ weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
+ }
+ }
+ // Now the outputs:
+ int layer = shape->num_hidden_layers;
+ for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) {
+ bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
+ }
+ for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER;
+ node++) {
+ weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31);
+ }
+
+ av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref);
+ target_func_(inputs, &nn_config, 0, outputs_test);
+ libaom_test::ClearSystemState();
+
+ for (int node = 0; node < shape->num_outputs; node++) {
+ if (outputs_ref[node] < epsilon) {
+ ASSERT_LE(outputs_test[node], epsilon)
+ << "Reference output was near-zero, test output was not ("
+ << shape_str << ")";
+ } else {
+ const float error = outputs_ref[node] - outputs_test[node];
+ const float relative_error = fabsf(error / outputs_ref[node]);
+ ASSERT_LE(relative_error, epsilon)
+ << "Excessive relative error between reference and test ("
+ << shape_str << ")";
+ }
+ }
+ }
+}
+
+void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape,
+ const int run_times) {
+ libaom_test::ClearSystemState();
+ float inputs[NN_MAX_NODES_PER_LAYER] = { 0 };
+ float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 };
+ float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 };
+
+ NN_CONFIG nn_config;
+ memcpy(&nn_config, shape, sizeof(nn_config));
+
+ for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) {
+ nn_config.weights[i] = weights[i];
+ nn_config.bias[i] = bias[i];
+ }
+ // Don't bother actually changing the values for inputs/weights/bias: it
+ // shouldn't make any difference for a speed test.
+
+ aom_usec_timer timer;
+ aom_usec_timer_start(&timer);
+ for (int i = 0; i < run_times; ++i) {
+ av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref);
+ }
+ aom_usec_timer_mark(&timer);
+ const double time1 = static_cast<double>(aom_usec_timer_elapsed(&timer));
+ aom_usec_timer_start(&timer);
+ for (int i = 0; i < run_times; ++i) {
+ target_func_(inputs, &nn_config, 0, outputs_test);
+ }
+ aom_usec_timer_mark(&timer);
+ libaom_test::ClearSystemState();
+ const double time2 = static_cast<double>(aom_usec_timer_elapsed(&timer));
+
+ printf("%d", shape->num_inputs);
+ for (int layer = 0; layer < shape->num_hidden_layers; layer++)
+ printf("x%d", shape->num_hidden_nodes[layer]);
+ printf("x%d: ", shape->num_outputs);
+ printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2);
+}
+
+// This is all the neural network shapes observed executed in a few different
+// runs of the encoder. It also conveniently covers all the kernels
+// implemented.
+static const NN_CONFIG shapes[] = {
+ { 10, 16, 1, { 64 }, { 0 }, { 0 } }, { 12, 1, 1, { 12 }, { 0 }, { 0 } },
+ { 12, 1, 1, { 24 }, { 0 }, { 0 } }, { 12, 1, 1, { 32 }, { 0 }, { 0 } },
+ { 18, 4, 1, { 24 }, { 0 }, { 0 } }, { 18, 4, 1, { 32 }, { 0 }, { 0 } },
+ { 4, 1, 1, { 16 }, { 0 }, { 0 } }, { 8, 1, 1, { 16 }, { 0 }, { 0 } },
+ { 8, 4, 1, { 16 }, { 0 }, { 0 } }, { 8, 1, 1, { 24 }, { 0 }, { 0 } },
+ { 8, 1, 1, { 32 }, { 0 }, { 0 } }, { 8, 1, 1, { 64 }, { 0 }, { 0 } },
+ { 9, 3, 1, { 32 }, { 0 }, { 0 } }, { 4, 4, 1, { 8 }, { 0 }, { 0 } },
+};
+
+void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes,
+ const int num_shapes) {
+ for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]);
+}
+
+void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes,
+ const int num_shapes,
+ const int run_times) {
+ for (int i = 0; i < num_shapes; i++)
+ NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times);
+}
+
+TEST_P(NnPredictTest, RandomValues) {
+ RunNnPredictTest_all(shapes, sizeof(shapes) / sizeof(*shapes));
+}
+
+TEST_P(NnPredictTest, DISABLED_Speed) {
+ RunNnPredictSpeedTest_all(shapes, sizeof(shapes) / sizeof(*shapes), 10000000);
+}
+
+#if HAVE_SSE3
+INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest,
+ ::testing::Values(av1_nn_predict_sse3));
+#endif
+
+} // namespace