diff options
author | wolfbeast <mcwerewolf@gmail.com> | 2018-04-25 21:33:33 +0200 |
---|---|---|
committer | wolfbeast <mcwerewolf@gmail.com> | 2018-04-25 21:33:33 +0200 |
commit | fba28f19754f62b5227650143d5441fc86d4c7d7 (patch) | |
tree | 26629d73f83543ff92a060fd7b310bb748b13173 /security/nss/lib/freebl/rijndael.c | |
parent | b4154e043bfc0d2f301d88304efc896989d650bf (diff) | |
download | uxp-fba28f19754f62b5227650143d5441fc86d4c7d7.tar.gz |
Revert "Update NSS to 3.35-RTM"
This reverts commit f1a0f0a56fdd0fc39f255174ce08c06b91c66c94.
Diffstat (limited to 'security/nss/lib/freebl/rijndael.c')
-rw-r--r-- | security/nss/lib/freebl/rijndael.c | 294 |
1 files changed, 259 insertions, 35 deletions
diff --git a/security/nss/lib/freebl/rijndael.c b/security/nss/lib/freebl/rijndael.c index 5de27de9ce..e4ad60388f 100644 --- a/security/nss/lib/freebl/rijndael.c +++ b/security/nss/lib/freebl/rijndael.c @@ -27,39 +27,16 @@ #include "intel-gcm.h" #endif /* INTEL_GCM */ -/* Forward declarations */ -void rijndael_native_key_expansion(AESContext *cx, const unsigned char *key, - unsigned int Nk); -void rijndael_native_encryptBlock(AESContext *cx, - unsigned char *output, - const unsigned char *input); - -/* Stub definitions for the above rijndael_native_* functions, which - * shouldn't be used unless NSS_X86_OR_X64 is defined */ -#ifndef NSS_X86_OR_X64 -void -rijndael_native_key_expansion(AESContext *cx, const unsigned char *key, - unsigned int Nk) -{ - PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); - PORT_Assert(0); -} - -void -rijndael_native_encryptBlock(AESContext *cx, - unsigned char *output, - const unsigned char *input) -{ - PORT_SetError(SEC_ERROR_LIBRARY_FAILURE); - PORT_Assert(0); -} -#endif /* NSS_X86_OR_X64 */ - /* - * There are currently three ways to build this code, varying in performance + * There are currently five ways to build this code, varying in performance * and code size. * * RIJNDAEL_INCLUDE_TABLES Include all tables from rijndael32.tab + * RIJNDAEL_GENERATE_TABLES Generate tables on first + * encryption/decryption, then store them; + * use the function gfm + * RIJNDAEL_GENERATE_TABLES_MACRO Same as above, but use macros to do + * the generation * RIJNDAEL_GENERATE_VALUES Do not store tables, generate the table * values "on-the-fly", using gfm * RIJNDAEL_GENERATE_VALUES_MACRO Same as above, but use macros @@ -131,7 +108,8 @@ rijndael_native_encryptBlock(AESContext *cx, ((a & 0x80) ? ((a << 1) ^ 0x1b) : (a << 1)) /* Choose GFM method (macros or function) */ -#if defined(RIJNDAEL_GENERATE_VALUES_MACRO) +#if defined(RIJNDAEL_GENERATE_TABLES_MACRO) || \ + defined(RIJNDAEL_GENERATE_VALUES_MACRO) /* * Galois field GF(2**8) multipliers, in macro form @@ -155,7 +133,7 @@ rijndael_native_encryptBlock(AESContext *cx, #define GFM0E(a) \ (GFM02(a) ^ GFM04(a) ^ GFM08(a)) /* a * 0E = a * (02 + 04 + 08) */ -#else /* RIJNDAEL_GENERATE_VALUES */ +#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_VALUES */ /* GF_MULTIPLY * @@ -266,7 +244,7 @@ gen_TInvXi(PRUint8 tx, PRUint8 i) #define IMXC1(b) G_IMXC1(b) #define IMXC2(b) G_IMXC2(b) #define IMXC3(b) G_IMXC3(b) -#else /* RIJNDAEL_GENERATE_VALUES_MACRO */ +#elif defined(RIJNDAEL_GENERATE_VALUES_MACRO) /* generate values for the tables with macros */ #define T0(i) G_T0(i) #define T1(i) G_T1(i) @@ -280,10 +258,84 @@ gen_TInvXi(PRUint8 tx, PRUint8 i) #define IMXC1(b) G_IMXC1(b) #define IMXC2(b) G_IMXC2(b) #define IMXC3(b) G_IMXC3(b) +#else /* RIJNDAEL_GENERATE_TABLES or RIJNDAEL_GENERATE_TABLES_MACRO */ +/* Generate T and T**-1 table values and store, then index */ +/* The inverse mix column tables are still generated */ +#define T0(i) rijndaelTables->T0[i] +#define T1(i) rijndaelTables->T1[i] +#define T2(i) rijndaelTables->T2[i] +#define T3(i) rijndaelTables->T3[i] +#define TInv0(i) rijndaelTables->TInv0[i] +#define TInv1(i) rijndaelTables->TInv1[i] +#define TInv2(i) rijndaelTables->TInv2[i] +#define TInv3(i) rijndaelTables->TInv3[i] +#define IMXC0(b) G_IMXC0(b) +#define IMXC1(b) G_IMXC1(b) +#define IMXC2(b) G_IMXC2(b) +#define IMXC3(b) G_IMXC3(b) #endif /* choose T-table indexing method */ #endif /* not RIJNDAEL_INCLUDE_TABLES */ +#if defined(RIJNDAEL_GENERATE_TABLES) || \ + defined(RIJNDAEL_GENERATE_TABLES_MACRO) + +/* Code to generate and store the tables */ + +struct rijndael_tables_str { + PRUint32 T0[256]; + PRUint32 T1[256]; + PRUint32 T2[256]; + PRUint32 T3[256]; + PRUint32 TInv0[256]; + PRUint32 TInv1[256]; + PRUint32 TInv2[256]; + PRUint32 TInv3[256]; +}; + +static struct rijndael_tables_str *rijndaelTables = NULL; +static PRCallOnceType coRTInit = { 0, 0, 0 }; +static PRStatus +init_rijndael_tables(void) +{ + PRUint32 i; + PRUint8 si01, si02, si03, si04, si08, si09, si0B, si0D, si0E; + struct rijndael_tables_str *rts; + rts = (struct rijndael_tables_str *) + PORT_Alloc(sizeof(struct rijndael_tables_str)); + if (!rts) + return PR_FAILURE; + for (i = 0; i < 256; i++) { + /* The forward values */ + si01 = SBOX(i); + si02 = XTIME(si01); + si03 = si02 ^ si01; + rts->T0[i] = WORD4(si02, si01, si01, si03); + rts->T1[i] = WORD4(si03, si02, si01, si01); + rts->T2[i] = WORD4(si01, si03, si02, si01); + rts->T3[i] = WORD4(si01, si01, si03, si02); + /* The inverse values */ + si01 = SINV(i); + si02 = XTIME(si01); + si04 = XTIME(si02); + si08 = XTIME(si04); + si03 = si02 ^ si01; + si09 = si08 ^ si01; + si0B = si08 ^ si03; + si0D = si09 ^ si04; + si0E = si08 ^ si04 ^ si02; + rts->TInv0[i] = WORD4(si0E, si09, si0D, si0B); + rts->TInv1[i] = WORD4(si0B, si0E, si09, si0D); + rts->TInv2[i] = WORD4(si0D, si0B, si0E, si09); + rts->TInv3[i] = WORD4(si09, si0D, si0B, si0E); + } + /* wait until all the values are in to set */ + rijndaelTables = rts; + return PR_SUCCESS; +} + +#endif /* code to generate tables */ + /************************************************************************** * * Stuff related to the Rijndael key schedule @@ -337,6 +389,162 @@ rijndael_key_expansion7(AESContext *cx, const unsigned char *key, unsigned int N } } +#if defined(NSS_X86_OR_X64) +#define EXPAND_KEY128(k, rcon, res) \ + tmp_key = _mm_aeskeygenassist_si128(k, rcon); \ + tmp_key = _mm_shuffle_epi32(tmp_key, 0xFF); \ + tmp = _mm_xor_si128(k, _mm_slli_si128(k, 4)); \ + tmp = _mm_xor_si128(tmp, _mm_slli_si128(tmp, 4)); \ + tmp = _mm_xor_si128(tmp, _mm_slli_si128(tmp, 4)); \ + res = _mm_xor_si128(tmp, tmp_key) + +static void +native_key_expansion128(AESContext *cx, const unsigned char *key) +{ + __m128i *keySchedule = cx->keySchedule; + pre_align __m128i tmp_key post_align; + pre_align __m128i tmp post_align; + keySchedule[0] = _mm_loadu_si128((__m128i *)key); + EXPAND_KEY128(keySchedule[0], 0x01, keySchedule[1]); + EXPAND_KEY128(keySchedule[1], 0x02, keySchedule[2]); + EXPAND_KEY128(keySchedule[2], 0x04, keySchedule[3]); + EXPAND_KEY128(keySchedule[3], 0x08, keySchedule[4]); + EXPAND_KEY128(keySchedule[4], 0x10, keySchedule[5]); + EXPAND_KEY128(keySchedule[5], 0x20, keySchedule[6]); + EXPAND_KEY128(keySchedule[6], 0x40, keySchedule[7]); + EXPAND_KEY128(keySchedule[7], 0x80, keySchedule[8]); + EXPAND_KEY128(keySchedule[8], 0x1B, keySchedule[9]); + EXPAND_KEY128(keySchedule[9], 0x36, keySchedule[10]); +} + +#define EXPAND_KEY192_PART1(res, k0, kt, rcon) \ + tmp2 = _mm_slli_si128(k0, 4); \ + tmp1 = _mm_xor_si128(k0, tmp2); \ + tmp2 = _mm_slli_si128(tmp2, 4); \ + tmp1 = _mm_xor_si128(_mm_xor_si128(tmp1, tmp2), _mm_slli_si128(tmp2, 4)); \ + tmp2 = _mm_aeskeygenassist_si128(kt, rcon); \ + res = _mm_xor_si128(tmp1, _mm_shuffle_epi32(tmp2, 0x55)) + +#define EXPAND_KEY192_PART2(res, k1, k2) \ + tmp2 = _mm_xor_si128(k1, _mm_slli_si128(k1, 4)); \ + res = _mm_xor_si128(tmp2, _mm_shuffle_epi32(k2, 0xFF)) + +#define EXPAND_KEY192(k0, res1, res2, res3, carry, rcon1, rcon2) \ + EXPAND_KEY192_PART1(tmp3, k0, res1, rcon1); \ + EXPAND_KEY192_PART2(carry, res1, tmp3); \ + res1 = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(res1), \ + _mm_castsi128_pd(tmp3), 0)); \ + res2 = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(tmp3), \ + _mm_castsi128_pd(carry), 1)); \ + EXPAND_KEY192_PART1(res3, tmp3, carry, rcon2) + +static void +native_key_expansion192(AESContext *cx, const unsigned char *key) +{ + __m128i *keySchedule = cx->keySchedule; + pre_align __m128i tmp1 post_align; + pre_align __m128i tmp2 post_align; + pre_align __m128i tmp3 post_align; + pre_align __m128i carry post_align; + keySchedule[0] = _mm_loadu_si128((__m128i *)key); + keySchedule[1] = _mm_loadu_si128((__m128i *)(key + 16)); + EXPAND_KEY192(keySchedule[0], keySchedule[1], keySchedule[2], + keySchedule[3], carry, 0x1, 0x2); + EXPAND_KEY192_PART2(keySchedule[4], carry, keySchedule[3]); + EXPAND_KEY192(keySchedule[3], keySchedule[4], keySchedule[5], + keySchedule[6], carry, 0x4, 0x8); + EXPAND_KEY192_PART2(keySchedule[7], carry, keySchedule[6]); + EXPAND_KEY192(keySchedule[6], keySchedule[7], keySchedule[8], + keySchedule[9], carry, 0x10, 0x20); + EXPAND_KEY192_PART2(keySchedule[10], carry, keySchedule[9]); + EXPAND_KEY192(keySchedule[9], keySchedule[10], keySchedule[11], + keySchedule[12], carry, 0x40, 0x80); +} + +#define EXPAND_KEY256_PART(res, rconx, k1x, k2x, X) \ + tmp_key = _mm_shuffle_epi32(_mm_aeskeygenassist_si128(k2x, rconx), X); \ + tmp2 = _mm_slli_si128(k1x, 4); \ + tmp1 = _mm_xor_si128(k1x, tmp2); \ + tmp2 = _mm_slli_si128(tmp2, 4); \ + tmp1 = _mm_xor_si128(_mm_xor_si128(tmp1, tmp2), _mm_slli_si128(tmp2, 4)); \ + res = _mm_xor_si128(tmp1, tmp_key); + +#define EXPAND_KEY256(res1, res2, k1, k2, rcon) \ + EXPAND_KEY256_PART(res1, rcon, k1, k2, 0xFF); \ + EXPAND_KEY256_PART(res2, 0x00, k2, res1, 0xAA) + +static void +native_key_expansion256(AESContext *cx, const unsigned char *key) +{ + __m128i *keySchedule = cx->keySchedule; + pre_align __m128i tmp_key post_align; + pre_align __m128i tmp1 post_align; + pre_align __m128i tmp2 post_align; + keySchedule[0] = _mm_loadu_si128((__m128i *)key); + keySchedule[1] = _mm_loadu_si128((__m128i *)(key + 16)); + EXPAND_KEY256(keySchedule[2], keySchedule[3], keySchedule[0], + keySchedule[1], 0x01); + EXPAND_KEY256(keySchedule[4], keySchedule[5], keySchedule[2], + keySchedule[3], 0x02); + EXPAND_KEY256(keySchedule[6], keySchedule[7], keySchedule[4], + keySchedule[5], 0x04); + EXPAND_KEY256(keySchedule[8], keySchedule[9], keySchedule[6], + keySchedule[7], 0x08); + EXPAND_KEY256(keySchedule[10], keySchedule[11], keySchedule[8], + keySchedule[9], 0x10); + EXPAND_KEY256(keySchedule[12], keySchedule[13], keySchedule[10], + keySchedule[11], 0x20); + EXPAND_KEY256_PART(keySchedule[14], 0x40, keySchedule[12], + keySchedule[13], 0xFF); +} + +#endif /* NSS_X86_OR_X64 */ + +/* + * AES key expansion using aes-ni instructions. + */ +static void +native_key_expansion(AESContext *cx, const unsigned char *key, unsigned int Nk) +{ +#ifdef NSS_X86_OR_X64 + switch (Nk) { + case 4: + native_key_expansion128(cx, key); + return; + case 6: + native_key_expansion192(cx, key); + return; + case 8: + native_key_expansion256(cx, key); + return; + default: + /* This shouldn't happen. */ + PORT_Assert(0); + } +#else + PORT_Assert(0); +#endif /* NSS_X86_OR_X64 */ +} + +static void +native_encryptBlock(AESContext *cx, + unsigned char *output, + const unsigned char *input) +{ +#ifdef NSS_X86_OR_X64 + int i; + pre_align __m128i m post_align = _mm_loadu_si128((__m128i *)input); + m = _mm_xor_si128(m, cx->keySchedule[0]); + for (i = 1; i < cx->Nr; ++i) { + m = _mm_aesenc_si128(m, cx->keySchedule[i]); + } + m = _mm_aesenclast_si128(m, cx->keySchedule[cx->Nr]); + _mm_storeu_si128((__m128i *)output, m); +#else + PORT_Assert(0); +#endif /* NSS_X86_OR_X64 */ +} + /* rijndael_key_expansion * * Generate the expanded key from the key input by the user. @@ -702,7 +910,7 @@ rijndael_encryptECB(AESContext *cx, unsigned char *output, if (aesni_support()) { /* Use hardware acceleration for normal AES parameters. */ - encryptor = &rijndael_native_encryptBlock; + encryptor = &native_encryptBlock; } else { encryptor = &rijndael_encryptBlock128; } @@ -809,7 +1017,14 @@ rijndael_decryptCBC(AESContext *cx, unsigned char *output, AESContext * AES_AllocateContext(void) { - return PORT_ZNewAligned(AESContext, 16, mem); + /* aligned_alloc is C11 so we have to do it the old way. */ + AESContext *ctx = PORT_ZAlloc(sizeof(AESContext) + 15); + if (ctx == NULL) { + PORT_SetError(SEC_ERROR_NO_MEMORY); + return NULL; + } + ctx->mem = ctx; + return (AESContext *)(((uintptr_t)ctx + 15) & ~(uintptr_t)0x0F); } /* @@ -892,13 +1107,22 @@ aes_InitContext(AESContext *cx, const unsigned char *key, unsigned int keysize, } else #endif { + +#if defined(RIJNDAEL_GENERATE_TABLES) || \ + defined(RIJNDAEL_GENERATE_TABLES_MACRO) + if (rijndaelTables == NULL) { + if (PR_CallOnce(&coRTInit, init_rijndael_tables) != PR_SUCCESS) { + return SECFailure; + } + } +#endif /* Generate expanded key */ if (encrypt) { if (use_hw_aes && (cx->mode == NSS_AES_GCM || cx->mode == NSS_AES || cx->mode == NSS_AES_CTR)) { PORT_Assert(keysize == 16 || keysize == 24 || keysize == 32); /* Prepare hardware key for normal AES parameters. */ - rijndael_native_key_expansion(cx, key, Nk); + native_key_expansion(cx, key, Nk); } else { rijndael_key_expansion(cx, key, Nk); } |